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ABSTRACT

We participated in two tasks: semantic indexing (SIN) and
instance search (INS).

SIN runs

We submitted one light run, using multiple kernel learning
(MKL) to combine longest commmon subsequence kernels
with different similarity parameters. The features are SIFT bag
of features histograms and global color and texture features.

The performance for some concepts is in the expected range,
while the infAP score is extremely low for five of the concepts.
This issue is not observed when applying the same approach
to the 2011 data, and needs further investigation.

INS runs

We applied two approaches with quite complementary prop-
erties: One with preprocessing and indexing (based on a bag-
of-features (BoF) approach using Color-SIFT), and very fast
query times (at most one minute), and without any preprocess-
ing, but performing SIFT extraction and matching at query
time. We submitted the following four runs:

e JRSVUT]I: indexed Color-SIFT

o JRSVUT2: SIFT matching at query

o JRSVUTS3: top results of SIFT matching at query, and

indexed Color-SIFT (densely sampled) results

o JRSVUT4: top results of SIFT matching at query, and

indexed Color-SIFT (extracted from DoG points) results

The indexing method is very fast, but results are poor. The
SIFT matching at query time provides good results, at or close
to the best for some queries. Queries with small sample images
or no distinctive visual properties yield very low performance.
Fusion improves results for many queries, but removes a large
number of correct hits for a few queries.

I. SEMANTIC INDEXING

For the semantic indexing task we use a set of low-level
features extracted from key frames and train a classifier for
each concept using SVMs. We use multiple kernel learning

(MKL) to combine different parameterizations of a sequence-
based kernel. In the following, we briefly describe the features
and the kernels we used in the experiments. We then discuss
our results.

A. Features

1) MPEG-7: The following MPEG-7 [1] image features
were extracted globally:

Color Layout describes the spatial distribution of colors.
This feature is computed by clustering the image into 8x8
blocks and deriving the average value for each block. After
computation of DCT and encoding, a set of low frequency
DCT components is selected (6 for the Y, 3 for the Cb and
Cr plane).

Dominant Color consists of a small number of represen-
tative colors, the fraction of the image represented by each
color cluster and its variance. We use three dominant colors
extracted by mean shift color clustering [2].

Color Structure captures both, color content and information
about the spatial arrangement of the colors. Specifically, we
compute a 32-bin histogram that counts the number of times
a color is present in an 8x8 windowed neighborhood, as this
window progresses over the image rows and columns.

EdgeHistogram represents the spatial distribution of five
types of edges, namely four directional edges and one non-
directional edge. We use a global histogram generated directly
from the local edge histograms of 4 x 4 sub-images.

2) Bag-of-features (BoF): About 300 densely sampled im-
age regions from 3 different scales are selected per key frame.
A 384 dimensional Color-SIFT descriptor (4 x 4 subregions,
8 directions for orientation histograms, separately computed
from all 3 RGB color channels) is extracted for each of these
regions without computation of a dominant orientation. The
Color-SIFT approach was motivated by the work of [3] that
show an increased performance of the BoF-SIFT approach
when additional color information was added. Thus, we ex-
tracted the Color-SIFT descriptors in a similar way.



Higher-level features are then generated by the popular bag-
of-features (BoF) approach, where the Color-SIFT features
are mapped to codewords. These codewords are generated
in an offline step using the k-means algorithm on about
100,000 features from randomly selected Flickr images. We
use codebooks with 100 codewords which leads to two 100
dimensional BoF features for each key frame. Each entry in
one of these BoF features states the number of times a specific
codeword was detected in a key frame. The mapping between
Color-SIFT features from a key frame and their codewords is
identified by nearest neighbor search with Euclidean distance.
Beside global BoFs of the entire key frames, we generated
further versions where the key frames are split into 2x2, 1x3,
3x1, and 3x3 regions in horizontal and vertical direction.
A 100 dimensional BoF feature is then generated for each
partition and they are concatenated to 300, 400, and 900
dimensional features.

B. Multiple kernel learning with sequence-based kernels

Kernel methods, most notably Support Vector Machines
(SVMs), have been widely applied to classification problems,
also due to the availability of toolkits such as LibSVM [4].
SVM based classifiers are also commonly used for concept
classification based on visual features. Sequence-based ker-
nels, i.e., kernel functions that are able to determine the
similarity of sequences of feature vectors, are one of the
methods proposed for capturing the temporal dimension of
dynamic concepts. Experiments have shown (see e.g. [5]) that
concept classifiers using sequence-based kernels outperform
those using kernels matching only the individual feature vec-
tors of the samples of a segment independently.

The general approach of sequence-based kernels is to define
a kernel function on a sequence' of feature vectors from
two video segments (which may be regularly or irregularly
sampled). Elements in the sequence represent the feature
vectors of individual frames, and a base distance/similarity
function (which can be a kernel itself) is applied to them. Then
the kernel value for the two sequences is determined from the
base distance similarity value, e.g., by choosing some optimal
alignment, a weighted combination of different alignments etc.
The latter step includes many properties that discriminate the
different types of sequence-based kernels, such as thresholds
for the base distance/similarity, constraints on gaps in the
alignment, etc.

Existing work on sequence-based kernels either uses a sin-
gle type of feature (e.g., bag of visual words) or combines the
feature vectors of frames (e.g., by a weighted sum or product).
When using multiple features, the optimal alignments between
two sequences can vary in the different types of features. For
example, for kernels supporting gaps in the alignment, a strong
short-term lighting change might cause a gap in the alignment
of a color feature, while a continuous alignment may still be
possible for a texture based feature, thus increasing the value

'In this paper, the term sequence denotes a possibly non-contiguous
subsequence.

of the kernel function over the case where a gap is introduced
for all features together. Also, audio and visual features may be
extracted with different temporal sampling rates, so that they
cannot be easily combined into feature vectors for a certain
time point.

The optimal alignment determined by a sequence-based
kernel also depends on parameters such as a similarity thresh-
old for the values of the kernel function between individual
elements in the sequence, the tolerable gap, or whether to base
optimality on the length of the match or the mean similarity
of the matching elements. Depending on the choice of these
parameters, different alignments with associated values of the
kernel function are possible, and it is often not possible to
tell which of the alignments is “correct” or just “better” for
a certain task. As it is difficult to determine the weights for
the different alignments, they are often based on the same
optimality criteria as in kernels choosing a single alignment,
e.g. length of the matching sequence or they weighted equally.

Multiple kernel learning (MKL) has been proposed for
problems, where instead of choosing a kernel a priori, weights
for combining different kernels are learned together with
the model [6]. In this paper, we apply MKL for combining
different sequence-based kernels for video concept detection,
with different parameterizations and using different features,
as well as for combining sequence-based kernels with kernels
treating the samples independently.

Kernels based on the longest common subsequence (LCSS)
algorithm have been proposed in [5], [7]. The kernel described
in [5] allows plugging in any kernel for measuring the dis-
tance between the feature vectors of the samples of the two
sequences, and includes the similarities in the result of the
kernel. The kernel uses a recursive definition of LCSS and a
threshold 6., to decide if two feature vectors are considered
as matching.

LCOSS(X, Y, fyim) =

0, if [ X| =0V [Y]=0,
Kr(2x), yy))+
LCSS(Head(X), Head(Y')), if ry(zx},%y|) = Osim,
max(LCSS(Head(X),Y),
LCSS(X,Head(Y))) otherwise,

ey

where x is a specific kernel for feature f, 0, is a threshold
to consider two feature vectors as matching and Head(X) =
(.131, N ,J}‘X‘,l).

Multiple kernel learning (MKL) is an approach that consid-
ers a set of kernels potentially appropriate for the respective
problem, and estimates both the parameters of the individual
kernels as well as their relative weights during the training
phase. In particular, we discuss L1-norm MKL, which defines
the kernel to be learned as a linearly weighted sum of different
kernel functions. The authors of [8] discuss how this approach
can not only be applied to combining different types of
kernels, but also to combining a set of instances of kernels
with different parameters, where the parameters can include



features, parameters for feature extraction, kernel parameters,
etc. The parameter space can thus be potentially infinite.

Let X denote a set of feature sequences (X', ..., X)),
describing the same video segment with different features.

We can choose sets of parameters 6 = (f, 0y, ) from the
parameter space © and can define the combined kernel as
weighted sum of instances of the unified kernel with these
parameters as

R*(Xay) = Zﬂ@’i(Xfanyesim) 2)

0ce

where [y is the weight of a specific parameter set 6 (i.e.,
the subkernel weight of the respective kernel instance), with
Bo > O,Zﬁe =1,v0 € ©.

In order to apply sequence-based kernels, we have sampled
more key frames based on visual activity than provided in the
TRECVID master shot reference. For the MPEG-7 features
we use the kernel proposed in [9], and for the bags of visual
words we use the histogram intersection kernel [10]. For
concepts that have a very high number of positive samples,
the number of samples has been limited to the key frames of
1,000 shots (randomly sampled), and balanced with the same
number of randomly selected negative samples. For solving
the MKL problem we use the Shogun framework [11], using
the interleaved optimization method described in [12].

We parameterize 35 subkernels of the MKL problem. The
35 parameter sets contain the seven features described above
(MPEG-7 Color Layout and Edge Histogram, and Color-
SIFT BoF histograms over five spatial configurations), each
using the LCS kernel with 5 different values of the similarity
threshold 6., € {0.10,0.30,0.50,0.70,0.90}. On the training
data, we learn the models for each of the kernels as well as
the relative weights of the subkernels. We have not used the
global features Dominant Color and Color Structure, as we
found that the resulting similarity matrices have a significantly
higher fraction of negative eigenvalues than for other features
when using the longest common subsequence kernel, i.e., they
are not very discriminative in determining a good alignment.
The fractions of negative eigenvalues for different features are
shown in Figure 1.

C. Results

The performance of the SIN run are visualized in Figure 2.
The inferred average precision is rather low, and generally
below the median of all runs. The results of MKL training
include the weights of the different kernels with different
parameters and applied to different features. The fractions of
the weights are shown in Figure 3 (features) and Figure 4
(thresholds) respectively. For queries where the global features
are dominant, the performance is very low. However, the
inverse does not hold in all cases.

D. Conclusion

While the MKL approach has shown to outperform kernels
with specific parameters and a fixed combination of features
on the TRECVID SIN 2011 data set, the results for 2012 are
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Fig. 1. Fraction of negative eigenvalues for different features. BoF Color
Layout (CL): (1) CL 1x3, (2) CL 2x2, (3) CL 3x1, (4) CL 3x3, (5) CL 1x1;
BoF SIFT: (6) SIFT 1x3, (7) SIFT 2x2, (8) SIFT 3x1, (9) SIFT 3x3, (10)
SIFT 1x1; global: (11) Color Layout, (12) Color Structure, (13) Dominant
Color, and (14) Edge Histogram.

not as good as expected. While the results are comparable to
2011 for a some concepts, the performance is extremely low
for five of the concepts. This issue needs further investigation.

II. INSTANCE SEARCH

For instance search, we implemented two different subsys-
tems. One uses bag-of-features of Color-SIFT, extracts and
indexes the descriptors from the database in advance, and is
thus able to provide results with very short query times. The
other does not perform any preprocessing, but extracts and
matches SIFT descriptors extracted from DoG points at query
time.

A. Indexed Color-SIFT

BoF Features are generated in the same way as described for
SIN in Section I-A2 using densely sampled regions from three
different scales and Difference-of-Gaussian (DoG) interest
points [13], Color-SIFT features, and codebooks with 1000
clusters that are generated using the k-means algorithm. The
main difference between the dense sampled features and the
features from DoG points is the fact that the latter ones
are extracted in an orientation invariant way according to
the dominant orientation of the DoG points. On the other
hand, approximately the same number of Color-SIFT features
are extracted in both approaches as a high-contrast filter
limits the number of DoG points to a maximum of 300. In
an offline process, global BoFs are then generated for both
feature types from every clustered key frame. BoF matching
is then performed with k-NN search of the BoFs from each
query image against the BoFs from the clustered key frames.
Matching is performed with histogram intersection between a
query BoF Q and a clustered key frame BoF T as follows:

i<Ncp

d= ) max(Q(i),T (i) - T (i) 3)

=0
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Fig. 2. Results of the SIN light run (infAP).
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where N, is the size of the codebook and i is the current
codebook index. This histogram intersection approach is used
because the (cropped) query images contain only the query
object while additional background objects can be shown in
the clustered key frames.

B. SIFT matching at query time

SIFT [13] matching at query time is used as another subsys-
tem in the instance search task. No preprocessing is done, but
all feature extraction and matching is done at query time. For
each query versus database image match, DoG keypoints and
their corresponding SIFT descriptors are extracted as proposed
in [13]. Only one field of the input image is used in order to
avoid possible side effects of interlaced content. Descriptors

Weights of the subkernels of the MKL problem by different features.

are extracted from every frame of the video, as experiments
on development data showed that short occurrences might be
missed when using temporal subsampling, especially in case
of camera motion, where motion blur or encoding artifacts
might prevent some of the detections. The matching of the
descriptors has been implemented on GPU using NVIDIA
Cuda ? in order to speed up processing. The minimum number
of matching descriptors has been experimentally set to 8, and
a confidence score is determined from the number of matching
descriptors per frame and the number of frames which have
been found to be matching.

2http://www.nvidia.com/objectjcuda_home_new.html
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Fig. 4. Weights of the subkernels of the MKL problem by different values of the similarity threshold 6, of the LCSS kernel.

C. Fusion

Based on the observation that the SIFT matching approach
tends to produce typically few results, with correct ones at the
top of the list, the fusion method was designed as follows.
From the results returned from SIFT matching, a threshold is
estimated as the score with the steepest gradient at the lower
third of the range of score values list. The results from SIFT
matching with scores below this threshold are discarded, and
the rest of the result list with the results from indexed Color-
SIFT matching.

D. Results

We have submitted four runs:

e JRSVUT]1 uses only the indexed Color-SIFT descriptors
extracted from densely sampled points.

o JRSVUT?2 uses only SIFT matching at query time.

o JRSVUTS3 fuses the top results of SIFT matching at query
time and the indexed Color-SIFT results extracted from
densely sampled points.

o JRSVUTH4 fuses the top results of SIFT matching at query
time and the indexed Color-SIFT results extracted from
DoG points.

The results of the four runs are visualized in Figure 5. The
best results for queries 9053, 9057 and 9058 are at or close to
the best result. The fast approach with indexed Color-SIFT
turns out to be not discriminative enough for this type of
queries, performing worse than a very similar approach used
for INS in 2011. The SIFT matching at query time performs
quite well overall, providing few but mostly correct results for
many queries. Figure 6 shows the number of hits at rank 10,
30, 100 and 1000 for run JRSVUT2. There are three groups
of queries: (a) the number of hits increases with the number
of results (saturating below 100 in most cases), (b) some hits

at the top of the list but no more are found, and (c) no correct
hits at all.

For 9 of the queries, one or both of the fusion methods yield
slightly better average precision by adding more hits below
the top results. However, for five queries the fusion methods
drops too many correct results from the SIFT matching results,
thus decreasing the average precision. There are two different
cases of this issue: For some queries the threshold chosen
by the fusion method is too high, while for others the scores
of the results are not sufficiently discriminative, containing a
mixture of true and false positives around the threshold value.
The mean average precision over all the queries is slightly
lower for the two fused runs than that of run JRSVUT2.
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Fig. 6.  Number of hits found for run JRSVUT2 at rank 10, 30, 100 and

1000.

When we analyze the queries with low performance, we
see mainly two causes: A very low number of reliable interest
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points or not sufficiently discriminative feature points. The
first type of error is evident for some of the logos such as
the Mercedes star (9048) and the London underground logo
(9052), which have query samples with very low resolution.
This is also true for the Pepsi logo (9061), which has few
interest points even on samples with higher resolution. The
second type of errors affects the Stonehenge (9054) and
Hoover Dam (9066) queries, where most of the extracted
feature descriptors match with any rock/concrete object. For
the Empire State bulding (9064) and Sears Tower (9055) query
we can observe both issues, the samples have rather low
resolution, and the extracted descriptors match most similar
buildings. The resolution of the samples was too low to
obtain descriptors capturing the specific characteristics of this
building. The MacDonald’s logo (9067) is a special case, as
the samples contain differently illuminated versions of the
logo. The descriptors rather capture the lighted areas on dark
background aspect than the shape of the logo, for example, the
results contain many concert shots with different light effects
on the stage.

E. Conclusion

The method using indexed Color-SIFT is very fast (query
time well under 60 seconds for most of the queries), but the
results are poor. The SIFT matching at query time provides
good results. For some queries the results are at or close
to the best results. Queries with small sample images or
no distinctive visual properties yield very low performance.
Fusion improves results for many of the queries, but removes
a large number of correct hits for few of the queries.
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