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Abstract—We participated in 2012’s TRECVID instance search
task (INS) and wanted to measure how much we can positively
impact the performance of a state-of-the-art video retrieval
system based on local features and relying solely on content-based
retrieval methods. Our agenda consisted in the implementation of
some incremental additions to the system that included filtering
of local features, custom codebook generation and tailored
ranking metrics for the indexed videos. We got three versions
of our system tested which iteratively included algorithms that
consistently pushed further the performance of the system. Given
the terms under which the system had to be implemented –
ground-truth was not available–, we used artificially generated
datasets to get an idea of how much progress were we making
with each additional component. We showed that improvements
requiring small computational and human effort can already have
positive impacts on the system’s performance.

1) Runs:

Nr. Run ID. Description
i F X NO madmDfki 1 Custom codebook with refinement, tie-

breaking and relaxed masking.
ii F X NO madmDfki 2 General codebook with refinement, tie-

breaking and relaxed masking.
iii F X NO madmDfki 3 General codebook without refinement,

default scoring and tight masking.

2) Differences: Run (iii) constitutes the baseline with some
fine-tuned parameters. Run (ii) applies some improvements
such as match filtering of local descriptors, a re-ranking
scheme for videos and relaxation of the queries’ masks.
Run (i) only differs form run (ii) in that it uses a codebook
that was built on the same videos that have been indexed;
the other systems were using a generic codebook trained
on some independent data.

3) Contribution to performance: Just by fine-tuning the pa-
rameters of the baseline system, an increase in performance
was already noticeable. One important step towards im-
provement was achieved via the Hough refinement. Some
slight improvements were possible by using the custom
codebook and the relaxed masking.

4) Major findings: Simple additions to a basic video retrieval
system are already an important step towards the correct
ranking of videos. All achieved with relatively small effort
in terms of computational and human effort.

I. INTRODUCTION

Since the advent and posterior spread of custom video
consumption through platforms like YouTube™ or Flickr™,
the field of video retrieval has been drawing more and more

attention given the potential uses and great advantages that
such systems could offer in areas like advertising, user-
customized video catalogs, filtering, etc. Concretely, the ability
to recognize, track and retrieve different visual entities within
a corpus of videos has been the subject of numerous investiga-
tions [1]–[6]. To study today’s performance of such systems,
a scenario [7] can be considered where, given a collection of
videos and given a query image delimiting a sample of an
entity (i.e., a place, person or object), a sorting of the videos
can be retrieved such that they are more likely to contain
the entity represented in the query image the higher they are
ranked.

The first step to tackle this task deals with how to extract
information from the videos in a way that it gives a thorough
but concise representation. As we will see, several approaches
have been devised in order to index and represent videos
considering the aforementioned properties. By focusing on
the fact that a video is nothing but a sequence of images,
a reduction on the amount of data to process can be achieved
via frame sub-sampling. The most basic approach is to sub-
sample frames at regular intervals. This ensures an even
distribution of the contents in a video while keeping processing
overhead to a minimum. On the other hand, this approach
completely disregards the nature of the contents in the video
and yields the issue of setting an ad-hoc sampling step.
Another approach would be to rely on shot-boundary detection
algorithms [8]–[10] in order to segment the video in a more
content-oriented fashion and hence, gain more understanding
about its internal structure. This extra step allows a more
compressed representations of videos now that their contents
can be analyzed and sampling can be made on a per-shot basis.
Some other information could also be retrieved from the videos
in order to make more informed decisions on how to represent
them in a database, namely information about motion [11],
background segmentation or 3D geometry [11]–[13]. Although
this information can be extracted from the videos, it remains
unclear how can it be of any advantage in a scenario such as
the one described before.

As we shall see, and based on a framework where videos are
being represented as a collection of images, extracting infor-
mation that allows an indexing system to identify and, later on,
match different entities from those videos, can be addressed



with the fusion of various algorithms and techniques. Previous
work [14], [15] has determined that the use of local descriptors
is better suited for object recognition rather than their global
counterparts. This raises the question about the criterion under
which a region is to be considered of interest or not. Plenty of
effort [16], [17] has been put to settle this matter but almost as
much effort as with the question regarding the best descriptor
to use [18]–[20]. Lots of other additional information have
been successfully extracted from the same regions of interest
as shown in [21].

Some other important aspects regarding the indexing of
images for object retrieval, deals with the structures and
metrics to store the extracted features. Such items have been
usually addressed by taking what is known to work in the
domain of text-retrieval. A brief but comprehensive review of
such methods and their adaptation to the image domain can
be found in [1]. Finally, it only remains to investigate how to
compare the information obtained from a query to determine
whether a match is found in the indexed data or not. In [22],
[23] some of the commonly used distance measures and their
implications when matching similar features are reviewed.
Furthermore, additional criteria has been devised in order to
filter the amount of matches obtained after such a procedure
as shown in [18], [21].

We investigated the performance of some of this methods to
retrieve videos that contain specific entities in a consistent and
yet scalable way, adapting some of the standard procedures to
fit our requirements.

II. DATASETS

For TRECVID12’s instance search task, a set of
FLICKR™ videos were made available in collaboration with
the AXES project 1. These videos have been split into clips
of arbitrary length totaling over 70000 files. The videos are,
despite of the splitting, assumed to be independent from each
other. Within the dataset, a wide range of topics, qualities,
lengths, sources and formats can be found (Fig. 1). Although
all files have been encoded using the webm format, artifacts
such as interlacing or very coarse quantization (e.g. in the case
of videos originally encoded using MPEG) are still noticeable
and pose further challenges for the classification engine.

To evaluate the system, a collection of images was also
provided. Each image showed an object, person or place that
represented the entity to be retrieved from the videos. An
additional binary image mask indicates the shape and location
of each entity within the image as shown in Fig. 2. Finally,
all query images came with information about what kind of
entity were they containing (i.e., object, person or place) as
well as an ID of the particular entity they represent (in order to
identify which set of query images contained the same entity).

Given the nature of the task, the dataset was lacking any
kind of labeling or metadata that allow us to infer any addi-
tional information other than the one obtained via the image
content itself. We then created a small set of 30 images taken

1http://www.axes-project.eu/

Fig. 1. Random sample of videos from the dataset used for TRECVID12’s
instance search task. Various sources (amateur, TV), topics and qualities
comprise the video collection.

from the already available videos and manually generated the
corresponding masks, metadata and links to the videos from
which they were taken. This small dataset was intended to
serve as a very rough basis to quickly estimate the performance
of the system. Additionally, we randomly extracted complete
frames from all the videos in the original dataset (along with
the ID of the videos they were taken from) to further grasp
a sense of performance and to take more informed decisions
about the fine-tuning of some of the system’s parameters. For
this last dataset, random squared crops were taken out of the



Fig. 2. Sample of the query images. Each image depicted an instance of
either a person an object or a place (left). Furthermore each query came with
a mask (right) to indicate the position and shape of the entity.

frames to serve as “artificial entities” at querying time.

III. APPROACH

A. Baseline

The initial setup for our system follows the general pipeline
described before and illustrated on Fig. 3. After the basic
system was set up, we made several incremental additions
in order to improve performance and overcome known issues
with some of the methods and algorithms at use. The specifics
of each stage of the pipeline is outlined below:

1) Video Sampling: Each video clip gets sampled at regular
intervals of 1 second which in average resulted in 10 frames
per video. This keeps processing overhead to a minimum and
ensures that the video is sampled evenly. For videos being
shorter than 1 second the center frame was taken. Since the
video clips were mostly about 10s long, cuts between shots are
rather unlikely to occur and hence including a shot-boundary
detection step will mainly increase the processing cost.

2) Feature Extraction: All resulting frames are passed
through an interest point detector based on a mixture of corners
and blobs. On one hand, a multi-scale Harris-Laplace corner
detection [24] scanned each frame which was then passed on to
a Difference of Gaussians blob detector (DoG) [25]. Between
the two, an average of 700 interest points were collected per
frame. Blobs and corners complement each other and improve
the description of the characteristics of entities much better
than just by using one method alone. The detected interest
points are then described using SIFT [18]. In order to simplify
the indexing of the SIFT features, interest points get quantized
using a hierarchically generated codebook (using hierarchical
K-Means) of one million clusters so that the descriptors end
up grouped together depending on the cluster they fall into.

3) Representation and Indexing: The quantized features are
passed on to an inverted file structure implemented through
Lucene engine [26]. Within Lucene, a video v is represented
as a document with as many fields as interest points have been
detected. Each field contains the information about the location
of every interest point as well as its SIFT descriptor association
to the codebook bin. At the end, a video can be seen as one
list of occurring cluster numbers of all SIFT descriptors that
were extracted from the sampled frames of v.

Fig. 3. Basic pipeline of the proposed system. Frames get sampled from each
video and all sampled frames are scanned using a corner and blob detectors.
Interest points get quantized using a codebook and then get indexed by
Lucene’s engine in an inverted index. When a query comes, it gets processed
the same way a frame would so that similar interest points can be matched
against the indexed representations of the videos within Lucene and finally, a
ranking of the videos is constructed based on the amount of matches found
between the query and the videos.

4) Querying: When a query image comes in, it gets treated
as any other video frame, namely when referring to the detec-
tion, description and codebook-quantization of local features.
Having arrived at this point the mask is taken into account to
discard any interest point whose origin lays in the masked-out
area. We repeat this process for all queries belonging to the
same entity and accumulate them all to create just one query
per entity. These union of interest points are passed to Lucene
to create a document in a similar fashion as for the videos.
A query can now be compared against the videos by finding
matches between interest points and then, a ranking of the
videos can be generated based on how many corresponding
matches were found between the query and the indexed clips.



B. Improvements

Several incremental additions where made to the baseline
in order to improve performance and overcome known issues
with some of the aforementioned methods and algorithms. All
new phases requiring evaluations made use of the two self-
generated datasets described in Section II.

1) Parameter Optimization: At first we focused on the
fine-tuning of all the parameters related to the interest point
detectors. The variables causing most of the impact were, on
the side of the Harris corner detection algorithm, the threshold
to determine whether a corner was present or not as well as
the number of scales to run the detection on. For the DoG
blob detector, the threshold that defines a blob and the size of
the scale space were carefully followed and modified.

2) Refinement and Tie-Breaking: In order to get rid of
undesired and noisy matches between interest points, a Hough
refinement [27] was applied on the Lucene result such that
initial matches with inconsistent scale and orientation (up to
some range) were removed prior to ranking the final result.
Recall that the main criterion to sort the videos in the general
pipeline is the amount of matches between queries and indexed
documents. Refinement works by quantizing the shifts in posi-
tion ∆x,∆y and scale ∆σ as well as the shifts in orientation
∆θ between two matching interest points. After classifying
all ∆s, only the matches with the most frequently occurring
position and orientation shifts are kept and the other matches
are discarded. This filtering sometimes forces the system to
discard too many matches and yield list of videos with the
same ranking value. In this case, the original unfiltered ranking
based on the amount of raw matches is used as a second
instance, tie-breaking criterion.

3) Custom Codebook: Since it is not the aim of the experi-
ment to create a completely general video retrieval system [7],
we crafted an additional codebook with one million entries
for the quantization of descriptors trained on data extracted
from the same videos that were being indexed. This favors the
segmentation of the feature space in a way that corresponds
better with the distribution of the features taken from the
videos.

4) Relaxed Masking: We relaxed the way of filtering out
the interest points of a query given its mask as follows: we
chose to keep not only the interest points occurring within
the unmasked area exclusively but also kept the ones whose
area intersected the mask-free region of the query. This way,
interest points falling in the edge of the desired entity are safe
from being erroneously discarded because of small offsets with
respect to the mask.

IV. RESULTS

We conducted three main experiments combining some of
the elements mentioned before and compared them with the
run of the baseline system.

a) F X NO madmDfki 3: This run established the base-
line for the system. After fine-tuning the system’s parameters,
we ran this experiment using a generic codebook, relying
only on Lucene’s native scores for matching interest points of

Fig. 4. Performance of the system using the self-generated dataset. run1
is the basic system, run2 uses Hough refinement, tie-breaking and relaxed
masking; run3 quantizes interest points with a codebook trained on data
from the videos.

queries and videos and omit any kind of refinement, namely
relaxed masking and hough refinement.

b) F X NO madmDfki 2: Here we included the hough
refinement in the scoring phase of the system along with the
tie-breaking criterion based on the original Lucene scores.
We also made use of relaxed masking to include interest
points detected on the edges of the unmasked entity. The same
generic codebook was also used here.

c) F X NO madmDfki 1: The only difference with the
previous run is the use of a codebook based on the data
extracted from the videos.

All three experiments were also conducted on the artificial
randomly cropped dataset described in Section II and which
was based on frames extracted from TRECVID’s original
dataset. Figure 4 summarizes the contributions to performance
from the different improvements that were previously pro-
posed. The performance of the systems using TRECVID’s
queries for evaluation is shown in Fig. 5.

V. DISCUSSION

When comparing the two improved systems against the
baseline, we see how they outperform the simpler system
(i.e., the one without any of the proposed additions). Only
on topic 9056 (Pantheon) the baseline system achieved better
performance than their improved counterparts. We argue that
this phenomenon occurs because the entity under consideration
occupies the whole frame, i.e., had an empty mask, and its
geometry can be considered as self-similar (in concrete, the
tails in the roof are nothing but concentric rectangles). In
this case, the filtering step has a negative impact since it
removes matches that do not have a consistent orientation and
position displacement with respect to the predominant places
and orientations which, in addition to the way the videos pan
over the pantheon’s dome, make this naive filtering unsuitable
for this kind of topic. Despite of that single example, the
results in general confirm that the methods included in the
improved systems effectively addresses some of the issues of



Fig. 5. Results of the system using the queries provided for TRECVID.
Above: average precision of the different runs for all topics. The number in
the labels correspond to the mean average precision of that run. Middle: time
spent processing a topic, i.e., the time it took to match all queries belonging to
a single category. Below: number of retrieved true-positives. Each bar shows
how many videos were retrieved at different ranks (10, 30, 100, 1000) for the
best run based on its mAP. The number above each bar corresponds to the
ratio of totally retrieved videos w.r.t. the total amount of videos for that topic
that could have been retrieved.

local feature matching in almost all scenarios. Besides, by
looking at the relative improvements (in terms of mean average
precision mAP) obtained by using the artificially generated
datasets and comparing it to the ones obtained with the “real”
data (Fig. 6), we see a consistent correlation between the two
and therefore, confirming that the use of this self-crafted data
served as a reliable indicator for progress. It becomes also clear
how such a retrieval system can be significantly enhanced with
relatively small effort.

On the other hand, we argue that allowing interest points
that only describe a small portion of the visual information, i.e,
interest points at high scale, to be part of a video description
and given the poor quality of some videos, the ranking gets
severely affected since the information extracted from such
small regions is insufficient and misleading when compared
against some bigger and less noisy ones. This is why we
consider that some videos not belonging to any of the listed
topics, got highly ranked even for completely different topics.
Low resolution videos of nature and crowds often reoccurred
within the rankings. Note that in these two cases, the issue of
self-similarity may also be another source for misclassification.

It is also important to highlight the fact that, to our

Fig. 6. Comparison of relative performance using the artificial dataset and
the official queries provided by the NIST

impression, there were videos containing regions that were
similar to the searched objects without the regions actually
being an instance of the actual objects which brings up
the rather challenging issue of the semantic gap. Although
the queries already came, as pointed out earlier, with some
meta-data indicating whether it contained a person, a place
or an object, we opt for not using this information at all,
since it would require another component to be added to the
system which, if not correctly set, would produce more noise
than the information that could effectively be taken from it.
Besides, one of our initial aims was to test how well a simple
system could perform in such a task and embedding semantic
interpretation of images is, though quite fascinating, out of the
scope of this research.

VI. CONCLUSION

We investigated the impact of several methods and algo-
rithms on the performance of an instance search video retrieval
system applied to a challenging, big and diverse dataset. Our
major finding centers in that even by implementing a few
improvements over a state-of-the-art baseline system such
as custom interest point clustering, filtering of local feature
matches and tailored ranking metrics, a significant improve-
ment can be achieved in the way the videos are ranked when
searching for particular entities. By fine tuning the parameters
of the interest point detectors, codebook quantization, query
masking, match refinement and ranking scores, a relative
improvement of over 30% can be achieved.

We found that a great source of noise in the fused signals
for ranking, was caused by small interest points that were
taken as part of a video’s description. We argue that these
points provide very little discrimination about the region
they describe. This holds specially true as the quality of the
videos decreases or when describing non-rigid and self-similar
objects.

These issues could be avoided in principle by filtering out
small sized interest points but at the cost of a reduced ability
to search for small or texture-poor objects. This last idea



along with some other algorithms including semantic indexing,
geometry consistency or the use of other descriptors to further
improve the system, remain open for future research.
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