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The Early Years
I started a course on multiple user (network) information theory at
Stanford in 1982 and taught it 3 times
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I started a course on multiple user (network) information theory at
Stanford in 1982 and taught it 3 times
The course had some of today’s big names in our field:
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Syllabus Circa 1983
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Syllabus Circa 1983

I also gave a lecture on feedback
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Syllabus Circa 1983

I also gave a lecture on feedback

Some results that were known then and are considered important
today were absent:

Interference channel: Strong interference; Han–Kobayashi

Relay channel: cutset bound; decode–forward; compress–forward

Multiple descriptions: El Gamal–Cover; Ozarow; Ahlswede

Secrecy: Shannon; Wyner; Csiszár–Körner
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Syllabus Circa 1983

I also gave a lecture on feedback

Some results that were known then and are considered important
today were absent:

Interference channel: Strong interference; Han–Kobayashi

Relay channel: cutset bound; decode–forward; compress–forward

Multiple descriptions: El Gamal–Cover; Ozarow; Ahlswede

Secrecy: Shannon; Wyner; Csiszár–Körner

There was no theoretical or practical interest in these results then
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The Dog Years of NIT

By the mid 80s interest in NIT was all but gone
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By the mid 80s interest in NIT was all but gone

Theory was stuck and many basic problems remained open

It seemed that the theory will have no applications

By early 90s, the number of ISIT papers on NIT → 0:
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I stopped teaching the course and moved on to other things
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The Resurgence
By late 90s, the Internet and wireless communication began to revive
interest in NIT; and by early 2000s, the field was in full swing
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The Resurgence
By late 90s, the Internet and wireless communication began to revive
interest in NIT; and by early 2000s, the field was in full swing
I started teaching the course again in 2002
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The Resurgence
By late 90s, the Internet and wireless communication began to revive
interest in NIT; and by early 2000s, the field was in full swing
I started teaching the course again in 2002
The course had some of today’s rising stars:
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Syllabus Circa 2002
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Technology from Early 80s to 2002

Chip technology: Scaled by a factor of 211 (Moore’s law)
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Technology from Early 80s to 2002

Chip technology: Scaled by a factor of 211 (Moore’s law)

Computing: From VAX780 to PCs and laptops

Communication: From 1200 Baud modems and wired phones to DSL,
cellular, and 802.xx

Networks: From ARPANET to the Internet

Multi-media: From film cameras and Sony Walkman to digital
cameras and iPod
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What’s Wrong with This Picture?
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What’s Wrong with This Picture?

Theory does not advance as fast as technology

Nothing happened between early 80s and 2002

I didn’t know what was going on

Answer: All of the above
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What Happened Since Mid 80s?

Some progress on old open problems (mainly Gaussian)
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What Happened Since Mid 80s?

Some progress on old open problems (mainly Gaussian)

Work on new models: Fading channels; MIMO; secrecy, . . .

New directions in network capacity:

Network coding

Scaling laws

Deterministic/high SNR approximations (within xx bits)

Attempts to consummate marriage (or at least dating) between IT
and networking
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Lectures on NIT: 2009

Developed jointly with Young-Han Kim of UCSD

Incorporate many of the recent results
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Lectures on NIT: 2009

Developed jointly with Young-Han Kim of UCSD

Incorporate many of the recent results

Attempt to organize the field in a “top-down” way

Balance introduction of new techniques and new models

Unify, simplify, and formalize achievability proofs

Emphasize extension to networks

Use clean and unified notation and terminology
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Outline

1 The First Lecture

2 Achievability for DM Sources and Channels

3 Gaussian Sources and Channels

4 Converse

5 Extension to Networks

6 Conclusion
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The First Lecture

Network Information Flow

Consider a general networked information processing system:

replacements

Network

Source

Node

Sources: data, speech, music, images, video, sensor data

Nodes: handsets, base stations, servers, sensor nodes

Network: wired, wireless, or hybrid
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The First Lecture

Network Information Flow

Each node observes some sources, wishes to obtain descriptions of
other sources, or to compute function/make decision based on them
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The First Lecture

Network Information Flow

Each node observes some sources, wishes to obtain descriptions of
other sources, or to compute function/make decision based on them

To achieve the goal, the nodes communicate and perform local
computing

Information flow questions:

What are the necessary and sufficient conditions on information flow?

What are the optimal schemes/techniques needed to achieve them?

The difficulty in answering these questions depends on:
◮ Source and network models
◮ Information processing goals
◮ Computational capabilities of the nodes
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The First Lecture

Example: Multi-Commodity Flow

If the sources are commodities with demands (rates in bits/sec); the
nodes are connected by noiseless rate-constrained links; each
intermediate node forwards the bits it receives; the goal is to send
each commodity to a destination node; the problem reduces to the
multi-commodity flow with known conditions on optimal flow
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For single commodity, these conditions reduce to the celebrated
max-flow min-cut theorem
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The First Lecture

Network Information Theory

This simple networked information processing system model does not
capture many important aspects of real-world systems:

◮ Real-world information sources have redundancies, time and space
correlations, time variations
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The First Lecture

Network Information Theory

This simple networked information processing system model does not
capture many important aspects of real-world systems:

◮ Real-world information sources have redundancies, time and space
correlations, time variations

◮ Real-world networks may suffer from noise, interference, node/link
failures, delay, time variation

◮ Real-world networks may allow for broadcasting

◮ Real-world communication nodes may allow for more complex node
operations than forwarding

◮ The goal in many information processing systems is to partially recover
the sources or to compute/make a decision

Network information theory aims to answer the information flow
questions while capturing essential elements of real-world networks in
the probabilistic framework of Shannon’s information theory
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The First Lecture

State of the Theory

Focus has been on compression and communication for discrete
memoryless (DM) and Gaussian sources and channels
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The First Lecture

State of the Theory

Focus has been on compression and communication for discrete
memoryless (DM) and Gaussian sources and channels

Most results are for separate source–channel settings

Computable characterizations of capacity/optimal rate regions known
for few cases. For other cases, only inner and outer bounds are known

Some results on joint source–channel coding, communication for
computing, secrecy, and in intersection with networking

Coding techniques developed, e.g., superposition, successive
cancellation, Slepian–Wolf, Wyner–Ziv, successive refinement, dirty
paper coding, network coding are starting to impact real-world
networks

However, many basic problems remain open and a complete theory is
yet to be developed
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The First Lecture

Outline of Lectures

Lectures aim to provide broad coverage of the models, fundamental
results, proof techniques, and open problems in NIT
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The First Lecture

Outline of Lectures

Lectures aim to provide broad coverage of the models, fundamental
results, proof techniques, and open problems in NIT

Include both teaching material and advanced results

Divided into four parts:

Part I: Background

Part II: Single-hop Networks

Part III: Multi-hop Networks

Part IV: Extensions

Global appendices for general techniques and background, e.g.,
bounding cardinalities of auxiliary random variables and
Fourier–Motzkin elimination
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The First Lecture

Part: I Background

Purpose: Introduce notation and basic techniques used throughout;
point out some differences between point-to-point and multiple user
communication
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The First Lecture

Part: I Background

Purpose: Introduce notation and basic techniques used throughout;
point out some differences between point-to-point and multiple user
communication

Entropy, differential entropy, and mutual information

Strong typicality: Orlitsky–Roche definition; properties

Key achievability lemmas:
◮ Typical average lemma
◮ Joint typicality lemma
◮ Packing lemma
◮ Covering lemma
◮ Conditional typicality lemma

Shannon’s point-to-point communication theorems: Random coding;
joint typicality encoding/decoding
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The First Lecture

Part II: Single-hop Networks

Single round one-way communication
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◮ Multiple access channels: time sharing; successive cancellation
◮ Degraded broadcast channels: superposition coding
◮ Interference channels: strong interference; Han–Kobayashi
◮ Channels with state: Gelfand–Pinsker; writing on dirty paper
◮ Fading channels: alternative performance measures (outage capacity)
◮ General broadcast channels: Marton coding; mutual covering
◮ Vector Gaussian channels: dirty paper coding; MAC–BC duality

Correlated sources over noiseless (wireline) channels:
◮ Distributed lossless source coding: Slepian–Wolf; random binning
◮ Source coding with side information: Wyner–Ziv
◮ Distributed lossy source coding: Berger–Tung; quadratic Gaussian
◮ Multiple descriptions: El Gamal–Cover; successive refinement

Correlated sources over DM channels:
Separation does not hold in general; common information; sufficient
conditions for MAC, BC
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The First Lecture

Part III: Multi-hop Networks

Relaying and multiple communication rounds
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The First Lecture

Part III: Multi-hop Networks

Relaying and multiple communication rounds

Independent messages over noiseless networks:

Max-flow min-cut theorem; network coding

Independent messages over noisy networks:

◮ Relay channel: cutset bound; decode–forward; compress–forward
◮ Interactive communication: feedback capacity; iterative refinement
◮ DM networks: cutset bound; decode–forward; compress–forward
◮ Gaussian networks: scaling laws; high SNR approximations

Correlated sources over noiseless (wireline) channels:

Multiple descriptions networks; interactive source coding
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The First Lecture

Part IV: Extensions

Extensions of the theory to other settings
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Part IV: Extensions

Extensions of the theory to other settings

Communication for computing:

Distributed coding for computing: Orlitsky–Roche; µ-sum problem;
distributed consensus

Information theoretic secrecy:

Wiretap channels; key generation from common randomness

Asynchronous communication:

Random arrivals; asynchronous MAC
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The First Lecture

Balancing Introduction of Models and Techniques:

Broadcast Channel

Degraded broadcast channels:

Channels with state:

Fading channels

General broadcast channels:

Gaussian vector channels:
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The First Lecture

Balancing Introduction of Models and Techniques:

Broadcast Channel

Degraded broadcast channels:
◮ Superposition coding inner bound
◮ Degraded broadcast channels
◮ AWGN broadcast channels
◮ Less noisy and more capable broadcast channels

Channels with state:

Fading channels

General broadcast channels:

Gaussian vector channels:
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Broadcast Channel

Degraded broadcast channels:

Channels with state:
◮ Compound channel
◮ Arbitrarily varying channel
◮ Channels with random state
◮ Causal state information available at encoder
◮ Noncausal state information available at the encoder
◮ Writing on dirty paper
◮ Partial state information

Fading channels

General broadcast channels:
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The First Lecture

Balancing Introduction of Models and Techniques:

Broadcast Channel

Degraded broadcast channels:

Channels with state:

Fading channels

General broadcast channels:
◮ DM-BC with degraded message sets
◮ 3-Receiver multilevel DM-BC with degraded message sets
◮ Marton inner bound
◮ Relationship to Gelfand–Pinsker
◮ Nair–El Gamal outer bound
◮ Inner bound for more than 2 receivers

Gaussian vector channels:
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The First Lecture

Balancing Introduction of Models and Techniques:

Broadcast Channel

Degraded broadcast channels:

Channels with state:

Fading channels

General broadcast channels:

Gaussian vector channels:
◮ Gaussian vector channel
◮ Gaussian vector fading channel
◮ Gaussian vector multiple access channel
◮ Spectral Gaussian broadcast channel
◮ Vector writing on dirty paper
◮ Gaussian vector broadcast channel
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Achievability for DM Sources and Channels

Typicality

Let (un, xn, yn) be a triple of sequences with elements drawn from
finite alphabets (U ,X ,Y). Define their joint type as

π(u, x, y|un, xn, yn) =
|{i : (ui, xi, yi) = (u, x, y)}|

n

for (u, x, y) ∈ U × X × Y

Let (U,X, Y ) ∼ p(u, x, y). The set T
(n)
ǫ (U,X, Y ) of ǫ-typical

n-sequences is defined as

{(un, xn, yn) : |π(u, x, y|un, xn, yn)− p(u, x, y)| ≤ ǫ · p(u, x, y)

for all (u, x, y) ∈ U × X × Y}
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finite alphabets (U ,X ,Y). Define their joint type as
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|{i : (ui, xi, yi) = (u, x, y)}|

n

for (u, x, y) ∈ U × X × Y

Let (U,X, Y ) ∼ p(u, x, y). The set T
(n)
ǫ (U,X, Y ) of ǫ-typical

n-sequences is defined as

{(un, xn, yn) : |π(u, x, y|un, xn, yn)− p(u, x, y)| ≤ ǫ · p(u, x, y)

for all (u, x, y) ∈ U × X × Y}

Typical average lemma: Let xn ∈ T
(n)
ǫ (X). Then for any g(x) ≥ 0,

(1− ǫ)E(g(X)) ≤ (1/n)
∑n

i=1 g(xi) ≤ (1 + ǫ)E(g(X))
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Achievability for DM Sources and Channels

Joint Typicality Lemma

Let (U,X, Y ) ∼ p(u, x, y).

1. Let (un, xn) ∈ T
(n)
ǫ (U,X) and Ỹ n ∼

∏n

i=1 pY |U (ỹi|ui). Then

P{(un, xn, Ỹ n) ∈ T
(n)
ǫ (U,X, Y )}

.
= 2−nI(X;Y |U)
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Joint Typicality Lemma

Let (U,X, Y ) ∼ p(u, x, y).

1. Let (un, xn) ∈ T
(n)
ǫ (U,X) and Ỹ n ∼

∏n

i=1 pY |U (ỹi|ui). Then

P{(un, xn, Ỹ n) ∈ T
(n)
ǫ (U,X, Y )}

.
= 2−nI(X;Y |U)

2. If (Ũn, X̃n) ∼ p(ũn, x̃n) and Ỹ n ∼
∏n

i=1 pY |U (ỹi|ũi). Then

P{(Ũn, X̃n, Ỹ n) ∈ T
(n)
ǫ (U,X, Y )} ≤ 2−n(I(X;Y |U)−δ(ǫ))
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Achievability for DM Sources and Channels

Packing Lemma

Let (U,X, Y ) ∼ p(u, x, y) and Ũn ∼ p(ũn). Let Xn(m), m ∈ A, where
|A| ≤ 2nR, be random sequences, each distributed according to∏n

i=1 pX|U (xi|ũi) with arbitrary dependence on the rest
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Let Ỹ n ∈ Yn be another random sequence, conditionally independent of
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Packing Lemma

Let (U,X, Y ) ∼ p(u, x, y) and Ũn ∼ p(ũn). Let Xn(m), m ∈ A, where
|A| ≤ 2nR, be random sequences, each distributed according to∏n

i=1 pX|U (xi|ũi) with arbitrary dependence on the rest

Let Ỹ n ∈ Yn be another random sequence, conditionally independent of
each Xn(m),m ∈ A, given Ũn, and distributed according to an arbitrary
pmf p(ỹn|ũn)

Then, there exists δ(ǫ) → 0 as ǫ → 0 such that

P{(Ũn,Xn(m), Ỹ n) ∈ T (n)
ǫ for some m ∈ A} → 0

as n → ∞, if R < I(X;Y |U)− δ(ǫ)
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Achievability for DM Sources and Channels

The sequences Xn(m), m ∈ A, represent codewords. The Ỹ n sequence
represents the received sequence as a result of sending a codeword /∈ A

Xn(1)

Xn(m)

Xn
Yn T

(n)
ǫ (Y )

Ỹ n
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Achievability for DM Sources and Channels

The sequences Xn(m), m ∈ A, represent codewords. The Ỹ n sequence
represents the received sequence as a result of sending a codeword /∈ A

Xn(1)

Xn(m)

Xn
Yn T

(n)
ǫ (Y )

Ỹ n

The lemma shows that under any pmf on Ỹ n the probability that some
codeword in A is jointly typical with Ỹ n → 0 as n → ∞ if the rate of the
code R < I(X;Y |U)
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Achievability for DM Sources and Channels

Covering Lemma

Let (U,X, X̂) ∼ p(u, x, x̂). Let (Un,Xn) ∼ p(un, xn) be a pair of
arbitrarily distributed random sequences such that

P{(Un,Xn) ∈ T
(n)
ǫ (U,X)} → 1 as n → ∞
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Let X̂n(m),m ∈ A, where |A| ≥ 2nR, be random sequences, conditionally
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to
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Achievability for DM Sources and Channels

Covering Lemma

Let (U,X, X̂) ∼ p(u, x, x̂). Let (Un,Xn) ∼ p(un, xn) be a pair of
arbitrarily distributed random sequences such that

P{(Un,Xn) ∈ T
(n)
ǫ (U,X)} → 1 as n → ∞

Let X̂n(m),m ∈ A, where |A| ≥ 2nR, be random sequences, conditionally
independent of each other and of Xn given Un, and distributed according
to

∏n
i=1 pX̂|U(x̂i|ui)

Then, there exists δ(ǫ) → 0 as ǫ → 0 such that

P{(Un,Xn, X̂n(m)) /∈ T (n)
ǫ for all m ∈ A} → 0

as n → ∞, if R > I(X; X̂ |U) + δ(ǫ)
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Achievability for DM Sources and Channels

The sequences X̂n(m), m ∈ A, represent reproduction sequences and Xn

represents the source sequence

replacements

X̂n(1)

X̂n(m)

X̂n
Xn T

(n)
ǫ (X)

X̃n
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Achievability for DM Sources and Channels

The sequences X̂n(m), m ∈ A, represent reproduction sequences and Xn

represents the source sequence

replacements

X̂n(1)

X̂n(m)

X̂n
Xn T

(n)
ǫ (X)

X̃n

The lemma shows that if R > I(X; X̂ |U) then there is at least one
reproduction sequence that is jointly typical with X̃n
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Achievability for DM Sources and Channels

Conditional Typicality Lemma

Let (X,Y ) ∼ p(x, y), xn ∈ T
(n)
ǫ′

(X), and Y n ∼
∏n

i=1 pY |X(yi|xi).
Then, for every ǫ > ǫ′,

P{(xn, Y n) ∈ T
(n)
ǫ (X,Y )} → 1 as n → ∞
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Conditional Typicality Lemma

Let (X,Y ) ∼ p(x, y), xn ∈ T
(n)
ǫ′

(X), and Y n ∼
∏n

i=1 pY |X(yi|xi).
Then, for every ǫ > ǫ′,

P{(xn, Y n) ∈ T
(n)
ǫ (X,Y )} → 1 as n → ∞

Markov lemma is a special case: U → X → Y form a Markov chain.

If (un, xn) ∈ T
(n)
ǫ′

(U,X) and Y n ∼
∏n

i=1 pY |X(yi|xi), then for every
ǫ > ǫ′,

P{(un, xn, Y n) ∈ T
(n)
ǫ (U,X, Y )} → 1 as n → ∞

A. El Gamal (Stanford University) Lectures on NIT Allerton 2009 30 / 42



Achievability for DM Sources and Channels

Gelfand–Pinsker

Consider a DMC with DM state (X × S, p(y|x, s)p(s),Y)

The sender X who knows the state sequence Sn noncausally and
wishes to send a message M ∈ [1 : 2nR] to the receiver Y

M Xn Y n

M̂Encoder Decoder

p(s)

p(y|x, s)

Sn
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Gelfand–Pinsker

Consider a DMC with DM state (X × S, p(y|x, s)p(s),Y)

The sender X who knows the state sequence Sn noncausally and
wishes to send a message M ∈ [1 : 2nR] to the receiver Y

M Xn Y n

M̂Encoder Decoder

p(s)

p(y|x, s)

Sn

Gelfand–Pinsker Theorem

The capacity of a DMC with DM state available noncausally at the
encoder is

CSI−E = max
p(u|s), x(u,s)

(I(U ;Y )− I(U ;S))
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Achievability for DM Sources and Channels

Outline of Achievability [Heegard, El Gamal]

Fix p(u|s), x(u, s) that achieve capacity. For each message

m ∈ [1 : 2nR], generate a subcode of 2n(R̃−R) un(l) sequences

sn

un

un(1)

un(2n(R̃−R))

un(2nR̃)

sn

C(1)

C(2)

C(3)

C(2nR)
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Achievability for DM Sources and Channels

Outline of Achievability [Heegard, El Gamal]

Fix p(u|s), x(u, s) that achieve capacity. For each message

m ∈ [1 : 2nR], generate a subcode of 2n(R̃−R) un(l) sequences

sn

un

un(1)

un(2n(R̃−R))

un(2nR̃)

sn

C(1)

C(2)

C(3)

C(2nR)

To send m given sn, find un(l) ∈ C(m) that is jointly typical with sn

and transmit xi = x(ui(l), si) for i ∈ [1 : n]

The receiver finds a jointly typical ûn with yn and declares the
subcode index m̂ of ûn to be the message sent
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Achievability for DM Sources and Channels

Analysis of the Probability of Error

Assume M = 1 and let L be the index of the chosen Un codeword for
M = 1 and Sn

We bound each probability of error event:

◮ E1 = {(Sn, Un(l)) /∈ T
(n)
ǫ′

for all Un(l) ∈ C(1)}:

By the covering lemma, P(E1) → 0 as n → ∞ if R̃ −R > I(U ;S)
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for all Un(l) ∈ C(1)}:

By the covering lemma, P(E1) → 0 as n → ∞ if R̃ −R > I(U ;S)
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By the conditional typicality lemma, P(Ec
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M = 1 and Sn

We bound each probability of error event:
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ǫ′
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By the covering lemma, P(E1) → 0 as n → ∞ if R̃ −R > I(U ;S)

◮ E2 = {(Un(L), Y n) /∈ T
(n)
ǫ }:

By the conditional typicality lemma, P(Ec
1 ∩ E2) → 0 as n → ∞

◮ E3 = {(Un(l̃), Y n) ∈ T
(n)
ǫ for some Un(l̃) /∈ C(1)}

Since each Un(l̃) /∈ C(1) is independent of Y n and generated according
to

∏n

i=1 pU (ui), by the packing lemma, P(E3) → 0 as n → ∞ if

R̃ < I(U ;Y )
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Analysis of the Probability of Error

Assume M = 1 and let L be the index of the chosen Un codeword for
M = 1 and Sn

We bound each probability of error event:

◮ E1 = {(Sn, Un(l)) /∈ T
(n)
ǫ′

for all Un(l) ∈ C(1)}:

By the covering lemma, P(E1) → 0 as n → ∞ if R̃ −R > I(U ;S)

◮ E2 = {(Un(L), Y n) /∈ T
(n)
ǫ }:

By the conditional typicality lemma, P(Ec
1 ∩ E2) → 0 as n → ∞

◮ E3 = {(Un(l̃), Y n) ∈ T
(n)
ǫ for some Un(l̃) /∈ C(1)}

Since each Un(l̃) /∈ C(1) is independent of Y n and generated according
to

∏n

i=1 pU (ui), by the packing lemma, P(E3) → 0 as n → ∞ if

R̃ < I(U ;Y )

Thus the probability or error → 0 as n → ∞ if R < I(U ;Y )− I(U ;S)
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Achievability for DM Sources and Channels

Mutual Covering Lemma [El Gamal, van der Meulen]
Let (U1, U2) ∼ p(u1, u2). For j = 1, 2, let Un

j (mj),mj ∈ [1 : 2nRj ], be
pairwise independent random sequences, each distributed according to∏n

i=1 pUj
(uji). Assume that {Un

1 (m1) : m1 ∈ [1 : 2nR1 ]} and
{Un

2 (m2) : m2 ∈ [1 : 2nR2 ]} are independent

Un

1 (1)

Un

1 (2)

Un

1 (2nR1 )

U
n 2
(1

)

U
n 2
(2

)

U
n 2
(2

n
R

2
)

(Un

1 (m1), U
n

2 (m2) ∈ T
(n)
ǫ
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Achievability for DM Sources and Channels

Mutual Covering Lemma [El Gamal, van der Meulen]

Let (U1, U2) ∼ p(u1, u2). For j = 1, 2, let Un
j (mj),mj ∈ [1 : 2nRj ], be

pairwise independent random sequences, each distributed according to∏n
i=1 pUj

(uji). Assume that {Un
1 (m1) : m1 ∈ [1 : 2nR1 ]} and

{Un
2 (m2) : m2 ∈ [1 : 2nR2 ]} are independent
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Mutual Covering Lemma [El Gamal, van der Meulen]

Let (U1, U2) ∼ p(u1, u2). For j = 1, 2, let Un
j (mj),mj ∈ [1 : 2nRj ], be

pairwise independent random sequences, each distributed according to∏n
i=1 pUj

(uji). Assume that {Un
1 (m1) : m1 ∈ [1 : 2nR1 ]} and

{Un
2 (m2) : m2 ∈ [1 : 2nR2 ]} are independent

Then, there exists δ(ǫ) → 0 as ǫ → 0 such that

P{(Un
1 (m1), U

n
2 (m2)) /∈ T (n)

ǫ for all (m1,m2)} → 0

as n → ∞ if R1 +R2 > I(U1;U2)
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Let (U1, U2) ∼ p(u1, u2). For j = 1, 2, let Un
j (mj),mj ∈ [1 : 2nRj ], be

pairwise independent random sequences, each distributed according to∏n
i=1 pUj

(uji). Assume that {Un
1 (m1) : m1 ∈ [1 : 2nR1 ]} and

{Un
2 (m2) : m2 ∈ [1 : 2nR2 ]} are independent

Then, there exists δ(ǫ) → 0 as ǫ → 0 such that

P{(Un
1 (m1), U

n
2 (m2)) /∈ T (n)

ǫ for all (m1,m2)} → 0

as n → ∞ if R1 +R2 > I(U1;U2)

Used in the proof of Marton inner bound for BC

Can be extended to k variables. Extension used in the proof of
El Gamal–Cover inner bound for multiple descriptions and for
extending Marton inner bound to k receivers
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Mutual Packing Lemma

Let (U1, U2) ∼ p(u1, u2). For j = 1, 2, let Un
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(uji) with

arbitrary dependence on the rest of the Un
j (mj) sequences. Assume that
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independent
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Achievability for DM Sources and Channels

Mutual Packing Lemma

Let (U1, U2) ∼ p(u1, u2). For j = 1, 2, let Un
j (mj), mj ∈ [1 : 2nRj ], be

random sequences, each distributed according to
∏n

i=1 pUj
(uji) with

arbitrary dependence on the rest of the Un
j (mj) sequences. Assume that

{Un
1 (m1) : m1 ∈ [1 : 2nR1 ]} and {Un

2 (m2) : m2 ∈ [1 : 2nR2 ]} are
independent

Then, there exists δ(ǫ) → 0 as ǫ → 0 such that

P{(Un
1 (m1), U

n
2 (m2)) ∈ T (n)

ǫ for some (m1,m2)} → 0

as n → ∞ if R1 +R2 < I(U1;U2)− δ(ǫ)

Used in the proof of the Berger–Tung inner bound for distributed
lossy source coding
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Gaussian Sources and Channels

Gaussian Sources and Channels

Because Gaussian models are quite popular in wireless
communication, we have complete coverage of all basic results
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Gaussian Sources and Channels

Gaussian Sources and Channels

Achievability:

1. Show that Gaussian optimizes mutual information expressions
2. Prove achievability of optimized expressions via DM counterpart (with

cost) by discretization and taking appropriate limits

The second step is detailed only for AWGN channel and quadratic
Gaussian source coding
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Gaussian Sources and Channels
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Treatment of Gaussian is interspersed within each lecture,
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Gaussian Sources and Channels

Gaussian Sources and Channels

Treatment of Gaussian is interspersed within each lecture, e.g., the
interference channel lecture:

◮ Inner and outer bounds on capacity region of DM-IC
◮ Capacity region of DM-IC under strong interference
◮ AWGN-IC
◮ Capacity region of AWGN-IC under strong interference
◮ Han–Kobayashi inner bound for DM-IC
◮ Capacity region of a Class of deterministic DM-IC
◮ Capacity region of AWGN-IC within Half a Bit
◮ Sum-capacity of AWGN-IC under weak interference
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Converse

Converse

The lectures discuss only weak converses
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Converse

Converse

The lectures discuss only weak converses

The tools are introduced gradually:
◮ DMC: Fano’s inequality; convexity (data processing inequality);

Markovity (memoryless)
◮ AWGN: Gaussian optimizes differential entropy under power constraint
◮ MAC: Time sharing random variable
◮ Degraded BC: Gallager’s identification of auxiliary random variable;

bounding cardinality
◮ Binary Symmetric BC: Mrs. Gerber’s lemma
◮ AWGN-BC: EPI
◮ More capable/less noisy BC: Csiszár’s sum identity
◮ Strong interference: Extension of more capable from scalar to vectors
◮ Deterministic IC: Genie
◮ Weak interference: Gaussian worst noise
◮ Vector Gaussian BC: MAC/BC duality; convex optimization
◮ Quadratic Gaussian distributed coding: MMSE
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Extension to Networks

Extension to Networks

The lectures include extensions (or lack thereof) of results for ≤ 3
users to networks

A. El Gamal (Stanford University) Lectures on NIT Allerton 2009 39 / 42



Extension to Networks

Extension to Networks

The lectures include extensions (or lack thereof) of results for ≤ 3
users to networks

In some rare cases the results extend naturally to many users:
◮ MAC
◮ Degraded BC
◮ MIMO BC
◮ Slepian–Wolf

A. El Gamal (Stanford University) Lectures on NIT Allerton 2009 39 / 42



Extension to Networks

Extension to Networks

The lectures include extensions (or lack thereof) of results for ≤ 3
users to networks

In some rare cases the results extend naturally to many users:
◮ MAC
◮ Degraded BC
◮ MIMO BC
◮ Slepian–Wolf

In most cases the results don’t extend and naive extensions of results
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Extension to Networks

Extension to Networks

The lectures include extensions (or lack thereof) of results for ≤ 3
users to networks

In some rare cases the results extend naturally to many users:
◮ MAC
◮ Degraded BC
◮ MIMO BC
◮ Slepian–Wolf

In most cases the results don’t extend and naive extensions of results
for ≤ 3 users can be improved using new coding techniques

The lectures provide several examples of such cases
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Extension to Networks

Some Interesting Extensions

Inner bound for DM-BC with degraded message sets for 3 receivers

Marton for ≥ 3 receivers

General BC inner bound construction for ≥ 3 receivers
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Extension to Networks

Some Interesting Extensions

Inner bound for DM-BC with degraded message sets for 3 receivers

Marton for ≥ 3 receivers

General BC inner bound construction for ≥ 3 receivers

Network coding for multicast noiseless networks and special cases

Decode–forward

Compress–forward

Slepian–Wolf over noiseless broadcast network (CFO problem)

Wiretap channel with > 2 receivers; key generation for many sources

Several cutset bounds for various types of networks

Scaling laws and high SNR approximations for Gaussian networks
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Conclusion

Conclusion

Lectures on NIT:
◮ Top-down organization
◮ Balances introduction of new tools and models
◮ Elementary tools and proof techniques for most material
◮ Unified approach to achievability
◮ Comprehensive coverage of key results
◮ Extensions to networks

A. El Gamal (Stanford University) Lectures on NIT Allerton 2009 41 / 42



Conclusion

Conclusion

Lectures on NIT:
◮ Top-down organization
◮ Balances introduction of new tools and models
◮ Elementary tools and proof techniques for most material
◮ Unified approach to achievability
◮ Comprehensive coverage of key results
◮ Extensions to networks

Some of the basic material ready to be included in graduate comm
course sequences (with introductory IT course as prereq)

A. El Gamal (Stanford University) Lectures on NIT Allerton 2009 41 / 42



Conclusion

Conclusion

Lectures on NIT:
◮ Top-down organization
◮ Balances introduction of new tools and models
◮ Elementary tools and proof techniques for most material
◮ Unified approach to achievability
◮ Comprehensive coverage of key results
◮ Extensions to networks

Some of the basic material ready to be included in graduate comm
course sequences (with introductory IT course as prereq)

We plan to make the teaching subset of the lectures available early
next year
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