Lectures on Network Information Theory

Abbas El Gamal

Stanford University

Allerton 2009

The Early Years

• I started a course on multiple user (network) information theory at Stanford in 1982 and taught it 3 times

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Early Years

- I started a course on multiple user (network) information theory at Stanford in 1982 and taught it 3 times
- The course had some of today's big names in our field:

Allerton 2009 2 / 42

COURSE OUTLINE

- 1. Review of basic entropy and mutual information relations.
- 2. The Asymptotic Equipartition Property, joint typicality.
- 3. Shannon's source and channel coding theorem.
- 4. Multiple access channel.
- 5. The Slepian-Wolf source coding theorem.
- 6. The multiple access channel with correlated sources.
- 7. The broadcast channel.
- 8. Basic rate distortion theory.
- 9. Source coding with side information.
- 10. Channel with states.
- 11. The One Bit Theorem.

• I also gave a lecture on feedback

・ロト ・聞ト ・ヨト ・ヨト

- I also gave a lecture on feedback
- Some results that were known then and are considered important today were absent:

Interference channel: Strong interference; Han–Kobayashi Relay channel: cutset bound; decode–forward; compress–forward Multiple descriptions: El Gamal–Cover; Ozarow; Ahlswede Secrecy: Shannon; Wyner; Csiszár–Körner

- I also gave a lecture on feedback
- Some results that were known then and are considered important today were absent:

Interference channel: Strong interference; Han–Kobayashi Relay channel: cutset bound; decode–forward; compress–forward Multiple descriptions: El Gamal–Cover; Ozarow; Ahlswede Secrecy: Shannon; Wyner; Csiszár–Körner

• There was no theoretical or practical interest in these results then

• By the mid 80s interest in NIT was all but gone

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- By the mid 80s interest in NIT was all but gone
- Theory was stuck and many basic problems remained open
- It seemed that the theory will have no applications

.

- By the mid 80s interest in NIT was all but gone
- Theory was stuck and many basic problems remained open
- It seemed that the theory will have no applications
- By early 90s, the number of ISIT papers on NIT \rightarrow 0:

- By the mid 80s interest in NIT was all but gone
- Theory was stuck and many basic problems remained open
- It seemed that the theory will have no applications
- By early 90s, the number of ISIT papers on NIT \rightarrow 0:

۲

The Resurgence

• By late 90s, the Internet and wireless communication began to revive interest in NIT; and by early 2000s, the field was in full swing

The Resurgence

- By late 90s, the Internet and wireless communication began to revive interest in NIT; and by early 2000s, the field was in full swing
- I started teaching the course again in 2002

(4 間) トイヨト イヨト

The Resurgence

- By late 90s, the Internet and wireless communication began to revive interest in NIT; and by early 2000s, the field was in full swing
- I started teaching the course again in 2002
- The course had some of today's rising stars:

ectures on NI

Rough Schedule

Sept 26	Introduction, review
Oct 1	Review
Oct 3	Review, MAC
Oct 8	No lecture
Oct 10	MAC, correlated sources
Oct 15	Correlated sources
Oct 17	Broadcast
Oct 22	Broadcast, interference
Oct 24	ntorforence, relay
Oct 29	Relay, feedback
Oct 31	Rate distortion
Nav 5	Rate distortion
Nov 7	Side information multiple descriptions
Nov 12	Channel with state (Project selections)
Nov 14	Channel with state

2246 444642304

1.64

• Chip technology: Scaled by a factor of 2^{11} (Moore's law)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Chip technology: Scaled by a factor of 2^{11} (Moore's law)
- Computing: From VAX780 to PCs and laptops

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Chip technology: Scaled by a factor of 2^{11} (Moore's law)
- Computing: From VAX780 to PCs and laptops
- Communication: From 1200 Baud modems and wired phones to DSL, cellular, and 802.xx

(人間) トイヨト イヨト

- Chip technology: Scaled by a factor of 2^{11} (Moore's law)
- Computing: From VAX780 to PCs and laptops
- Communication: From 1200 Baud modems and wired phones to DSL, cellular, and 802.xx
- Networks: From ARPANET to the Internet

(4) (3) (4) (4) (4)

- Chip technology: Scaled by a factor of 2^{11} (Moore's law)
- Computing: From VAX780 to PCs and laptops
- Communication: From 1200 Baud modems and wired phones to DSL, cellular, and 802.xx
- Networks: From ARPANET to the Internet
- Multi-media: From film cameras and Sony Walkman to digital cameras and iPod

• • = • • = •

A. El Gamal (Stanford University)

Lectures on NIT

 ▶ ◀ 볼 ▶ 볼 ∽ ९

 Allerton 2009
 9 / 42

(日) (四) (三) (三)

• Theory does not advance as fast as technology

-

• Theory does not advance as fast as technology

• Nothing happened between early 80s and 2002

- ∃ →

• Theory does not advance as fast as technology

• Nothing happened between early 80s and 2002

• I didn't know what was going on

• Theory does not advance as fast as technology

• Nothing happened between early 80s and 2002

• I didn't know what was going on

Answer: All of the above

• Some progress on old open problems (mainly Gaussian)

- 4 間 5 - 4 三 5 - 4 三 5

- Some progress on old open problems (mainly Gaussian)
- Work on new models: Fading channels; MIMO; secrecy,

.

- Some progress on old open problems (mainly Gaussian)
- Work on new models: Fading channels; MIMO; secrecy,
- New directions in network capacity: Network coding Scaling laws Deterministic/high SNR approximations (within xx bits)

.

- Some progress on old open problems (mainly Gaussian)
- Work on new models: Fading channels; MIMO; secrecy,
- New directions in network capacity: Network coding
 Scaling laws
 Deterministic/high SNR approximations (within xx bits)
- Attempts to consummate marriage (or at least dating) between IT and networking

- Developed jointly with Young-Han Kim of UCSD
- Incorporate many of the recent results

(4) (5) (4) (5)

- Developed jointly with Young-Han Kim of UCSD
- Incorporate many of the recent results
- Attempt to organize the field in a "top-down" way

- 4 E b

- Developed jointly with Young-Han Kim of UCSD
- Incorporate many of the recent results
- Attempt to organize the field in a "top-down" way
- Balance introduction of new techniques and new models

- Developed jointly with Young-Han Kim of UCSD
- Incorporate many of the recent results
- Attempt to organize the field in a "top-down" way
- Balance introduction of new techniques and new models
- Unify, simplify, and formalize achievability proofs

- Developed jointly with Young-Han Kim of UCSD
- Incorporate many of the recent results
- Attempt to organize the field in a "top-down" way
- Balance introduction of new techniques and new models
- Unify, simplify, and formalize achievability proofs
- Emphasize extension to networks

- Developed jointly with Young-Han Kim of UCSD
- Incorporate many of the recent results
- Attempt to organize the field in a "top-down" way
- Balance introduction of new techniques and new models
- Unify, simplify, and formalize achievability proofs
- Emphasize extension to networks
- Use clean and unified notation and terminology

Outline

The First Lecture

- 2 Achievability for DM Sources and Channels
- 3 Gaussian Sources and Channels

4 Converse

5 Extension to Networks

• Consider a general networked information processing system:

- Sources: data, speech, music, images, video, sensor data
- Nodes: handsets, base stations, servers, sensor nodes
- Network: wired, wireless, or hybrid

• Each node observes some sources, wishes to obtain descriptions of other sources, or to compute function/make decision based on them

- Each node observes some sources, wishes to obtain descriptions of other sources, or to compute function/make decision based on them
- To achieve the goal, the nodes communicate and perform local computing

- Each node observes some sources, wishes to obtain descriptions of other sources, or to compute function/make decision based on them
- To achieve the goal, the nodes communicate and perform local computing
- Information flow questions:

What are the necessary and sufficient conditions on information flow? What are the optimal schemes/techniques needed to achieve them?

- Each node observes some sources, wishes to obtain descriptions of other sources, or to compute function/make decision based on them
- To achieve the goal, the nodes communicate and perform local computing
- Information flow questions:

What are the necessary and sufficient conditions on information flow? What are the optimal schemes/techniques needed to achieve them?

- The difficulty in answering these questions depends on:
 - Source and network models
 - Information processing goals
 - Computational capabilities of the nodes

• • = • • = •

Example: Multi-Commodity Flow

• If the sources are commodities with demands (rates in bits/sec); the nodes are connected by noiseless rate-constrained links; each intermediate node forwards the bits it receives; the goal is to send each commodity to a destination node; the problem reduces to the multi-commodity flow with known conditions on optimal flow

Example: Multi-Commodity Flow

• If the sources are commodities with demands (rates in bits/sec); the nodes are connected by noiseless rate-constrained links; each intermediate node forwards the bits it receives; the goal is to send each commodity to a destination node; the problem reduces to the multi-commodity flow with known conditions on optimal flow

 For single commodity, these conditions reduce to the celebrated max-flow min-cut theorem

- This simple networked information processing system model does not capture many important aspects of real-world systems:
 - Real-world information sources have redundancies, time and space correlations, time variations

.

- This simple networked information processing system model does not capture many important aspects of real-world systems:
 - Real-world information sources have redundancies, time and space correlations, time variations
 - Real-world networks may suffer from noise, interference, node/link failures, delay, time variation

.

- This simple networked information processing system model does not capture many important aspects of real-world systems:
 - Real-world information sources have redundancies, time and space correlations, time variations
 - Real-world networks may suffer from noise, interference, node/link failures, delay, time variation
 - Real-world networks may allow for broadcasting

- This simple networked information processing system model does not capture many important aspects of real-world systems:
 - Real-world information sources have redundancies, time and space correlations, time variations
 - Real-world networks may suffer from noise, interference, node/link failures, delay, time variation
 - Real-world networks may allow for broadcasting
 - Real-world communication nodes may allow for more complex node operations than forwarding

- This simple networked information processing system model does not capture many important aspects of real-world systems:
 - Real-world information sources have redundancies, time and space correlations, time variations
 - Real-world networks may suffer from noise, interference, node/link failures, delay, time variation
 - Real-world networks may allow for broadcasting
 - Real-world communication nodes may allow for more complex node operations than forwarding
 - The goal in many information processing systems is to partially recover the sources or to compute/make a decision

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- This simple networked information processing system model does not capture many important aspects of real-world systems:
 - Real-world information sources have redundancies, time and space correlations, time variations
 - Real-world networks may suffer from noise, interference, node/link failures, delay, time variation
 - Real-world networks may allow for broadcasting
 - Real-world communication nodes may allow for more complex node operations than forwarding
 - The goal in many information processing systems is to partially recover the sources or to compute/make a decision
- Network information theory aims to answer the information flow questions while capturing essential elements of real-world networks in the probabilistic framework of Shannon's information theory

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Focus has been on compression and communication for discrete memoryless (DM) and Gaussian sources and channels

• • = • • =

- Focus has been on compression and communication for discrete memoryless (DM) and Gaussian sources and channels
- Most results are for separate source-channel settings

- Focus has been on compression and communication for discrete memoryless (DM) and Gaussian sources and channels
- Most results are for separate source-channel settings
- Computable characterizations of capacity/optimal rate regions known for few cases. For other cases, only inner and outer bounds are known

- Focus has been on compression and communication for discrete memoryless (DM) and Gaussian sources and channels
- Most results are for separate source-channel settings
- Computable characterizations of capacity/optimal rate regions known for few cases. For other cases, only inner and outer bounds are known
- Some results on joint source-channel coding, communication for computing, secrecy, and in intersection with networking

- Focus has been on compression and communication for discrete memoryless (DM) and Gaussian sources and channels
- Most results are for separate source-channel settings
- Computable characterizations of capacity/optimal rate regions known for few cases. For other cases, only inner and outer bounds are known
- Some results on joint source-channel coding, communication for computing, secrecy, and in intersection with networking
- Coding techniques developed, e.g., superposition, successive cancellation, Slepian–Wolf, Wyner–Ziv, successive refinement, dirty paper coding, network coding are starting to impact real-world networks

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Focus has been on compression and communication for discrete memoryless (DM) and Gaussian sources and channels
- Most results are for separate source-channel settings
- Computable characterizations of capacity/optimal rate regions known for few cases. For other cases, only inner and outer bounds are known
- Some results on joint source-channel coding, communication for computing, secrecy, and in intersection with networking
- Coding techniques developed, e.g., superposition, successive cancellation, Slepian–Wolf, Wyner–Ziv, successive refinement, dirty paper coding, network coding are starting to impact real-world networks
- However, many basic problems remain open and a complete theory is yet to be developed

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Lectures aim to provide broad coverage of the models, fundamental results, proof techniques, and open problems in NIT

.

- Lectures aim to provide broad coverage of the models, fundamental results, proof techniques, and open problems in NIT
- Include both teaching material and advanced results

- Lectures aim to provide broad coverage of the models, fundamental results, proof techniques, and open problems in NIT
- Include both teaching material and advanced results
- Divided into four parts:
 Part I: Background
 - Part II: Single-hop Networks
 - Part III: Multi-hop Networks
 - Part IV: Extensions

- Lectures aim to provide broad coverage of the models, fundamental results, proof techniques, and open problems in NIT
- Include both teaching material and advanced results
- Divided into four parts: Part I: Background
 - Part II: Single-hop Networks
 - Part III: Multi-hop Networks
 - Part IV: Extensions
- Global appendices for general techniques and background, e.g., bounding cardinalities of auxiliary random variables and Fourier-Motzkin elimination

- 4 同 6 4 日 6 4 日 6

 Purpose: Introduce notation and basic techniques used throughout; point out some differences between point-to-point and multiple user communication

- Purpose: Introduce notation and basic techniques used throughout; point out some differences between point-to-point and multiple user communication
- Entropy, differential entropy, and mutual information

4 3 6 4 3

- Purpose: Introduce notation and basic techniques used throughout; point out some differences between point-to-point and multiple user communication
- Entropy, differential entropy, and mutual information
- Strong typicality: Orlitsky-Roche definition; properties

- Purpose: Introduce notation and basic techniques used throughout; point out some differences between point-to-point and multiple user communication
- Entropy, differential entropy, and mutual information
- Strong typicality: Orlitsky–Roche definition; properties
- Key achievability lemmas:
 - Typical average lemma
 - Joint typicality lemma
 - Packing lemma
 - Covering lemma
 - Conditional typicality lemma

1 E N 1 E N

- Purpose: Introduce notation and basic techniques used throughout; point out some differences between point-to-point and multiple user communication
- Entropy, differential entropy, and mutual information
- Strong typicality: Orlitsky–Roche definition; properties
- Key achievability lemmas:
 - Typical average lemma
 - Joint typicality lemma
 - Packing lemma
 - Covering lemma
 - Conditional typicality lemma
- Shannon's point-to-point communication theorems: Random coding; joint typicality encoding/decoding

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Single round one-way communication

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Single round one-way communication Independent messages over noisy channels:

Correlated sources over noiseless (wireline) channels:

- Single round one-way communication Independent messages over noisy channels:
 - Multiple access channels: time sharing; successive cancellation

Correlated sources over noiseless (wireline) channels:

- Single round one-way communication Independent messages over noisy channels:
 - Multiple access channels: time sharing; successive cancellation
 - Degraded broadcast channels: superposition coding

Correlated sources over noiseless (wireline) channels:

• Single round one-way communication

Independent messages over noisy channels:

- Multiple access channels: time sharing; successive cancellation
- Degraded broadcast channels: superposition coding
- Interference channels: strong interference; Han–Kobayashi

Correlated sources over noiseless (wireline) channels:

• Single round one-way communication

Independent messages over noisy channels:

- Multiple access channels: time sharing; successive cancellation
- Degraded broadcast channels: superposition coding
- Interference channels: strong interference; Han–Kobayashi
- Channels with state: Gelfand–Pinsker; writing on dirty paper

Correlated sources over noiseless (wireline) channels:

• Single round one-way communication

Independent messages over noisy channels:

- Multiple access channels: time sharing; successive cancellation
- Degraded broadcast channels: superposition coding
- Interference channels: strong interference; Han–Kobayashi
- Channels with state: Gelfand–Pinsker; writing on dirty paper
- Fading channels: alternative performance measures (outage capacity)

Correlated sources over noiseless (wireline) channels:

• Single round one-way communication

Independent messages over noisy channels:

- Multiple access channels: time sharing; successive cancellation
- Degraded broadcast channels: superposition coding
- Interference channels: strong interference; Han–Kobayashi
- Channels with state: Gelfand–Pinsker; writing on dirty paper
- Fading channels: alternative performance measures (outage capacity)
- General broadcast channels: Marton coding; mutual covering

Correlated sources over noiseless (wireline) channels:

• Single round one-way communication

Independent messages over noisy channels:

- Multiple access channels: time sharing; successive cancellation
- Degraded broadcast channels: superposition coding
- Interference channels: strong interference; Han–Kobayashi
- Channels with state: Gelfand–Pinsker; writing on dirty paper
- Fading channels: alternative performance measures (outage capacity)
- General broadcast channels: Marton coding; mutual covering
- Vector Gaussian channels: dirty paper coding; MAC-BC duality

Correlated sources over noiseless (wireline) channels:

Correlated sources over DM channels:

K 4 E K 4 E K

• Single round one-way communication

Independent messages over noisy channels:

- Multiple access channels: time sharing; successive cancellation
- Degraded broadcast channels: superposition coding
- Interference channels: strong interference; Han–Kobayashi
- Channels with state: Gelfand–Pinsker; writing on dirty paper
- Fading channels: alternative performance measures (outage capacity)
- General broadcast channels: Marton coding; mutual covering
- Vector Gaussian channels: dirty paper coding; MAC-BC duality

Correlated sources over noiseless (wireline) channels:

Distributed lossless source coding: Slepian–Wolf; random binning

Correlated sources over DM channels:

• Single round one-way communication

Independent messages over noisy channels:

- Multiple access channels: time sharing; successive cancellation
- Degraded broadcast channels: superposition coding
- Interference channels: strong interference; Han–Kobayashi
- Channels with state: Gelfand–Pinsker; writing on dirty paper
- Fading channels: alternative performance measures (outage capacity)
- General broadcast channels: Marton coding; mutual covering
- Vector Gaussian channels: dirty paper coding; MAC-BC duality

Correlated sources over noiseless (wireline) channels:

- Distributed lossless source coding: Slepian–Wolf; random binning
- Source coding with side information: Wyner–Ziv

Correlated sources over DM channels:

(4 間) トイヨト イヨト

• Single round one-way communication

Independent messages over noisy channels:

- Multiple access channels: time sharing; successive cancellation
- Degraded broadcast channels: superposition coding
- Interference channels: strong interference; Han–Kobayashi
- Channels with state: Gelfand–Pinsker; writing on dirty paper
- Fading channels: alternative performance measures (outage capacity)
- General broadcast channels: Marton coding; mutual covering
- Vector Gaussian channels: dirty paper coding; MAC-BC duality

Correlated sources over noiseless (wireline) channels:

- Distributed lossless source coding: Slepian–Wolf; random binning
- Source coding with side information: Wyner–Ziv
- Distributed lossy source coding: Berger–Tung; quadratic Gaussian

Correlated sources over DM channels:

- 4 同 6 4 日 6 4 日 6

• Single round one-way communication

Independent messages over noisy channels:

- Multiple access channels: time sharing; successive cancellation
- Degraded broadcast channels: superposition coding
- Interference channels: strong interference; Han–Kobayashi
- Channels with state: Gelfand–Pinsker; writing on dirty paper
- Fading channels: alternative performance measures (outage capacity)
- General broadcast channels: Marton coding; mutual covering
- Vector Gaussian channels: dirty paper coding; MAC-BC duality

Correlated sources over noiseless (wireline) channels:

- Distributed lossless source coding: Slepian–Wolf; random binning
- Source coding with side information: Wyner–Ziv
- Distributed lossy source coding: Berger–Tung; quadratic Gaussian
- Multiple descriptions: El Gamal–Cover; successive refinement

Correlated sources over DM channels:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Single round one-way communication

Independent messages over noisy channels:

- Multiple access channels: time sharing; successive cancellation
- Degraded broadcast channels: superposition coding
- Interference channels: strong interference; Han–Kobayashi
- Channels with state: Gelfand–Pinsker; writing on dirty paper
- Fading channels: alternative performance measures (outage capacity)
- General broadcast channels: Marton coding; mutual covering
- Vector Gaussian channels: dirty paper coding; MAC-BC duality

Correlated sources over noiseless (wireline) channels:

- Distributed lossless source coding: Slepian–Wolf; random binning
- Source coding with side information: Wyner–Ziv
- Distributed lossy source coding: Berger–Tung; quadratic Gaussian
- Multiple descriptions: El Gamal–Cover; successive refinement

Correlated sources over DM channels:

Separation does not hold in general; common information; sufficient conditions for MAC, BC

• Relaying and multiple communication rounds

• Relaying and multiple communication rounds

Independent messages over noiseless networks:

Independent messages over noisy networks:

• Relaying and multiple communication rounds

Independent messages over noiseless networks: Max-flow min-cut theorem; network coding

Independent messages over noisy networks:

• Relaying and multiple communication rounds

Independent messages over noiseless networks: Max-flow min-cut theorem; network coding

Independent messages over noisy networks:

Relay channel: cutset bound; decode–forward; compress–forward

Relaying and multiple communication rounds

Independent messages over noiseless networks: Max-flow min-cut theorem; network coding

Independent messages over noisy networks:

- Relay channel: cutset bound; decode–forward; compress–forward
- Interactive communication: feedback capacity; iterative refinement

Relaying and multiple communication rounds

Independent messages over noiseless networks: Max-flow min-cut theorem; network coding

Independent messages over noisy networks:

- Relay channel: cutset bound; decode–forward; compress–forward
- Interactive communication: feedback capacity; iterative refinement
- **DM** networks: cutset bound; decode–forward; compress–forward

Relaying and multiple communication rounds

Independent messages over noiseless networks: Max-flow min-cut theorem; network coding

Independent messages over noisy networks:

- Relay channel: cutset bound; decode–forward; compress–forward
- Interactive communication: feedback capacity; iterative refinement
- DM networks: cutset bound; decode–forward; compress–forward
- Gaussian networks: scaling laws; high SNR approximations

Relaying and multiple communication rounds

Independent messages over noiseless networks: Max-flow min-cut theorem; network coding

Independent messages over noisy networks:

- Relay channel: cutset bound; decode–forward; compress–forward
- Interactive communication: feedback capacity; iterative refinement
- **DM** networks: cutset bound; decode–forward; compress–forward
- Gaussian networks: scaling laws; high SNR approximations

Correlated sources over noiseless (wireline) channels:

Multiple descriptions networks; interactive source coding

• Extensions of the theory to other settings

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Extensions of the theory to other settings

Communication for computing:

Distributed coding for computing: Orlitsky–Roche; μ -sum problem; distributed consensus

4 3 6 4 3

• Extensions of the theory to other settings

Communication for computing:

Distributed coding for computing: Orlitsky–Roche; $\mu\text{-sum}$ problem; distributed consensus

Information theoretic secrecy:

Wiretap channels; key generation from common randomness

• Extensions of the theory to other settings

Communication for computing:

Distributed coding for computing: Orlitsky–Roche; $\mu\text{-sum}$ problem; distributed consensus

Information theoretic secrecy:

Wiretap channels; key generation from common randomness

Asynchronous communication:

Random arrivals; asynchronous MAC

Degraded broadcast channels: Channels with state: Fading channels General broadcast channels: Gaussian vector channels:

Degraded broadcast channels:

- Superposition coding inner bound
- Degraded broadcast channels
- AWGN broadcast channels
- Less noisy and more capable broadcast channels

Channels with state:

Fading channels

General broadcast channels:

Gaussian vector channels:

Degraded broadcast channels:

Channels with state:

- Compound channel
- Arbitrarily varying channel
- Channels with random state
- Causal state information available at encoder
- Noncausal state information available at the encoder
- Writing on dirty paper
- Partial state information

Fading channels

General broadcast channels:

Gaussian vector channels:

- Degraded broadcast channels:
- Channels with state:

Fading channels

- General broadcast channels:
 - DM-BC with degraded message sets
 - 3-Receiver multilevel DM-BC with degraded message sets
 - Marton inner bound
 - Relationship to Gelfand–Pinsker
 - Nair–El Gamal outer bound
 - Inner bound for more than 2 receivers

Gaussian vector channels:

- Degraded broadcast channels:
- Channels with state:
- Fading channels
- General broadcast channels:
- Gaussian vector channels:
 - Gaussian vector channel
 - Gaussian vector fading channel
 - Gaussian vector multiple access channel
 - Spectral Gaussian broadcast channel
 - Vector writing on dirty paper
 - Gaussian vector broadcast channel

Typicality

• Let (u^n, x^n, y^n) be a triple of sequences with elements drawn from finite alphabets $(\mathcal{U}, \mathcal{X}, \mathcal{Y})$. Define their joint type as

$$\pi(u, x, y | u^n, x^n, y^n) = \frac{|\{i : (u_i, x_i, y_i) = (u, x, y)\}|}{n}$$

for $(u, x, y) \in \mathcal{U} \times \mathcal{X} \times \mathcal{Y}$

• Let $(U, X, Y) \sim p(u, x, y)$. The set $\mathcal{T}_{\epsilon}^{(n)}(U, X, Y)$ of ϵ -typical *n*-sequences is defined as

$$\begin{aligned} \{(u^n, x^n, y^n) : |\pi(u, x, y|u^n, x^n, y^n) - p(u, x, y)| &\leq \epsilon \cdot p(u, x, y) \\ \text{for all } (u, x, y) \in \mathcal{U} \times \mathcal{X} \times \mathcal{Y} \end{aligned}$$

イロト 不得下 イヨト イヨト 二日

Typicality

• Let (u^n, x^n, y^n) be a triple of sequences with elements drawn from finite alphabets $(\mathcal{U}, \mathcal{X}, \mathcal{Y})$. Define their joint type as

$$\pi(u, x, y | u^n, x^n, y^n) = \frac{|\{i : (u_i, x_i, y_i) = (u, x, y)\}|}{n}$$

for $(u, x, y) \in \mathcal{U} \times \mathcal{X} \times \mathcal{Y}$

• Let $(U, X, Y) \sim p(u, x, y)$. The set $\mathcal{T}_{\epsilon}^{(n)}(U, X, Y)$ of ϵ -typical *n*-sequences is defined as

$$\begin{split} \{(u^n, x^n, y^n) : |\pi(u, x, y|u^n, x^n, y^n) - p(u, x, y)| &\leq \epsilon \cdot p(u, x, y) \\ \text{for all } (u, x, y) \in \mathcal{U} \times \mathcal{X} \times \mathcal{Y} \rbrace \end{split}$$

• Typical average lemma: Let $x^n \in \mathcal{T}_{\epsilon}^{(n)}(X)$. Then for any $g(x) \ge 0$, $(1-\epsilon) \operatorname{\mathsf{E}}(g(X)) \le (1/n) \sum_{i=1}^n g(x_i) \le (1+\epsilon) \operatorname{\mathsf{E}}(g(X))$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Joint Typicality Lemma

• Let
$$(U, X, Y) \sim p(u, x, y)$$
.
1. Let $(u^n, x^n) \in \mathcal{T}_{\epsilon}^{(n)}(U, X)$ and $\tilde{Y}^n \sim \prod_{i=1}^n p_{Y|U}(\tilde{y}_i|u_i)$. Then
 $\mathsf{P}\{(u^n, x^n, \tilde{Y}^n) \in \mathcal{T}_{\epsilon}^{(n)}(U, X, Y)\} \doteq 2^{-nI(X;Y|U)}$

・ロト ・聞ト ・ヨト ・ヨト

Joint Typicality Lemma

• Let
$$(U, X, Y) \sim p(u, x, y)$$
.
1. Let $(u^n, x^n) \in \mathcal{T}_{\epsilon}^{(n)}(U, X)$ and $\tilde{Y}^n \sim \prod_{i=1}^n p_{Y|U}(\tilde{y}_i|u_i)$. Then
 $\mathbb{P}\{(u^n, x^n, \tilde{Y}^n) \in \mathcal{T}_{\epsilon}^{(n)}(U, X, Y)\} \doteq 2^{-nI(X;Y|U)}$
2. If $(\tilde{U}^n, \tilde{X}^n) \sim p(\tilde{u}^n, \tilde{x}^n)$ and $\tilde{Y}^n \sim \prod_{i=1}^n p_{Y|U}(\tilde{y}_i|\tilde{u}_i)$. Then
 $\mathbb{P}\{(\tilde{U}^n, \tilde{X}^n, \tilde{Y}^n) \in \mathcal{T}_{\epsilon}^{(n)}(U, X, Y)\} \leq 2^{-n(I(X;Y|U) - \delta(\epsilon))}$

・ロト ・聞ト ・ヨト ・ヨト

Packing Lemma

Let $(U, X, Y) \sim p(u, x, y)$ and $\tilde{U}^n \sim p(\tilde{u}^n)$. Let $X^n(m), m \in \mathcal{A}$, where $|\mathcal{A}| \leq 2^{nR}$, be random sequences, each distributed according to $\prod_{i=1}^n p_{X|U}(x_i|\tilde{u}_i)$ with arbitrary dependence on the rest

Packing Lemma

Let $(U, X, Y) \sim p(u, x, y)$ and $\tilde{U}^n \sim p(\tilde{u}^n)$. Let $X^n(m), m \in \mathcal{A}$, where $|\mathcal{A}| \leq 2^{nR}$, be random sequences, each distributed according to $\prod_{i=1}^n p_{X|U}(x_i|\tilde{u}_i)$ with arbitrary dependence on the rest

Let $\tilde{Y}^n \in \mathcal{Y}^n$ be another random sequence, conditionally independent of each $X^n(m), m \in \mathcal{A}$, given \tilde{U}^n , and distributed according to an arbitrary pmf $p(\tilde{y}^n | \tilde{u}^n)$

- 4 同 6 4 日 6 4 日 6

Packing Lemma

Let $(U, X, Y) \sim p(u, x, y)$ and $\tilde{U}^n \sim p(\tilde{u}^n)$. Let $X^n(m), m \in \mathcal{A}$, where $|\mathcal{A}| \leq 2^{nR}$, be random sequences, each distributed according to $\prod_{i=1}^n p_{X|U}(x_i|\tilde{u}_i)$ with arbitrary dependence on the rest

Let $\tilde{Y}^n \in \mathcal{Y}^n$ be another random sequence, conditionally independent of each $X^n(m), m \in \mathcal{A}$, given \tilde{U}^n , and distributed according to an arbitrary pmf $p(\tilde{y}^n | \tilde{u}^n)$

Then, there exists $\delta(\epsilon) \to 0$ as $\epsilon \to 0$ such that

 $\mathsf{P}\{(\tilde{U}^n, X^n(m), \tilde{Y}^n) \in \mathcal{T}_{\epsilon}^{(n)} \text{ for some } m \in \mathcal{A}\} \to 0$

as $n \to \infty$, if $R < I(X;Y|U) - \delta(\epsilon)$

(日)

The sequences $X^n(m)$, $m \in \mathcal{A}$, represent codewords. The \tilde{Y}^n sequence represents the received sequence as a result of sending a codeword $\notin \mathcal{A}$

The sequences $X^n(m)$, $m \in \mathcal{A}$, represent codewords. The \tilde{Y}^n sequence represents the received sequence as a result of sending a codeword $\notin \mathcal{A}$

The lemma shows that under any pmf on \tilde{Y}^n the probability that some codeword in \mathcal{A} is jointly typical with $\tilde{Y}^n \to 0$ as $n \to \infty$ if the rate of the code R < I(X;Y|U)

Covering Lemma

Let $(U, X, \hat{X}) \sim p(u, x, \hat{x})$. Let $(U^n, X^n) \sim p(u^n, x^n)$ be a pair of arbitrarily distributed random sequences such that $\mathsf{P}\{(U^n, X^n) \in \mathcal{T}_{\epsilon}^{(n)}(U, X)\} \to 1$ as $n \to \infty$

Covering Lemma

Let $(U, X, \hat{X}) \sim p(u, x, \hat{x})$. Let $(U^n, X^n) \sim p(u^n, x^n)$ be a pair of arbitrarily distributed random sequences such that $\mathsf{P}\{(U^n, X^n) \in \mathcal{T}_{\epsilon}^{(n)}(U, X)\} \to 1$ as $n \to \infty$

Let $\hat{X}^n(m), m \in \mathcal{A}$, where $|\mathcal{A}| \geq 2^{nR}$, be random sequences, conditionally independent of each other and of X^n given U^n , and distributed according to $\prod_{i=1}^n p_{\hat{X}|U}(\hat{x}_i|u_i)$

Covering Lemma

Let $(U, X, \hat{X}) \sim p(u, x, \hat{x})$. Let $(U^n, X^n) \sim p(u^n, x^n)$ be a pair of arbitrarily distributed random sequences such that $\mathsf{P}\{(U^n, X^n) \in \mathcal{T}_{\epsilon}^{(n)}(U, X)\} \to 1$ as $n \to \infty$

Let $\hat{X}^n(m), m \in \mathcal{A}$, where $|\mathcal{A}| \geq 2^{nR}$, be random sequences, conditionally independent of each other and of X^n given U^n , and distributed according to $\prod_{i=1}^n p_{\hat{X}|U}(\hat{x}_i|u_i)$

Then, there exists $\delta(\epsilon) \to 0$ as $\epsilon \to 0$ such that

 $\mathsf{P}\{(U^n,X^n,\hat{X}^n(m))\notin\mathcal{T}_{\epsilon}^{(n)} \text{ for all } m \in \mathcal{A}\} \to 0$ as $n \to \infty$, if $R > I(X;\hat{X}|U) + \delta(\epsilon)$

イロト 不得下 イヨト イヨト 二日

The sequences $\hat{X}^n(m)$, $m \in \mathcal{A}$, represent reproduction sequences and X^n represents the source sequence

The sequences $\hat{X}^n(m)$, $m \in \mathcal{A}$, represent reproduction sequences and X^n represents the source sequence

The lemma shows that if $R > I(X; \hat{X}|U)$ then there is at least one reproduction sequence that is jointly typical with \tilde{X}^n

Conditional Typicality Lemma

• Let $(X, Y) \sim p(x, y)$, $x^n \in \mathcal{T}_{\epsilon'}^{(n)}(X)$, and $Y^n \sim \prod_{i=1}^n p_{Y|X}(y_i|x_i)$. Then, for every $\epsilon > \epsilon'$, $\mathsf{P}\{(x^n, Y^n) \in \mathcal{T}_{\epsilon}^{(n)}(X, Y)\} \to 1 \text{ as } n \to \infty$

< 日 > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > > < 二 > > < 二 > > > < 二 > > < 二 > > < □ > > < □ > > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conditional Typicality Lemma

• Let $(X, Y) \sim p(x, y)$, $x^n \in \mathcal{T}_{\epsilon'}^{(n)}(X)$, and $Y^n \sim \prod_{i=1}^n p_{Y|X}(y_i|x_i)$. Then, for every $\epsilon > \epsilon'$, $\mathsf{P}\{(x^n, Y^n) \in \mathcal{T}_{\epsilon}^{(n)}(X, Y)\} \to 1 \text{ as } n \to \infty$

• Markov lemma is a special case: $U \to X \to Y$ form a Markov chain. If $(u^n, x^n) \in \mathcal{T}_{\epsilon'}^{(n)}(U, X)$ and $Y^n \sim \prod_{i=1}^n p_{Y|X}(y_i|x_i)$, then for every $\epsilon > \epsilon'$,

 $\mathsf{P}\{(u^n,x^n,Y^n)\in\mathcal{T}_{\epsilon}^{(n)}(U,X,Y)\}\to 1 \text{ as } n\to\infty$

イロト イポト イヨト イヨト 二日

Gelfand–Pinsker

- \bullet Consider a DMC with DM state $(\mathcal{X}\times\mathcal{S}, p(y|x,s)p(s), \mathcal{Y})$
- The sender X who knows the state sequence S^n noncausally and wishes to send a message $M \in [1:2^{nR}]$ to the receiver Y

Gelfand–Pinsker

- \bullet Consider a DMC with DM state $(\mathcal{X}\times\mathcal{S}, p(y|x,s)p(s), \mathcal{Y})$
- The sender X who knows the state sequence S^n noncausally and wishes to send a message $M \in [1:2^{nR}]$ to the receiver Y

Gelfand-Pinsker Theorem

The capacity of a DMC with DM state available noncausally at the encoder is

$$C_{\rm SI-E} = \max_{p(u|s), \ x(u,s)} (I(U;Y) - I(U;S))$$

< □ > < A > >

- E

Outline of Achievability [Heegard, El Gamal]

• Fix p(u|s), x(u,s) that achieve capacity. For each message $m \in [1:2^{nR}]$, generate a subcode of $2^{n(\tilde{R}-R)} u^n(l)$ sequences

Outline of Achievability [Heegard, El Gamal]

• Fix p(u|s), x(u,s) that achieve capacity. For each message $m \in [1:2^{nR}]$, generate a subcode of $2^{n(\tilde{R}-R)} u^n(l)$ sequences

• To send m given s^n , find $u^n(l) \in C(m)$ that is jointly typical with s^n and transmit $x_i = x(u_i(l), s_i)$ for $i \in [1 : n]$

• The receiver finds a jointly typical \hat{u}^n with y^n and declares the subcode index \hat{m} of \hat{u}^n to be the message sent

- Assume M=1 and let L be the index of the chosen U^n codeword for M=1 and S^n
- We bound each probability of error event:
 - ► $\mathcal{E}_1 = \{(S^n, U^n(l)) \notin \mathcal{T}_{\epsilon'}^{(n)} \text{ for all } U^n(l) \in \mathcal{C}(1)\}$: By the covering lemma, $\mathsf{P}(\mathcal{E}_1) \to 0$ as $n \to \infty$ if $\tilde{R} - R > I(U; S)$

A D A D A A D A

- Assume M=1 and let L be the index of the chosen U^n codeword for M=1 and S^n
- We bound each probability of error event:
 - ▶ $\mathcal{E}_1 = \{(S^n, U^n(l)) \notin \mathcal{T}_{\epsilon'}^{(n)} \text{ for all } U^n(l) \in \mathcal{C}(1)\}$: By the covering lemma, $\mathsf{P}(\mathcal{E}_1) \to 0 \text{ as } n \to \infty \text{ if } \tilde{R} - R > I(U; S)$
 - $\mathcal{E}_2 = \{ (U^n(L), Y^n) \notin \mathcal{T}_{\epsilon}^{(n)} \}$:

By the conditional typicality lemma, $\mathsf{P}(\mathcal{E}_1^c \cap \mathcal{E}_2) \to 0$ as $n \to \infty$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- \bullet Assume M=1 and let L be the index of the chosen U^n codeword for M=1 and S^n
- We bound each probability of error event:
 - ▶ $\mathcal{E}_1 = \{(S^n, U^n(l)) \notin \mathcal{T}_{\epsilon'}^{(n)} \text{ for all } U^n(l) \in \mathcal{C}(1)\}:$ By the covering lemma, $\mathsf{P}(\mathcal{E}_1) \to 0$ as $n \to \infty$ if $\tilde{R} - R > I(U; S)$
 - ► $\mathcal{E}_2 = \{(U^n(L), Y^n) \notin \mathcal{T}_{\epsilon}^{(n)}\}$: By the conditional typicality lemma, $\mathsf{P}(\mathcal{E}_1^c \cap \mathcal{E}_2) \to 0 \text{ as } n \to \infty$
 - ► $\mathcal{E}_3 = \{(U^n(\tilde{l}), Y^n) \in \mathcal{T}_{\epsilon}^{(n)} \text{ for some } U^n(\tilde{l}) \notin \mathcal{C}(1)\}$ Since each $U^n(\tilde{l}) \notin \mathcal{C}(1)$ is independent of Y^n and generated according to $\prod_{i=1}^n p_U(u_i)$, by the packing lemma, $\mathsf{P}(\mathcal{E}_3) \to 0$ as $n \to \infty$ if $\tilde{R} < I(U; Y)$

イロト イポト イヨト イヨト 二日

- \bullet Assume M=1 and let L be the index of the chosen U^n codeword for M=1 and S^n
- We bound each probability of error event:
 - ▶ $\mathcal{E}_1 = \{(S^n, U^n(l)) \notin \mathcal{T}_{\epsilon'}^{(n)} \text{ for all } U^n(l) \in \mathcal{C}(1)\}:$ By the covering lemma, $\mathsf{P}(\mathcal{E}_1) \to 0$ as $n \to \infty$ if $\tilde{R} - R > I(U; S)$
 - ► $\mathcal{E}_2 = \{ (U^n(L), Y^n) \notin \mathcal{T}_{\epsilon}^{(n)} \}$: By the conditional typicality lemma, $\mathsf{P}(\mathcal{E}_1^c \cap \mathcal{E}_2) \to 0 \text{ as } n \to \infty$
 - ► $\mathcal{E}_3 = \{(U^n(\tilde{l}), Y^n) \in \mathcal{T}_{\epsilon}^{(n)} \text{ for some } U^n(\tilde{l}) \notin \mathcal{C}(1)\}$ Since each $U^n(\tilde{l}) \notin \mathcal{C}(1)$ is independent of Y^n and generated according to $\prod_{i=1}^n p_U(u_i)$, by the packing lemma, $\mathsf{P}(\mathcal{E}_3) \to 0$ as $n \to \infty$ if $\tilde{R} < I(U; Y)$
- Thus the probability or error $\rightarrow 0$ as $n \rightarrow \infty$ if R < I(U;Y) I(U;S)

(日)

Mutual Covering Lemma [El Gamal, van der Meulen] Let $(U_1, U_2) \sim p(u_1, u_2)$. For j = 1, 2, let $U_i^n(m_j), m_j \in [1:2^{nR_j}]$, be pairwise independent random sequences, each distributed according to $\prod_{i=1}^{n} p_{U_i}(u_{ji})$. Assume that $\{U_1^n(m_1) : m_1 \in [1:2^{nR_1}]\}$ and $\{U_2^n(m_2): m_2 \in [1:2^{nR_2}]\}$ are independent $U_{1}^{n}(1$ $U_1^n(2)$ $(U_1^n(m_1), U_2^n(m_2) \in \mathcal{T}_{\epsilon}^{(n)})$ $U_1^n (2^{nR_1}$

Mutual Covering Lemma [El Gamal, van der Meulen]

Let $(U_1, U_2) \sim p(u_1, u_2)$. For j = 1, 2, let $U_j^n(m_j), m_j \in [1 : 2^{nR_j}]$, be pairwise independent random sequences, each distributed according to $\prod_{i=1}^n p_{U_j}(u_{ji})$. Assume that $\{U_1^n(m_1) : m_1 \in [1 : 2^{nR_1}]\}$ and $\{U_2^n(m_2) : m_2 \in [1 : 2^{nR_2}]\}$ are independent

イロト イポト イヨト イヨト

Mutual Covering Lemma [El Gamal, van der Meulen]

Let $(U_1, U_2) \sim p(u_1, u_2)$. For j = 1, 2, let $U_j^n(m_j), m_j \in [1 : 2^{nR_j}]$, be pairwise independent random sequences, each distributed according to $\prod_{i=1}^n p_{U_j}(u_{ji})$. Assume that $\{U_1^n(m_1) : m_1 \in [1 : 2^{nR_1}]\}$ and $\{U_2^n(m_2) : m_2 \in [1 : 2^{nR_2}]\}$ are independent

Then, there exists $\delta(\epsilon) \to 0$ as $\epsilon \to 0$ such that

 $\mathsf{P}\{(U_1^n(m_1), U_2^n(m_2)) \notin \mathcal{T}_{\epsilon}^{(n)} \text{ for all } (m_1, m_2)\} \to 0$

as $n \to \infty$ if $R_1 + R_2 > I(U_1; U_2)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Mutual Covering Lemma [El Gamal, van der Meulen]

Let $(U_1, U_2) \sim p(u_1, u_2)$. For j = 1, 2, let $U_j^n(m_j), m_j \in [1 : 2^{nR_j}]$, be pairwise independent random sequences, each distributed according to $\prod_{i=1}^n p_{U_j}(u_{ji})$. Assume that $\{U_1^n(m_1) : m_1 \in [1 : 2^{nR_1}]\}$ and $\{U_2^n(m_2) : m_2 \in [1 : 2^{nR_2}]\}$ are independent

Then, there exists $\delta(\epsilon) \to 0$ as $\epsilon \to 0$ such that

 $\mathsf{P}\{(U_1^n(m_1), U_2^n(m_2)) \notin \mathcal{T}_{\epsilon}^{(n)} \text{ for all } (m_1, m_2)\} \to 0$

as $n \to \infty$ if $R_1 + R_2 > I(U_1; U_2)$

- Used in the proof of Marton inner bound for BC
- Can be extended to k variables. Extension used in the proof of El Gamal–Cover inner bound for multiple descriptions and for extending Marton inner bound to k receivers

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Mutual Packing Lemma

Let $(U_1, U_2) \sim p(u_1, u_2)$. For j = 1, 2, let $U_j^n(m_j)$, $m_j \in [1 : 2^{nR_j}]$, be random sequences, each distributed according to $\prod_{i=1}^n p_{U_j}(u_{ji})$ with arbitrary dependence on the rest of the $U_j^n(m_j)$ sequences. Assume that $\{U_1^n(m_1) : m_1 \in [1 : 2^{nR_1}]\}$ and $\{U_2^n(m_2) : m_2 \in [1 : 2^{nR_2}]\}$ are independent

イロト イポト イヨト イヨト 二日

Mutual Packing Lemma

Let $(U_1, U_2) \sim p(u_1, u_2)$. For j = 1, 2, let $U_j^n(m_j)$, $m_j \in [1 : 2^{nR_j}]$, be random sequences, each distributed according to $\prod_{i=1}^n p_{U_j}(u_{ji})$ with arbitrary dependence on the rest of the $U_j^n(m_j)$ sequences. Assume that $\{U_1^n(m_1): m_1 \in [1:2^{nR_1}]\}$ and $\{U_2^n(m_2): m_2 \in [1:2^{nR_2}]\}$ are independent

Then, there exists $\delta(\epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$ such that

 $\mathsf{P}\{(U_1^n(m_1), U_2^n(m_2)) \in \mathcal{T}_{\epsilon}^{(n)} \text{ for some } (m_1, m_2)\} \to 0$

as $n \to \infty$ if $R_1 + R_2 < I(U_1; U_2) - \delta(\epsilon)$

イロト 不得下 イヨト イヨト 二日

Mutual Packing Lemma

Let $(U_1, U_2) \sim p(u_1, u_2)$. For j = 1, 2, let $U_j^n(m_j)$, $m_j \in [1 : 2^{nR_j}]$, be random sequences, each distributed according to $\prod_{i=1}^n p_{U_j}(u_{ji})$ with arbitrary dependence on the rest of the $U_j^n(m_j)$ sequences. Assume that $\{U_1^n(m_1): m_1 \in [1:2^{nR_1}]\}$ and $\{U_2^n(m_2): m_2 \in [1:2^{nR_2}]\}$ are independent

Then, there exists $\delta(\epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$ such that

 $\mathsf{P}\{(U_1^n(m_1), U_2^n(m_2)) \in \mathcal{T}_{\epsilon}^{(n)} \text{ for some } (m_1, m_2)\} \to 0$

as $n \to \infty$ if $R_1 + R_2 < I(U_1; U_2) - \delta(\epsilon)$

• Used in the proof of the Berger–Tung inner bound for distributed lossy source coding

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

• Because Gaussian models are quite popular in wireless communication, we have complete coverage of all basic results

- Achievability:
 - 1. Show that Gaussian optimizes mutual information expressions
 - 2. Prove achievability of optimized expressions via DM counterpart (with cost) by discretization and taking appropriate limits

The second step is detailed only for AWGN channel and quadratic Gaussian source coding

• Treatment of Gaussian is interspersed within each lecture,

- Treatment of Gaussian is interspersed within each lecture, e.g., the interference channel lecture:
 - Inner and outer bounds on capacity region of DM-IC

.

- Treatment of Gaussian is interspersed within each lecture, e.g., the interference channel lecture:
 - Inner and outer bounds on capacity region of DM-IC
 - Capacity region of DM-IC under strong interference

- Treatment of Gaussian is interspersed within each lecture, e.g., the interference channel lecture:
 - Inner and outer bounds on capacity region of DM-IC
 - Capacity region of DM-IC under strong interference
 - AWGN-IC

- Treatment of Gaussian is interspersed within each lecture, e.g., the interference channel lecture:
 - Inner and outer bounds on capacity region of DM-IC
 - Capacity region of DM-IC under strong interference
 - AWGN-IC
 - Capacity region of AWGN-IC under strong interference

- Treatment of Gaussian is interspersed within each lecture, e.g., the interference channel lecture:
 - Inner and outer bounds on capacity region of DM-IC
 - Capacity region of DM-IC under strong interference
 - AWGN-IC
 - Capacity region of AWGN-IC under strong interference
 - Han–Kobayashi inner bound for DM-IC

- Treatment of Gaussian is interspersed within each lecture, e.g., the interference channel lecture:
 - Inner and outer bounds on capacity region of DM-IC
 - Capacity region of DM-IC under strong interference
 - AWGN-IC
 - Capacity region of AWGN-IC under strong interference
 - Han–Kobayashi inner bound for DM-IC
 - Capacity region of a Class of deterministic DM-IC

- Treatment of Gaussian is interspersed within each lecture, e.g., the interference channel lecture:
 - Inner and outer bounds on capacity region of DM-IC
 - Capacity region of DM-IC under strong interference
 - AWGN-IC
 - Capacity region of AWGN-IC under strong interference
 - Han–Kobayashi inner bound for DM-IC
 - Capacity region of a Class of deterministic DM-IC
 - Capacity region of AWGN-IC within Half a Bit

- Treatment of Gaussian is interspersed within each lecture, e.g., the interference channel lecture:
 - Inner and outer bounds on capacity region of DM-IC
 - Capacity region of DM-IC under strong interference
 - AWGN-IC
 - Capacity region of AWGN-IC under strong interference
 - Han–Kobayashi inner bound for DM-IC
 - Capacity region of a Class of deterministic DM-IC
 - Capacity region of AWGN-IC within Half a Bit
 - Sum-capacity of AWGN-IC under weak interference

• The lectures discuss only weak converses

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The lectures discuss only weak converses
- The tools are introduced gradually:
 - DMC: Fano's inequality; convexity (data processing inequality); Markovity (memoryless)
 - AWGN: Gaussian optimizes differential entropy under power constraint

- The lectures discuss only weak converses
- The tools are introduced gradually:
 - DMC: Fano's inequality; convexity (data processing inequality); Markovity (memoryless)
 - AWGN: Gaussian optimizes differential entropy under power constraint
 - MAC: Time sharing random variable

- The lectures discuss only weak converses
- The tools are introduced gradually:
 - DMC: Fano's inequality; convexity (data processing inequality); Markovity (memoryless)
 - AWGN: Gaussian optimizes differential entropy under power constraint
 - MAC: Time sharing random variable
 - Degraded BC: Gallager's identification of auxiliary random variable; bounding cardinality
 - Binary Symmetric BC: Mrs. Gerber's lemma
 - AWGN-BC: EPI
 - More capable/less noisy BC: Csiszár's sum identity

• • = • • =

- The lectures discuss only weak converses
- The tools are introduced gradually:
 - DMC: Fano's inequality; convexity (data processing inequality); Markovity (memoryless)
 - AWGN: Gaussian optimizes differential entropy under power constraint
 - MAC: Time sharing random variable
 - Degraded BC: Gallager's identification of auxiliary random variable; bounding cardinality
 - Binary Symmetric BC: Mrs. Gerber's lemma
 - AWGN-BC: EPI
 - More capable/less noisy BC: Csiszár's sum identity
 - Strong interference: Extension of more capable from scalar to vectors
 - Deterministic IC: Genie
 - Weak interference: Gaussian worst noise

- The lectures discuss only weak converses
- The tools are introduced gradually:
 - DMC: Fano's inequality; convexity (data processing inequality); Markovity (memoryless)
 - ► AWGN: Gaussian optimizes differential entropy under power constraint
 - MAC: Time sharing random variable
 - Degraded BC: Gallager's identification of auxiliary random variable; bounding cardinality
 - Binary Symmetric BC: Mrs. Gerber's lemma
 - AWGN-BC: EPI
 - ► More capable/less noisy BC: Csiszár's sum identity
 - Strong interference: Extension of more capable from scalar to vectors
 - Deterministic IC: Genie
 - Weak interference: Gaussian worst noise
 - Vector Gaussian BC: MAC/BC duality; convex optimization
 - Quadratic Gaussian distributed coding: MMSE

Extension to Networks

• The lectures include extensions (or lack thereof) of results for ≤ 3 users to networks

Extension to Networks

- The lectures include extensions (or lack thereof) of results for ≤ 3 users to networks
- In some rare cases the results extend naturally to many users:
 - MAC
 - Degraded BC
 - MIMO BC
 - Slepian–Wolf

.

Extension to Networks

- The lectures include extensions (or lack thereof) of results for ≤ 3 users to networks
- In some rare cases the results extend naturally to many users:
 - MAC
 - Degraded BC
 - MIMO BC
 - Slepian–Wolf
- In most cases the results don't extend and naive extensions of results for ≤ 3 users can be improved using new coding techniques

.

Extension to Networks

- The lectures include extensions (or lack thereof) of results for ≤ 3 users to networks
- In some rare cases the results extend naturally to many users:
 - MAC
 - Degraded BC
 - MIMO BC
 - Slepian–Wolf
- In most cases the results don't extend and naive extensions of results for ≤ 3 users can be improved using new coding techniques
- The lectures provide several examples of such cases

- Inner bound for DM-BC with degraded message sets for 3 receivers
- Marton for ≥ 3 receivers
- General BC inner bound construction for ≥ 3 receivers

- Inner bound for DM-BC with degraded message sets for 3 receivers
- Marton for ≥ 3 receivers
- General BC inner bound construction for ≥ 3 receivers
- Network coding for multicast noiseless networks and special cases

- Inner bound for DM-BC with degraded message sets for 3 receivers
- Marton for ≥ 3 receivers
- General BC inner bound construction for ≥ 3 receivers
- Network coding for multicast noiseless networks and special cases
- Decode–forward
- Compress-forward

- Inner bound for DM-BC with degraded message sets for 3 receivers
- Marton for ≥ 3 receivers
- General BC inner bound construction for ≥ 3 receivers
- Network coding for multicast noiseless networks and special cases
- Decode–forward
- Compress–forward
- Slepian-Wolf over noiseless broadcast network (CFO problem)

- Inner bound for DM-BC with degraded message sets for 3 receivers
- Marton for ≥ 3 receivers
- General BC inner bound construction for ≥ 3 receivers
- Network coding for multicast noiseless networks and special cases
- Decode–forward
- Compress–forward
- Slepian–Wolf over noiseless broadcast network (CFO problem)
- Wiretap channel with > 2 receivers; key generation for many sources

A D A D A A D A

- Inner bound for DM-BC with degraded message sets for 3 receivers
- Marton for ≥ 3 receivers
- General BC inner bound construction for ≥ 3 receivers
- Network coding for multicast noiseless networks and special cases
- Decode–forward
- Compress–forward
- Slepian-Wolf over noiseless broadcast network (CFO problem)
- Wiretap channel with > 2 receivers; key generation for many sources
- Several cutset bounds for various types of networks

- 4 同 6 4 日 6 4 日 6

- Inner bound for DM-BC with degraded message sets for 3 receivers
- Marton for ≥ 3 receivers
- General BC inner bound construction for ≥ 3 receivers
- Network coding for multicast noiseless networks and special cases
- Decode–forward
- Compress–forward
- Slepian–Wolf over noiseless broadcast network (CFO problem)
- Wiretap channel with > 2 receivers; key generation for many sources
- Several cutset bounds for various types of networks
- Scaling laws and high SNR approximations for Gaussian networks

(日) (同) (日) (日)

Conclusion

- Lectures on NIT:
 - Top-down organization
 - Balances introduction of new tools and models
 - Elementary tools and proof techniques for most material
 - Unified approach to achievability
 - Comprehensive coverage of key results
 - Extensions to networks

.

Conclusion

- Lectures on NIT:
 - Top-down organization
 - Balances introduction of new tools and models
 - Elementary tools and proof techniques for most material
 - Unified approach to achievability
 - Comprehensive coverage of key results
 - Extensions to networks
- Some of the basic material ready to be included in graduate comm course sequences (with introductory IT course as prereq)

Conclusion

- Lectures on NIT:
 - Top-down organization
 - Balances introduction of new tools and models
 - Elementary tools and proof techniques for most material
 - Unified approach to achievability
 - Comprehensive coverage of key results
 - Extensions to networks
- Some of the basic material ready to be included in graduate comm course sequences (with introductory IT course as prereq)
- We plan to make the teaching subset of the lectures available early next year

- A TE N - A TE N

Acknowledgments

- Many people have contributed to the development of the lectures over the years:
 - Many of my graduate students
 - My course TAs
 - Students that took the class

4 E 6 4

Acknowledgments

- Many people have contributed to the development of the lectures over the years:
 - Many of my graduate students
 - My course TAs
 - Students that took the class

• Tom Cover has been an inspiring and encouraging figure throughout

Acknowledgments

- Many people have contributed to the development of the lectures over the years:
 - Many of my graduate students
 - My course TAs
 - Students that took the class

• Tom Cover has been an inspiring and encouraging figure throughout

• Partial financial support from NSF and DARPA ITMANET