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Abstract

The vireo group participated in four tasks: instance search, semantic indexing, multimedia event detection

and known-item search. In this paper,we will present our approaches and discuss the evaluation results.

Instance Search (INS): We experimented four runs to contrast the following for instance search: full

matching (vireo b) versus partial matching (vireo m); use of weak geometric information (vireo b) versus

stronger spatial configuration (vireo s); use of face matching (vireo f).

- F X NO vireo b 2: Full keyframe-level matching by Bag-of-Words (BoW) retrieval with weak geo-

metric consistency checking (WGC [19]) as post-processing.

- F X NO vireo s 3: Full matching by BoW retrieval and modeling of spatial configuration using

Enhanced WGC (E-WGC [21]) and Geometric-preserving Visual Phrases (GVP [20]).

- F X NO vireo f 1: Full matching by linear fusion of F X NO vireo b 2 with face matching.

- F X NO vireo m 4: Partial matching by weighting the importance of instance and background

context.

Semantic Indexing (SIN): For concept detection, one common challenge is the scarcity of training

samples. Because there is a significantly increased number of concepts being considered this year, the

number of collected training samples per concept is fairly limited. To alleviate this problem, we adopt

the Web image sampling algorithm named Semantic Field [10] to enrich the training set provided by

TRECVID 2011. Our main focus for the SIN task is on the study of following two issues: 1) the

effectiveness of models learnt from Web images on TRECVID 2011 dataset, and 2) the concept learning

performance of combining training sets from TRECVID and a Web image collection..

The concept detection system is similar to our TRECVID 2009 system, where both local and global

features are employed to train SVM models for each concept. We submitted four runs as summarized

below:

- F A vireo.baseline video: Concept detectors learnt on the training set provided by TRECVID 2011

only.

- F B vireo.SF web image: Concept detectors learnt on the training set sampled from Web images

using Semantic Field (SF) method.



- F D vireo.A-SVM: Using training set provided by TRECVID 2011 to update SF models based on

adaptive SVM (A-SVM) [8] algorithm.

- F D vireo.TradBoost: Aggregation of the training sets from Web images and TRECIVD 2011 in a

TradaBoost [22] learning framework.

Multimedia Event Detection (MED): Framework proposed by Jiang et al. [3] is adopted as our

baseline for further improvement with additional features. First of all, visual and audio features are

extracted from videos. Features extracted include SIFT, ColorSIFT, MFCC and STIP. Bag-of-Word

(BoW) is used to represent the features extracted and SVM is trained to classify the events. Weighted

fusion is modeled to fuse the results from the classifiers of different modalities to improve the performance.

Our submissions are:

- AutoEAG p-RUN1: STIP + MFCC + SIFT

- AutoEAG c-RUN2: STIP + MFCC + SIFT + ColorSIFT

- AutoEAG c-RUN3: STIP + MFCC

Known-Item Search (KIS): Our objective for the KIS task is to observe the effectiveness of different

modalities (metadata, automatic speech recognition (ASR) and concepts). We adopt the same technique

we developed last year to gauge its performance on this year’s dataset. Consistent with previous year’s

results, the evaluation once again shows that concept-based search is useless towards known-item search

whereas textual-based modalities continue to deliver reliable performance especially the metadata. Dif-

ferent from previous year result, supplementing the metadata with the ASR feature is not longer able to

boost the performance. We submitted four runs for the fully automatic settings as follows:

- F A YES vireo run1 metadata asr 1: metadata + ASR.

- F A YES vireo run2 metadata 2: metadata only.

- F A YES vireo run3 asr 3: ASR only.

- F A YES vireo run4 concept 4: concept only.

1 Instance Search

Instance search is to retrieve video clips of a specific object, place or person from a large video corpus.

This pilot task introduces several new features different from general video search and near-duplicate

search, as following:

1. ROI (Region-of-Interest) is provided to indicate the location of instance. In other words, the query

is composed of two parts: instance under query, and background context.

2. The relevency is defined at the instance-level, rather than visual (e.g., near-duplicate search) or

concept level (general search). First, the instance may appear in a different background context

than the provided query. Thus, search based on whole-keyframe matching could be risky. Second,

an instance may “adapt” according to context. For example, querying a person instance expects

the return of video clips that contain the person regardless of ages, clothes and facial expressions.

3. Multiple visual examples, of different viewpoints, scales, lighting conditions and background context,

are given. Take “SUV” as example, the query includes the front and side views of the car.



Table 1: Settings & parameters of our BoW method.

Local Feature Vocabulary Hamming Embedding Scale Angle MA

DoG, SIFT [17] hierar, 20k [21] 32-bit, distance weighting [19] 8-bit 16-bit 10

Our goal this year is mainly to study and contrast: 1) full matching by direct applying near-duplicate

search techniques at the whole-keyframe level; and 2) partial matching by learning the importance of

instance and background context, which attempts to utilize the aforementioned feature 3 to address the

challenges as a result of features 1 and 2.

The four runs we have submitted are based on BoW (Bag-of-Words) representation. Variants of

techniques are imposed on top of BoW to investigate the search performance. In the corpus, 89,691

keyframes are extracted from 20,982 video clips. The extraction is done by uniform sampling at the rate

of one keyframe per second. Similar consecutive keyframes are further dropped to reduce the overhead

in indexing redundant visual content.

1.1 Runs and Strategies

1.1.1 Full Matching – BoW + WGC (vireo b)

The performance of BoW for instance search is not fully studied yet, and this run is to investigate how

good full matching could perform with the state-of-art technique. We adopt and implement [19], which

enhances BoW with Hamming Embedding (HE), Weak Geometric Consistency Checking (WGC), and

Multiple Assignment (MA). This run does not distinguish the instance and background context. We

adopt inverted file to index BoW. The detailed settings are summarized in Table 1. During search, we

adopt late fusion at query level, i.e., several ranked lists are produced based on the number of query

examples in a topic. These lists are linearly and averagely fused to generate the final ranked list.

1.1.2 Full Matching – BoW + WGC + Face (vireo f)

Since some queries are about person instances, we further apply face matching. We adopt the techniques

in [18] to detect faces and generate face descriptors, which is a 1937-d normalized pixel-wise vector

extracted on 13 facial points. In the corpus, there are 15,278 faces being detected. During search, the

faces from queries and database are matched, and the video clips are ranked based on the Cosine similarity

of face descriptors. The results are then fused linearly with ranked list produced by Section 1.1.1. Note

that this run is only applied to queries with person instances.

1.1.3 Full Matching – BoW + Spatial Consistency Checking (vireo s)

Since the target is to search instances, spatial configuration should be emphasized during search, rather

than simply adopting a fast but weak geometric checking such as WGC. Thus, in this run, we combine

E-WGC [21] and GVP [20], to study the role of spatial information.

Enhanced WGC (E-WGC) is the enhanced version of WGC by further considering the point location

(x, y) in the image plane. [
x̃q

ỹq

]
= s̃×

[
cos θ̃ − sin θ̃

sin θ̃ cos θ̃

]
×

[
xp

yp

]
. (1)

Equation (1) back-projects points on reference image p onto query image q using two parameters:

scale ratio (s̃) and orientation difference (θ̃). Note that the complete transformation involves 4 parame-

ters [s, θ, tx, ty]
T , two parameter are not sufficient to project points from one image to another. Actually
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Figure 1: Performance of our four submissions for INS.

Equation (1) only projects points partially and leaves the translation [tx, ty]
T un-added. So the subtrac-

tion of [x̃q, ỹq]
T from [xq, yq]

T gives an estimation of [tx, ty]
T . Motivated by the fact that the translation

is supposed to be uniform for true correspondences, the peak of the 2D histogram of translation (tx, ty)

gives a good estimation of the vector [tx, ty]
T , which in this way filters inconsistent matchings at the time

of searching.

Geometry-preserving Visual Phrases (GVP) is another technique to encode spatial information. A

GVP of length k is defined as k visual words in a consistent spatial layout. Each matching pair between the

query and reference image takes a vote in the offset space. Clustered votes in the offset space correspond

to matchings with uniform spatial layout. In this way, grids with k (or more) votes, which correspond to

the spatial layout with k (or more) features, are counted as the similarity measure for two images in [20].

In fact, GVP and E-WGC are quite similar except the following differences: (1) E-WGC only considers

the dominant layout with highest votes and treats other votes as outliers, while GVP counts all possible

layouts that have k (or more) votes; (2) E-WGC back-projects the points before voting in offset space,

while GVP votes in offset space directly, which limits the invariance to translation only. For vireo s run,

we combine the advantages of both methods by first back-projecting the points with respect to differences

of scale and orientation (as E-WGC did), then score all votes which has at least k features (as GVP did).

In this way, the final matchings considers all visual phrases with length k, as well their spatial structure

is invariant to translation, scale and rotation.

1.1.4 Partial Matching (vireo m)

Since an instance may not appear in the same context as in the query, the importance of instance should

be emphasized. On the other hand, background context, though less important, also carries helpful cue

in search. We model the importance of instance and background context by first processing all query

examples as a whole before conducting search. A combined BoW features (including hamming signature,

scale and angle) are produced. The feature implicity weights the importance of each word by a simple

voting scheme, where the purpose is to upgrade words which often appears in query examples (normally

from instance), and downgrade words which only appears once or twice (normally from background).

Finally, the words are further explicitly weighted based on the prior knowledge that whether the feature

resides in the instance or background. Note that no fusion is required for this run.

1.2 INS Result Analysis

Figure 1 shows the performance of our four runs on this year’s instance search task. We have the following

observations:



- With respect to the number of true responses among all the 1830 ground truths, there are 860

(vireo b), 880 (vireo f), 899 (vireo s), 789 (vireo m) true responses retrieved for our runs. All our

runs only retrieve half of the ground truth responses, which demonstrates the limitation of local

feature and BoW-based method. Another interesting observation is that vireo s retrieves the most

number of true responses, which demonstrated its potentiality in generating better performance.

- Generally, vireo b performs well on this year’s dataset. Since some query examples are extracted

directly from the clips in corpus, BoW can easily find their near duplicates. However, when querying

with features on the instance only, the result is rather bad. This, on one hand, demonstrates the

characteristic of the dataset, on the other hand, hints the importance of the context.

- Face detector also gives a reasonable result. Compared to BoW, our face matching helps to bring

20 more true faces to the 6 topics involving person. Vireo f, a fusion of face response and vireo b,

gives the best result among our runs.

- The run vireo s considering spatial configuration returns the most number of true positives and

shows better AP performances for 10 topics than vireo b and vireo f. Compared to using WGC,

this run is more effective in pruning false positives. Nevertheless, this run is yet to have an effective

measure for similarity ranking. Thus, though with many true positives being returned, the MAP

performance is not better than vireo b and vireo f.

- There are an average of 3.8 query examples for each search topic. By modeling the importance

of instance and background, vireo m shows the best AP performance for 10 topics among the

4 runs. The improvement mostly comes from topics with rigid objects of size relatively smaller

than background. These topics include SUV, plane, newspaper balloon, cylindrical building, yellow

balloon and airplane balloon. On the other hand, when the instance under search appears differently

in different query examples of a topic, the performance is not satisfactory. These include the topics

about yellow dome, Parthenon and tortoise, where the scales of instances could vary from close-up

view to extremely small in size. More studies on how to fuse different scales of instances are required

[16]. Similarly for topics with person and location instances, the results are not better than other

runs due to large variation of instances in appearance among different query examples.

2 Semantic Indexing

In TRECVID 2011, we experiment with our recently proposed algorithm, namely Semantic Field, to

sample large scale Web images for visual concept learning. Due to data domain difference, however,

the model learnt on Web images may not work well on TRECVID 2011 dataset which contains Web

videos. In our framework, we adopt two transfer learning approaches, Adaptive-SVM (A-SVM) [8] and

TradaBoost [22], to handle this cross domain learning problem. Our designed system is shown in Figure 2.

In addition to the training set provided by TRECVID 2011, a set of training examples are sampled from

Flickr images for each concept. Two baseline runs, which are marked as No. 1 (Baseline) and No. 4 (SF)

in Figure 2 respectively, are constructed by learning SVM classifiers on these two training sets separately.

Assuming TRECVID dataset (IACC video) as target domain, we further adapt SF models learnt on

Flickr images to TRECVID video domain by using A-SVM algorithm. As a result, we build a new SVM

classifier (No. 3 in Figure 2) for each concept. In addition, in stead of updating the model learnt in source

domain using target domain examples, we further experiment TradaBoost algorithm which aggregates

training examples from two domains in a boosting framework (No. 2 in Figure 2). Specifically, weighted
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Figure 2: Framework of our concept detection system.

SVM is adopted on the aggregated training set. The weight of each example is iteratively updated based

on the testing performance of the classifier learnt in previous iteration. Finally, it is expected to generate

a more robust classifier by leveraging the useful knowledge (examples) of multiple domains.

As showed in Figure 2, our submitted systems include multiple components, such as feature extraction,

Web image training set collection, Adaptive SVM and TradaBoost algorithm. We will elaborate each of

them below.

2.1 Learning Visual Concept Using Local and Global Features

For visual feature, we use Bag-of-visual-words (BoW) representation derived from local keypoint features

since it has been consistently adopted in successful concept detection systems. Our BoW representation

framework is similar to that of our TRECVID 2009 system [4]. As shown in Figure 1 in [4], we revise

the representation by removing 1 × 3 partition. Specifically, we use multi-detectors, DoG and Hessian

Affine, to extract local keypoints. In addition, spatial information is considered by using 2× 2 and 3× 1

partitions. At the end, there are three BoW feature vectors for each training example. Finally, three

SVMs will be trained on each of them respectively. For more details on our BoW representation, please

refer to [4].

Same with our TRECVID 2009 system, we extract two kinds of globle features: grid-based color

moments (CM) and grid-based wavelet texture (WT). For color moment, each training example is parti-

tioned into 5× 5 grids, and the first three moments are computed on the Lab color space over each grid.

Concatenating the features from all grids forms a vector of 255 dimensions. Similarly for wavelet texture,

each image is divided into 3 × 3 grids, and each grid is represented by the variances in 9 Haar wavelet

sub-bands. This forms a feature vector of 81 dimensions. Finally two SVMs are trained for each concept

using CM and WT respectively.

Given a testing keyframe, the SVM classifiers are applied on the corresponding feature representations

and the raw outputs of SVMs are converted to posterior probabilities which are further fused as the final

detection score.



2.2 Sampling Web Images by Semantic Field

In addition to the training set provided by TRECVID 2011, we experiment with our recently proposed

approach Semantic Field (SF) [10] to construct a Web image training set for each concept. We first

download a set of images by using the concept name to query Flickr API. Since current search engines

largely rely on the associated texts (e.g., tags) of the images, and therefore often return noisy results.

While user tags are imprecise, collective analysis of whole tag list can always infer underlying semantics.

Semantic Field is proposed under this assumption.

Denote Cx as the target concept, and SF =< T1, T2, . . . , Tn > as the tag list of an image I with n

tags. The probability of Cx in I is defined as:

P (Cx|SF ) =
P (SF,Cx)

P (SF )
, (2)

The computation of Equation 2, however, is not always stable since the probability of the entire tag list

P (SF ) is usually extremely small, therefore we approximate P (SF,Cx) using P (SF )× (
∑

i P (Ti|Cx)/n),

which combines the probabilities of observing SF as a whole and seeing each tag of SF in images tagged

with concept Cx. With this, P (SF ) can be eliminated and Equation 2 can be re-written as:

P (Cx|SF ) =

∑n
i=1 P (Ti|Cx)

n
, (3)

where P (Ti|Cx) donates the likelihood of observing a tag Ti given the concept Cx.

Based on the Bayesian theorem, P (Ti|Cx) in Equation 3 can be further rewritten as P (Ti, Cx)/P (Cx),

and since P (Cx) does not affect image sampling for Cx, the only critical unknown term for computing

P (Cx|SF ) is the joint probability P (Ti, Cx). To estimate P (Ti, Cx), we consider two different knowledge

sources: WordNet ontology and Flickr.com. For WordNet, we adopt WUP [9] which uses path length

information in WordNet hierarchy to infer word relatedness, defined as:

WUP (Ti, TCx) =
2D(STi,TCx

)

L(Ti, TCx) + 2D(STi,TCx
)
, (4)

where TCx denotes the name of concept Cx and STi,TCx
is the lowest common ancestor of Ti and TCx

in WordNet. Function D returns the depth of a concept, while function L computes the minimum path

length by traversing from Ti to TCx .

In addition to WUP, we adopt Flickr Context Similarity (FCS) [2] which estimates the co-occurrence

of tags based on statistics derived from tags associated with all images in Flickr. This offers the advantage

that the co-occurrence of words could also reflect visual relatedness since tags are given with images as

the target subjects. FCS is defined as:

FCS(Ti, TCx) = e−NGD(Ti,TCx )/ρ, (5)

where

NGD(Ti, TCx) =
max{log h(Ti), log h(TCx)} − log h(Ti, TCx)

logN −min{log h(Ti), log h(TCx)}
. (6)

Here NGD stands for Normalized Google Distance [1], h(Ti) is the number of Flickr images associated

with tag Ti, h(Ti, TCx) is the number of images associated with both Ti and TCx . The function h() is

computed by querying Flickr API.

Finally, with WUP and FCS, P (Ti, Cx) can be estimated by:

P (Ti, Cx) = FCS(Ti, TCx)×WUP (Ti, TCx). (7)

Plugging Equation 7 back into Equation 3, P (Cx|SF ) can be computed for each image under considera-

tion, with which images from initial Web search are re-ranked and top ones will be selected for training

set construction.



2.3 Adaptive SVM

Due to the different data distributions of Web image domain and TRECVID video domain, directly

applying models learnt from Web images on TRECVID videos may degrade the performance. Therefore

domain adaptation algorithm is investigated to update the source domain model to target domain. In

our systems, we adopt Adaptive SVM (A-SVM) [8] which adjusts the original model according to the

training set in target domain. A-SVM learns a “delta function” ∆f(x) based on the new examples, and

adapts the original SVM model f I(x) as follows:

f(x) = fa(x) + ∆f(x) = f I(x) +WTϕ(x) (8)

where WT are the parameters to be leant from new samples. Inspired by SVM, W can be estimated by

solving following objective function:

min
W

1

2
∥ W ∥2 +C

M∑
j=1

ξj

s.t. ξj ≥ 0

yjf
I(xV

j ) + yjW
Tϕ(xV

j ) ≥ 1− ξj , ∀(xV
j , yj) ∈ TV

(9)

where
∑

j ξj measures the total classification error of new decision function f(x) and TV = (xV
j , yj) is

the training set of TRECVID 2011. A-SVM basically seeks for additional support vectors learnt from

newly arrived data to adjust the original decision boundary of a classifier. It optimizes the trade-off that

new decision boundary should be close to the original one, and meanwhile, the new samples are correctly

classified. The factor C controls the influence of original classifier and new training samples. Larger C

means less important the original classifier is. In this experiment, we set C = 10.

2.4 TradaBoost Algorithm

Adaboost is a popular boosting algorithm which aims to boost the accuracy of weak learners by adjusting

the weights of training instances and learn a strong classifier accordingly. TradaBoost [22] learning

framework is an extension version of Adaboost for transfer learning. The description of TradaBoost

framework is given in Algorithm 1, where XI is the source image instance space, XV is the target video

instance space, and Y = {0, 1} is the set of labels. As explained in Algorithm 1, the training data set T is

divided into two labeled training sets TI and TV . TI represents the source image training data that TI =

{(xI
j , yj)}, where xI

j ∈ XI(j = 1, . . . , n) and yj is the label. TV represents the target video training data

set that TV = {(xV
j , yj)}, where xV

j ∈ XV (j = 1, . . . ,m). n and m are the sizes of TI and TV , respectively.

The whole training data set T is defined by T = {(xI
1, y1), . . . , (x

I
n, yn), (x

V
n+1, yn+1), . . . , (x

V
n+m, yn+m)}.

The core mechanism is to adjust the weights of the training instances in each iteration. In one hand,

for the source image training instances, the weights will be decreased in order to weaken their impacts

when they are wrongly predicted by the learned model. In the other hand, for the target video training

instances, the weighs of mis-predicted instances will be increased to help train a better classifier. For

each round of iteration, the error is only calculated on the target video data set.

2.5 SIN Results and Analysis

Figure 3 shows the mean average precision (MAP) performance of all 68 full version submitted system

runs where our four runs are marked in red. Our best result lies above the median among all submissions.

Overall, models of baseline learnt on TRECVID 2011 dataset archive best result among our four runs. Due



Algorithm 1 TradaBoost

Input:

⋆ source image training data set TI and target video training data set TV .

⋆ a base learning classifier C.

⋆ the maximum number of iterations N .

Initialization:

⋆ initial weight vector w1 = (w1
1, . . . , w

1
n+m), in general, the initial value of each weight is the same.

For t = 1, . . . , N

1. Set the distribution of training samples as:

pt = wt

/
n+m∑
j=1

wt
j

2. On both the source image training data set TI and target video training data set TV , build classifier

Ct with distribution pt. Then, get back a hypothesis ft(x) ∈ [0, 1] by confidence.

3. Calculate the error of ft on target video data set TV :

εt =
n+m∑
j=n+1

wt
j ·|ft(xV

j )−yj|∑n+m
j=n+1 wt

j

4. Set βt = εt/(1− εt) and β = 1
/
(1 +

√
2lnn/N). Note that εt is less than 1/2, otherwise adjust

weight vector wt and return to step 1.

5. Update the new weight vector:

wt+1
j =

{
wt

jβ
|ft(xI

j )−yj|, 1 ≤ j ≤ n

wt
jβ

−|ft(xV
j )−yj|

t , n+ 1 ≤ j ≤ n+m

Output

ft(x) =

{
1,

∏N
t=⌈N/2⌉ β

−ft(x)
t ≥

∏N
t=⌈N/2⌉ β

−1/2
t

0, otherwise

to domain shift, the performance of SF trained on Web images drops a lot on TRECVID 2011 testing set.

While the performance can be improved respectively by using two transfer learning approaches, adaptive

SVM and TradaBoost, there is still a performance gap comparing to baseline. Figure 4 further details the

average precision (AP) of our four submissions. Generally, concepts with sufficient training samples can

archive higher AP. Thus we try to collect more relevant training examples from Web images. However,

directly adopting sampled Web images for concept learning suffers from domain difference. As shown in

Figure 4, the performance of SF drops a lot for almost all the concepts. We further experiment adaptive

SVM (A-SVM) which adjusts the SF model by using training samples from TRECVID 2011. While

the overall performance is better than SF, most of the concepts still cannot benefit from the additional

training samples from Web images. On the other hand, for certain concept with small inner-concept

visual various, such as “Flowers” and “Sky”, A-SVM achieve better performance than Baseline. The may

imply that training samples from different domains need to be carefully selected, otherwise this may hurt

the detection performance significantly.

While we set a large C of A-SVM to emphasize the training samples from TRECVID 2011, the new

classifier may only slightly adjust the original decision boundary. Different from A-SVM which assumes

the original data is unavailable, we further test TradaBoost algorithm which aggregates the training

samples from different domains together in a boosting framework. Compared to the baseline which only

uses target video training data set, the performances of most concepts degrade a bit by using TradaBoost

method based on both source image data set and target video data set. The main reasons are two-

folds: 1) Some of the TRECVID concepts are video domain specialized concepts, such as “Studio with
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Figure 4: Per-concept performance of our submitted systems.

Anchorperson”, “Female Human Face Closeup” and “Anchorperson”. For these concepts, it is hard to

get good training instances from the source image data set. In other words, the definitions of these

concepts in the image domain and video domain are quite different; 2) For the generic concepts, e.g.

“cheering” and “traffic”, the meaning of these concepts is too broad and the training instances are with

high diversity. Therefore, the distribution difference between source image data set and target video data

set leads to the degradation of the performance. Although the results are discouraging, we underline

that transferring knowledge from image domain to video domain is a valuable try, since the World Wide

Web has many annotated images which can be used as auxiliary source information for improving video

domain applications. We will further investigate this problem in our future work.

3 Multimedia Event Detection

This is the first time we participate in MED task. We adopt the best-performing systems from [3] and

try to improve it using additional features. In the following we describe our method in detail.



3.1 Feature Representation and Event Learning

For static scene detection, frames are sampled from the videos in one second basis provided the difference

of intensity is above a threshold, i.e. 20%. Two standard detectors: Difference of Gaussian (DoG) [6] and

Hessian Affine [7] are used for detecting the local features of the frames. These keypoints detectors are

complementary of each other and each detected local image patch is then described by a 128-dimensional

gradient histogram of SIFT. Contrast to the grayscale images used in SIFT, color images are used in

ColorSIFT. SIFT descriptor characterizes the keypoints using edge orientation histogram. However it is

not invariant to the light color changes. Thus ColorSIFT is considered in our experiment to give clues

about the color space. This gives 3 vectors of 128 dimensions, the first vector being the original intensity

based and the other two vectors are color based descriptors.

For motion detection, STIP is used in our experiments. No image sampling is needed, the whole video

is fed as an input to Laptev’s STIP detector. Keypoints are detected at multiple spatial and temporal

scales. Histogram of Oriented Gradients (HOG; 72 dimensions) and Histogram of Optical Flow (HOF;

90 dimensions) descriptors are computed for the STIPs. In the end, HOG and HOF descriptors are

concatenated into a 162-dimensional vector for each STIP. In contrast to the two visual descriptors that

are computed based on sparse detectors, the MFCC features are densely extracted in the audio track of

the videos — a 60-dimensional MFCC feature in every 32ms temporal window is computed, and nearby

windows have 16ms overlap.

Since the videos are of different length and complexity, it is difficult to train a classifier with different

size of input. K-means clustering is used to quantize the feature descriptors to visual vocabulary and

each descriptor is encode to the respective index of vocabulary. All the descriptors are then collapsed

to a single histogram of fixed dimension to represent a particular video. In particular, ColorSIFT, STIP

and MFCC are quantized using 4000 words while SIFT using 8000 words. Soft weighting is used in the

process to leverage between the most significant and less significant visual words. In our cases, the top-4

significant audio/ visual words are computed.

Once the videos are represented by BoW feature vectors, SVM classifiers are trained for each event

separately. LIBSVM [23] developed by Lin et al. is used in the experiments. χ2 RBF is selected as the

kernel function. Weighted fusion is used to combine the detection scores from different modalities and

threshold for each event is determined.

3.2 MED Results and Analysis

Figure 5 shows the DET curves from Run1 to Run3. Run 2 performs the best compared to the other two

runs. Comparatively, the fusion method of Run3, STIP + MFCC, is the worst. With more modalities,

Run2 (STIP + MFCC + SIFT + ColorSIFT), achieves the best performance among the three runs for

most concepts. This confirms the need of fusing features from multiple modalities for event.

The performance summaries of the runs are depicted in Tables 2-4. It is surprising considering that

there is a big difference between the actual NDC and the minimum NDC. It is mainly caused by the biased

detection threshold as a result of not implementing cross validation in determining the threshold. The

biased detection threshold significantly affects the actual NDC performance, causing the false alarm to

be high. From the minimum NDC analysis, the missed detection probability is high, near to or equals to

1.0 for events 6, 7, 10, 11 and 15. It shows that the current method is still not effective in detecting those

events. Since the weighted fusion is adopted, the poor performance could be caused by the inappropriate

fusion weights. In our experiments, different weight sets are assigned for different events. Further analysis

is needed to investigate this challenging problem.



(a) RUN 1 (b) RUN 2

(c) RUN 3
Figure 5: Detection plots from Run1 to Run3. The charts show the missed detection probability versus

false alarm probability. The red line indicates the randomness.

4 Known-Item Search

4.1 Text-based Search

For the metadata modality, we extract nearly all the available information that come with the videos in the

training set, for instance “title”, “subject”, “keywords”, “description”, “notes”, “comment”, “shotlist”



Table 2: Performance summary of Run1.
Title

Actual Decision NDC Analysis Minimum NDC Analysis

#CorDet #Cor!Det #FA #Miss PFA PMiss NDC Dec. Tresh PFA PMiss NDC Dec. Thresh

E006 116 25950 5685 70 0.1797 0.3763 2.6204 0.1100 0.0001 0.9892 0.9900 0.6505

E007 20 29235 2475 91 0.0781 0.8198 1.7945 0.1000 0.0000 1.0000 1.0004 0.8556

E008 46 31354 335 86 0.0106 0.6515 0.7835 0.2200 0.0245 0.4470 0.7528 0.1694

E009 66 29443 2283 29 0.0720 0.3053 1.2039 0.1000 0.0177 0.4947 0.7163 0.1801

E010 37 27269 4465 50 0.1407 0.5747 2.3317 0.1000 0.0000 1.0000 1.0004 0.7613

E011 60 28081 3600 80 0.1136 0.5714 1.9904 0.1000 0.0019 0.9357 0.9590 0.5336

E012 137 29224 2366 94 0.0749 0.4069 1.3422 0.1000 0.0157 0.7013 0.8974 0.1667

E013 59 30049 1668 45 0.0526 0.4327 1.0894 0.1200 0.0117 0.6154 0.7615 0.1918

E014 39 30335 1408 39 0.0444 0.5000 1.0539 0.1300 0.0059 0.6923 0.7655 0.3183

E015 37 29887 1853 44 0.0584 0.5432 1.2722 0.1200 0.0024 0.9136 0.9431 0.3655

Table 3: Performance summary of Run2.
Title

Actual Decision NDC Analysis Minimum NDC Analysis

#CorDet #Cor!Det #FA #Miss PFA PMiss NDC Dec. Tresh PFA PMiss NDC Dec. Thresh

E006 117 26087 5548 69 0.1754 0.3710 2.5610 0.1100 0.0000 0.9892 0.9896 0.6092

E007 15 30440 1270 96 0.0401 0.8649 1.3650 0.1000 0.0000 1.0000 1.0004 0.4981

E008 73 31244 445 59 0.0140 0.4470 0.6223 0.2500 0.0161 0.4091 0.6097 0.2406

E009 52 29793 1933 43 0.0609 0.4526 1.2135 0.1200 0.0070 0.8316 0.9194 0.2890

E010 34 28081 3653 53 0.1151 0.6092 2.0467 0.1000 0.0000 1.0000 1.0004 0.5834

E011 60 28081 3600 80 0.1136 0.5714 1.9904 0.1000 0.0019 0.9357 0.9590 0.5336

E012 161 29083 2507 70 0.0794 0.3030 1.2940 0.1300 0.0109 0.7446 0.8802 0.3239

E013 47 30635 1082 57 0.0341 0.5481 0.9741 0.1300 0.0066 0.7212 0.8034 0.2033

E014 39 30436 1307 39 0.0412 0.5000 1.0142 0.1300 0.0069 0.6795 0.7652 0.2892

E015 43 28845 2895 38 0.0912 0.4691 1.6081 0.1000 0.0014 0.9259 0.9428 0.3923

Table 4: Performance summary of Run3.
Title

Actual Decision NDC Analysis Minimum NDC Analysis

#CorDet #Cor!Det #FA #Miss PFA PMiss NDC Dec. Tresh PFA PMiss NDC Dec. Thresh

E006 62 27575 4060 124 0.1283 0.6667 2.2693 0.1200 0.0000 0.9946 0.9950 0.9590

E007 15 29854 1856 96 0.0585 0.8649 1.5958 0.1000 0.0000 1.0000 1.0004 0.6703

E008 45 31232 457 87 0.0144 0.6591 0.8392 0.2000 0.0107 0.6894 0.8226 0.2226

E009 57 28711 3015 38 0.0950 0.4000 1.5867 0.1000 0.0126 0.6842 0.8413 0.2194

E010 36 26901 4833 51 0.1523 0.5862 2.4880 0.1000 0.0000 1.0000 1.0004 0.9058

E011 43 29913 1768 97 0.0558 0.6929 1.3897 0.1100 0.0027 0.9500 0.9831 0.4790

E012 131 28774 2816 100 0.0891 0.4329 1.5461 0.1000 0.0014 0.9394 0.9568 0.3546

E013 35 30172 1545 69 0.0487 0.6635 1.2718 0.1300 0.0012 0.9423 0.9577 0.2839

E014 31 30364 1379 47 0.0434 0.6026 1.1451 0.1200 0.0061 0.8333 0.9097 0.3549

E015 45 27966 3774 36 0.1189 0.4444 1.9293 0.1000 0.0087 0.8025 0.9114 0.3118

and “segments”. Only fields which are used for categorization and identification purpose, such as “iden-

tifier”, “mediatype” and “licenseurl” are ignored. In addition, we also consider the automatic speech

recognition (ASR) result donated by LIMSI [13]. Based on the extracted text information, we submitted

three runs based on the types of textual feature used: 1) metadata only, 2) ASR only and 3) concatenation

of the ASR and metadata texts.

For similarity measurement in text-based search, we employ Okpai [11] using the application interface

is provided by Lemur [12].

4.2 Concept-based Search

For concept-based search, we use the same method as our TRECVID 2010 system [5]. Orthogonal

Ontology-enriched Semantic Space (OS2) [14] is used to perform concept-to-query mapping. To form a

semantic space, a similarity matrix of a set of selected concepts is constructed by ontological reasoning

through WordNet [15]. Then, spectral decomposition is performed to transform the semantic space into a

space with orthogonal bases. Following the setting of our system in [5], we adopt the same set of concepts

(130 concepts in TRECVID 2010) to learn the space. By OS2, the top-3 nearest neighbor concepts of

a query are extracted. For each keyframe in a video, the detection scores of the selected concepts are

linearly fused and the final video score is given by the largest detection score among its keyframe pool.

The concept detection score of each keyframe used in this task is the result of baseline run in Section 2.



Table 5: The total number of detected items within the top 1, 10 and 100, as well as mean inverted rank

performance at top 100 (MIR@100) for all runs.

RunID Description Top1 Top10 Top100 MIR@100

Run 1 Metadata+ASR 96 (25%) 138 (35%) 184 (47%) 0.282

Run 2 Metadata 94 (24%) 139 (36%) 184 (47%) 0.284

Run 3 ASR 18 (4%) 36 (9%) 60 (15%) 0.065

Run 4 Concept-based 0 (0%) 3 (1%) 8 (2%) 0.002
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Figure 6: Mean inverted rank of all 29 KIS runs submitted to TRECVID-2011. Our submissions are

marked as red.

4.3 Result Analysis

Figure 6 shows the performance of our systems compared to other runs in this task. Table 5 shows the

number of detected items within the top 1, 10 and 100 ranked videos, as well as the mean inverted rank

performance at top 100 (MIR@100) for all submitted runs. In last year result, the textual information,

including ASR, complement each other well when combined into a single document because they increase

the chances of the query terms to be mapped to the terms in the positive document. However, this year,

the run combining the metadata and ASR performs worse than the run using metadata only. From our

observation, there are three reasons. First, some queries do not directly describe the video content, and

rather they are related in an abstract and loose manner. This is because the queries are always posed to

describe the visual appearance while the transcript focuses mainly on narrating the event as it unfolds,

and only rarely on the description of a scene or object. In other words, queries and video transcript may

highlight different aspect of the video. For example, query 512 is defined as “Find a video by Stone Farm

showing a ball of light spinning on a hard surface then slows and stops showing that it was actually a

spinning gold ring”. However, the target video is actually about art paintings, and the visual appearance

is simply a metaphor. Secondly, the transcript may use the synonyms of the keywords in the query, e.g.,

query 522 “Find a video of a group of people in a street yelling and holding a long banner”. Thirdly,

the ASR modality is noisy where the transcript contains lots of meaningless words such as ”heh” which

cannot be removed by stemming. This does have an adverse effect on the performance.

As showed in Figure 6, the performance of concept-based search is really poor. The reasons are two

folds. First, pre-defined concepts used in our system are not specific enough to describe the items that

are found in the queries. The problem is further aggravated by a small pool of the concept detectors

where there is no reasonable mapping for the items at all in the first place. Secondly, the performance

of the concept detectors from semantic indexing (SIN) is poor this year. Therefore, even with a correct

mapping, concept-based search faces a second challenge of identifying the correct videos due to the poor

detection performance.



5 Summary

For instance search, we experiment full and partial matching based on BoW. Overall, full-matching based

on the state-of-the-art near-duplicate search technique using BoW exhibits reasonably good performance.

The performance is further improved when face matching is incorporated. Incorporating spatial configu-

ration for full-matching also improves the robustness of matching by effectively removing false positives

produced by BoW. Partial matching, which models the importances of instance and background, brings

significant improvement to ten topics which involve objects as instance. This strategy, though simple in

our current setting, leads to better chance of retrieving clips with instance resides in a background context

different from query examples. Nevertheless, because this strategy only works for object instances of size

relatively smaller than background (but not location and person instances), the overall performance is

not as good as full matching.

For SIN, the poor performance for certain concept is attributed the the lack of training samples. This

year, we have experimented automatic Web image sampling algorithm for learning visual concept. Un-

fortunately, due to domain shift, combining training set from Web images may not improve the detection

result on TRECVID dataset. To avoid negative transfer, the training examples from a different domain

need to be filtered carefully. However, it is a valuable try to enrich the manually labeled dataset by using

social media. Currently, our work only considers training set collection from Web images, further work

includes sampling Web videos which is more consistent to the TRECVID dataset with respective to the

visual property.

For MED, Three runs with different fusion of modalities are submitted. In general, the run with

more modalities gives the best results compared to the other runs. However, severe difference is observed

between the actual and minimum NDCs. Threshold setting is important for the final outcomes. Cross

validation should be carried out to avoid biased setting of thresholds. Proper weight assignment in fusion

model could be crucial too. Attention should be paid to preventing improper weight setting in fusion

models. Cross validation could give a better picture in validating the models when the test labels are

unavailable. More advanced techniques for feature representations and classification should be studied

as well, in order to give a better performance in event detection.

For known-item search, text-based modality (metadata) is able to deliver good retrieval performance.

However, ASR performs poorly because of incoordination with visual appearance, synonyms and noise

problems. There is a small decrease in performance when combining all textual information into a single

document. In contrast, concept-based search is ineffective for known-item search. This is because 130

pre-defined concepts set is too small for the query set and the items in query are too specific to be mapped

into the concept set. Moreover, the performance of concept detector from semantic indexing (SIN) is far

from satisfactory to be able to support concept-based search.
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