
National Institute of Informatics, Japan at
TRECVID 2011

Duy-Dinh Le 1, Cai-Zhi Zhu 1, Sebastien Poullot 1, Vu Q. Lam 2

Duc A. Duong 2, Shin’ichi Satoh 1

1 National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Japan 101-8430

2 Faculty of Information Technology
University of Science, VNU

227 Nguyen Van Cu, Dst 5, Ho Chi Minh City, Vietnam

ledduy,cai-zhizhu,poullot.sebastien,satoh@nii.ac.jp,
lqvu,daduc@fit.hcmus.edu.vn

Abstract—This paper reports our experiments for three
TRECVID 2011 tasks: instance search, semantic indexing, and
multimedia event detection. For the instance search task, we
present three different approaches: (i) Large vocabulary quantiza-
tion by hierarchical k-means and weighted histogram intersection
based ranking metric (ii) Combination of similarities based on
Glocal quantization of two set of SIFTs and color histograms from
the full frames, and (iii) Keypoint matching is used to compute
the similarity between images of the query and images of all
videos. For the semantic indexing task and the multimedia event
detection task, we report the experiments using NII-KAORI-
SECODE framework. Our approaches can be considered as one
of the baseline approaches for evaluation of these tasks.

I. INSTANCE SEARCH

A. Method 1: Large Vocabulary Quantization by Hierarchical
k-means and Weighted Histogram Intersection Based Ranking
Metric

Here we present details about our algorithm for instance
search task. Basically our algorithm searches for matching
in a computationally cheaper high dimensional Bag-of-Word
feature space. While being computationally cheaper and theo-
retically simple, it probably takes the lead of all submitted
runs in this instance search task. The idea is inspired by
four pioneer researches [1], [2], [3], [4], and thanks to the
given object mask regions for all probe images, we can
additionally consider to balance contributions originated from
object regions and background context within a given probe
image.

1) Offline Indexing: The framework of offline indexing is
shown in Fig. 1. For the gallery dataset, we extract 3 frames
per second from every video clips (100 frames per clip in
average), and then SIFT descriptors are sparsely extracted.
Throughout this experiment, the only feature we used is
SIFT. More concretely, we use the SIFT library available
in [5], and use Harris-Laplace and MSER two detectors for
complementary coverage. Typically for each frame with size

352*288, we get 800 and 300 key points in average via above
two detectors separately. Then for those detected key points,
we exact 128-D SIFT or 192-D color SIFT descriptors [5].
In this way, we collect 2.3E9 SIFT and 2.3E9 color SIFT
descriptors for 20982 video clips in total.

Next, we evenly sample 71M descriptors for clustering.
For speed consideration, we build a vocabulary tree with 1M
leaf nodes as done in [2], but try out different branching
factor 10 and 100, with the tree level factor equal to 6
and 3 correspondingly. We do realize the shortcoming of
hierarchical clustering in incurring larger quantization error,
and the reason why we still chose hierarchical method is
just to make the experiment doable within reasonable time.
We believe our algorithm will benefit from a more accurate
clustering algorithm suitable for such a large scale dataset
problem.

Then for each video unit, we project all SIFT descriptors
into the vocabulary tree and get only one Bag-of-Words
histogram as its representation, thus we totally get 20982 video
histograms. Since we consider all nodes in the tree besides
the root, each histogram consists of 111110 or 10100 bins,
while the branching factor is set to 10 or 100. Finally we
try different bin-weighted schemes on this high-dimensional
histogram: simply timing each bin by the number of nodes
within that level in the vocabulary tree, or adopting an IDF
weighting. Thereby, after a high-dimensional bin-weighted
histogram is obtained for each video clip, we finish the whole
offline indexing process.

2) Online Searching: The framework of online searching
is shown in Fig. 2. As for online retrieval, given the probe
image set of a topic, we first sparsely extract SIFT features
as what we have done for the gallery dataset. Specially,
to obtain better coverage for small object, we also densely
extract SIFT features from object mask regions, and finally
we project all these SIFT features to the vocabulary tree

Fig. 1. Framework of offline indexing.

and get one histogram as the representation for current probe
topic. Histogram intersection metric is then taken to rank the
similarity between each probe topic with every candidate video
clip.

3) Results: We choose MATLAB as our implementation
platform. According to the framework of the algorithm, the
computational burden mainly lies in building the big vocab-
ulary tree during the offline phase. For the online retrieval,
both quantizing features with the built tree, and ranking by
computing histogram intersection over sole very sparse high
dimensional histogram representation for each video/topic
unit, can be very fast. The most computationally heavy part
usually involved in other retrieval algorithms, spatial geometry
verification, can be avoided in this framework thanks to the
considerably fine quantization [2]. In our experiments, the
average online retrieval time needed for a probe topic is around
15 minutes with our unoptimized MATLAB implementation.

We submitted two runs with this method: the first run uses
IDF weighted histogram accumulated on color SIFT with tree
branching factor equals to 100, and the other is a simple fusion
over all considered configurations, such as: SIFT or color
SIFT, branching factor 10 or 100, and level or IDF weighting.
Overall the former one shown in Fig.1 performs better, which
acquired optimal performance on 11 topics and nearly optimal
performance on other 8 topics (where solid circles intersect
with corresponding hollow squares in Fig. I-A3) among all 25
topics, with MAP equal to 0.531 and precision of top-10 shots
returned around 90%, which is rather high in term of retrieval

accuracy. The fusion one also ranks top on 7 topics with MAP
0.491. In total this method ranks top on 17 topics. We didn’t
carefully explore impact of different configurations due to lack
of time and no ground truth available in the meantime, and we
believe there is still margin to get the performance improved.

Figure I-A3 and I-A3 show the performance of these runs.

B. Method 2: Using Set of Features and Color Histograms at
Frame Level

For this run we used full frame descriptors: Glocal de-
scriptors (set of features, built on SIFT) and color histograms
(HSV and RGB). The frames were densely extracted from
the reference video set. On search time the same features are
extracted from the sub queries full images, then sequentially
compared to the database ones. The purpose of the approach
is to obtain reasonable results in a very short time.

1) Build up the Video Reference Database: !
Local Descriptors

First, from the 20,982 reference videos, 1 frame out of 10
(about 2.5 frames per second) is extracted, 1,452,803 frames
overall. Each frame Fi has a unique metadata set {ID, Tc},
where ID is the video ID and Tc is the frame number in
this video. Then, for each frame 2 sets of SIFT descriptors
are computed.

One set S1 was computed at positions given by the fast
multi-scale Hessian descriptor. The other set S2 was com-
puted at dense positions. The dense positions are extracted
as follows. The frame is divided in a grid by a regular

Fig. 2. Framework of online searching.

cut, in this case every p = 7 pixels. Then, on every
patch of 7 ∗ 7 pixel, one position is selected, this position
corresponds to the pixel with the higher luminance L =√
R2 ∗ 0.241 +G2 ∗ 0.691 +B2 ∗ 0.068, where R, G and B

are the RGB components of the pixel.
These 2 sets of SIFT are separately treated in the following.

Visual Vocabulary
For each set S1 and S2, a visual vocabulary is build up:

• 2 random matrices (128∗32 dimensions) are drawn (Rm1

and Rm2) in order to project the SIFT on 32 dimensions
features,

• 2 subset of 500,000 SIFT are randomly drawn,
• 2 visual vocabularies (V1 and V2) are build up using the

K-means algorithm on each subset,
• the lengths of the 2 vocabularies are set to 2048 words,
|V1| = |V2| = 2048,

• in order to go fast, the K-means processes are stopped
after 5 iterations.

For each frame Fi, 2 Glocal descriptors G1i and G2i are
computed, using S1i, V1 and S2i, V2. One descriptor is 2048
bits long (256 bytes). The bit at rank j of G1i is set to 1 if

the frame i contains at least one occurrence of a projected
SIFT quantified on j-th word by vocabulary V1. To quantify
a projected SIFT we use the 1−NN among the |V1| words.
This description is a set of features (similar to BoW, but
without counting of the occurrences).

Histogram Extraction
Beside the 2 glocal descriptors, the HSV and RGB

color histograms, HSVi, RGBi are computed as well. The
HSV histogram is quantized on 3 ∗ qHSV values, the RGB
histogram is quantized on 3 ∗ qRGB values. The values were
set to qRGB = 64, qHSV = 16.

Build Database Finally a frame Fi is described by a
quadruplet Bi = {G1i, G2i, HSVi, RGBi}. The database is
composed of 4 files. One file contains all G1 descriptors, one
file contains all G2 descriptors, one file contains all HSV
histograms, the last one contains all RGB histograms. No
indexing method was used. Overall the database sizes 1.4Gb
(366Mb for each Glocal file, 134Mb for the HSV one, 533Mb
for the RGB one).

Fig. 3. Performance of the run R1 that is our best run.

2) Sequential Similarity Search: For this process, 23
queries Qi were given. Each sub query Qij is also described
by a quadruplet Sij = {G1ij , G2ij , HSVij , RGBij}. Each
quadruplet Sij is then sequentially compared to each quadru-
plet Bi from the database. Two different type of similarity
are used for this purpose. For the Glocal descriptors, the
Dice coefficient is used. For instance between two Glocal
descriptors Ga and Gb:

SDice(Ga,Gb) =
2 |Ga ∩ Gb|
|Ga|+ |Gb|

(1)

For the HSV and RGB histograms, a simple L1 distance is
computed. For instance between two histograms HSVa and
HSVb:

SL1(HSVa,HSVb)) = (2)
3∑

i=0

q∑
j=0

HSVa[i, j]−HSVb[i, j]

where q is the quantization of the histograms.
The global similarity Sim between a sub-query Qij and a

frame from the database Fk was designed as follows:

Sim(Sij,Bk) =
1

2
∗ SDice(G1ij , G1k) (3)

+
1

2
∗ SDice(G2ij , G2k)

+
1

4
∗ 1

SL1(HSV ij , HSV k)

+
1

4
∗ 1

SL1(RGBij , RGBk)

While performing search, the Dice coefficients are first
computed, if one of these is below a threshold Th = 0.1
the frame Fk is discarded. Otherwise the color histogram
similarities are computed. In other words, a minimum of
matching SIFT is required.

Given that each single similarity belongs to a [0; 1] interval,
and given this threshold, Sim(Sij , Bk) ∈ [0, 2; 1, 375]. For
each sub-query the results are descending sorted.

3) Merge Sub-queries Results: In order to merge the results
from the N sub-queries, we normalize the similarities. The
higher similarity of each query is set to 1.0, and the following
ones modified according to this. If a query has N sub-queries,
at least N similarities are Sim = 1.0 (if the threshold test
was successfully passed at least once for each sub-query).

Fig. 4. Performance of the run R2

Fig. 5. Sum up of the database construction and search process from a
unique sub query

Once normalization are done, the results of all sub-queries
are concatenated and descending resorted according to the sim-
ilarities. If 2 similarities are equal, we make a sub-comparison
between the Dice coefficients sum of the 2 results. The one
with the higher sum will be ranked first.

Figure I-B3 shows the performance of this run.

C. Method 3: Using KeyPoint Matching Between Query Im-
ages and KeyFrames Extracted from Test Videos

We extracted 5 keyframes per second in test videos. The
total number of keyframes after extracting 20,982 test video
clips is 2,657,073. For each keyframe of query images and
test images, denseSIFT with sampling step of 6 pixels is
used to extract 5,244 SIFT descriptors. The total number of
descriptors is (2,657,073 + 95)× 5,244 = 13,934,188,992. For
each keypoint in query images, we find 4 nearest keypoints in
all keypoints of the test database. The similarity between the
input query and one test video is computed by counting the
number of matches between query images and keyframes of
the test video. Specifically,

d(Q,V) =
∑
i,j

wk ∗MatchCount(qi, vj , k)

Fig. 6. Performance of the run using set of features and color histograms at frame level

where qi is a query image of the query Q, vi is a keyframe
image of the test video V , k ∈ [1..4] is the order of the
nearest neighbor. MatchCount(qi, vj , k) returns the number
of matches of kth nearest neighbor between qi and vj .
wk = 1

2k−1 is the weight for the match of kth nearest neighbor.
The highest weight is given for the 1-NN.

Since the number of keypoints in the test database is huge,
the matching speed is very slow.

Figure I-C shows the performance of this run.

II. THE NII-KAORI-SECODE FRAMEWORK

A. Method Overview

In our framework, features are extracted from the input
keyframes representing for shots. We extracted five keyframes
per shot that are spaced out equally within the provided shot
boundary. In the training stage, we use these features to learn
SVM classifiers. These classifiers are then used to compute the
raw output scores for the test image in the testing stage. These
output scores can be further fused by taking the average for
computing the final output score. In order to return K shots
most relevant for one concept query that then are evaluated
and compared in TRECVID benchmark, all normalized final
output scores of shots are sorted in descending order and top

K shots are returned. In the case of a shot consisting of several
sub-shots, only the maximum score among subshots’ scores is
used for that shot.

As for feature extraction, dense sampling is used for finding
keypoints from which SIFT and COLORSIFT descriptors are
extracted. We used GreedyRSC+KMeans to find 500 clusters
for vector quantization. Then a standard bag-of-words with
soft-weighting was used to form the feature vector.

B. Semantic Indexing

The performance of runs with different con-
figurations is available online at: http://satoh-
lab.ex.nii.ac.jp/users/ledduy/Demo-KAORI-SECODE/. Due to
time limitation, we could only submitted 3 runs and their
performances are shown in Table I:

C. Multimedia Event Detection

We extracted one keyframe for every 4 seconds. The total
number of keyframes for MED11TEST is 877,310. The total
number of keyframes for EVENTS is 90,449. As for features,
BOW of SIFT descriptors extracted by dense sampling at 2
scales with sampling step of 6 pixels (code of COLORSIFT [6]
is used). 1.5 millions of keypoints from the training set
(keyframes extracted from all 15 EVENTS) were used to

Fig. 7. Performance of the run using keypoint matching

TABLE I
PERFORMANCE OF OUR SUBMITTED RUNS FOR SIN TASK.

RunID Description MAP (%)
F-A-nii.SuperCat-dense6-1 DENSE6 - grid 3x1 11.3
F-A-nii.SuperCat-dense6mul.rgb-2 DENSEMUL6.rgbSIFT - grid 3x1 10.9
F-A-nii.SuperCat-dense6-3 PHOW8 - grid 3x1 11.9

construct a codebook of 500 codewords. Soft assignment is
used for constructing feature vectors. 3 spatial layouts are used
including 1x1, 2x2 and 3x1 (colxrow)

Figure II-C shows the performance of our primary system
using dense color.

REFERENCES

[1] O. Boiman, E. Shechtman, and M. Irani, “In defense of nearest-neighbor
based image classification,” in CVPR, 2008.

[2] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary tree,”
in CVPR, 2006.

[3] K. Grauman and T. Darrell, “Approximate correspondences in high
dimensions,” in NIPS, 2006.

[4] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to
object matching in videos,” in ICCV, 2003.

[5] “Featurespace,” http://www.featurespace.org/.
[6] “Color descriptors,” http://koen.me/research/colordescriptors/.

Fig. 8. Performance of our primary system for MED task

