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Abstract

The VIREO group participated in four tasks: instance search, multimedia event recounting, multimedia
event detection, and semantic indexing. In this paper, we will present our approaches and discuss the
results submitted to TRECVID 2013 [1].
Instance Search (INS):

We submitted four runs in total, experimenting three search paradigms for particular objects retrieval:
(1) an elastic spatial consistency checking method; (2) a background context weighting strategy; and (3)
a re-ranking step based on objects mining. The first two approaches are similar as last year [2], while the
last one is our new exploration. Our submissions are all based on BoW model and tailored for the INS
task. In particular, we use Delaunay Triangulation (DT) to address the complex spatial transformations
for non-planar and non-rigid queries; the lack of information for small query objects is tackled with

context modeling; and object mining augments the results by exploring frequent instances in TV series.
- F_ X_NO_vireo_dt_2: BoW method + elastic spatial checking via DT. This run corresponds to our
paradigm (1), which models elastic spatial structures as deformable graphs.

- F_X_NO_vireo_dtc_1: vireo_dt + context modeling. This run corresponds to our paradigm (2) by
weighting the importance of different features in the query.

- F_ X_NO_vireo.dtm_4: The mining result is fused with the results by vireo_.dt via random walk

(paradigms (1) 4 (3)). Links established by our mining algorithm serves as the cues for re-ranking.

- F_X_NO_vireo_dtcm_3: The mining result is fused with vireo_dtc through random walk (paradigms
(2) 4+ (3)). This run uses the ranking list from vireo_dtc.

Multimedia Event Detection (MED):
In this year’s MED task, we submitted two runs to evaluate our visual and full systems respectively.

- FullSys_.PROGAII_PS_100Ex_1: Detectors trained by combining visual and audio features.

- VisualSys_.PROGAII_PS_100Ex_1: Visual features including SIFT, ColorSIFT, Motion relativity,

and STIP are used for event detection.



Multimedia Event Recounting (MER):

We submitted the recounting for the positive videos based on the evidences from the audio-visual
concepts. The visual evidences are built upon a graphical network and recounting is generated by ex-
ploiting the network’s ontology. In particular, we implemented object/scene, action and non-speech audio
detectors for evidence collection. Besides that, important keywords are mined from the ASR and OCR

output as the supplementary evidences.

Semantic Indexing (SIN):

This year, we focused on a new feature representation extracted using deep neural networks (DNN).
In the semantic indexing system, we adopted DNN feature, local and global features to train SVM models
for each concept. Then we evaluated the contributions of different features using several fusion strategies
for SIN [3]. In addition, we submitted two runs for “no annotation” using Web images crawled from Flickr
as training examples. These two runs are based on the model developed in [4]. In total, we submitted

five runs as summarized below:

- 13_M_A _vireo.Baseline+DNN_1: Fusing the detection scores of classifiers using two global features,

three local features and the new DNN feature.
- 13_.M_A vireo.DNN_2: Concept detectors are learned using DNN feature.
- 13_M_A _vireo.Baseline_3: Same with the baseline of our TRECVID 2012 systems, where global and

local features are used.

- 13_M_F _vireo.SP_4: Concept detectors are learned on the training set sampled from Web images

using Semantic Pooling (SP) method [4]. Both local and global visual features are used.
- 13_M_F _vireo.SP_KW_5: Training set is same with the run “13_M_F _vireo.SP_4”, but only local

features are employed.

1 Instance Search

This year, the dataset is composed with 243 episodes of TV series from “BBC EastEnders”, where we
extracted a total number of 640k keyframes (FPS = 1/4) from the 470k shots. SIFT features [5] and
BoW model is adopted for all runs with a 250k visual vocabulary. Hamming Embedding [6], Multiple
Assignments [7] are used to further enhance the model.

Similar to last year, we use DT and Context Modeling to address the problem of small query objects.
Since this year’s dataset is composed with TV series, which has strong dependency between shots and

episodes. We explore this relationship as a cue to further enhance our searching system.

1.1 Methods
1.1.1 Elastic spatial checking via Delaunay Triangulation (DT)

For the run “DT”, we used an elastic spatial topology checking technique based on Delaunay Triangulation
(DT) [8, 9]. Most of previous spatial checking methods rely on a strict linear transformation. While in
the query topics of INS, there exist lots of non-planar structures (e.g., 3D objects) and non-rigid objects
(e.g., persons), which do not follow the commonly used Planar Homography or Epipolar assumption. In
this case, we turned to elastically model the spatial topology with DT. The matched feature points on
each image are first triangulated to approximate the spatial proximity using a mesh graph. Then the
consistency of topological layouts is measured by the similarity of the graphs accordingly. This method

emphasizes the topological consistency rather than a strict linear transformation, and the graph encodes



the topology for matched points. This gives better tolerance to true responses in INS by accumulating
evidences from local regularities of the instance.

1.1.2 Background context modeling by “stare”

We built the run “DTC” on “DT” by adding a practical background context modeling method [8], which
simulates the “stare” behavior of human eyes. Instances often occupy a small area on the query image,
and the background context is often different. Generally, the ROI is important, and the information
outside the ROI may enrich the limited information and provide more clues for the instance. In our
method, background context is modeled into the query with the “stare” model by weight contributions
from the ROI and background.

1.1.3 Re-ranking based on Instance Mining

The rest of our runs “DTM” and “DTCM” were built upon “DT” and “DTC”, respectively. The only
difference is introduced by adding a re-ranking step based on a frequent objects mining method. Since this
years’ INS dataset is a T'V series, there are numerous frequent “instances” (locations, objects, characters)
appearing from time to time in different shots. We first design an object mining algorithm to mine frequent
occurring objects from the dataset offline, then the mined links are used to re-rank the results by “DT”
and “DTC”, using a standard random walk. This run is by far the first try to tackle the search problem
with the knowledge, specifically common visual instances, obtained through data mining.

Our re-ranking operates on the search results directly. Each node in the random walk process cor-
responds to a shot in the ranking list (up to n = 1000 shots). The transition matrix P = [p;jlnxn =
[P(j]%)]nxn encodes the transition probability between all pairs of shots. Let x(j) be the state probability
at time k. We follow the iteration method and solve the stationary probability X as k goes to infinity.
The initial state vector x(g) is given as the scores of the top-1000 shots produced by DTM/DTCM. The
rest of this section will focus on the construction of P, which is given by the following algorithm:

1. Threads Extraction. Our mining algorithm adopts a bottom-up approach, building up visual
instances from the elementary components: Thread of Features (ToF). A ToF corresponds to a set of
consistent local patches across multiple shots. It only keeps reliable links among images sharing consistent
local patches, and discards most of the unstable patches. To extract ToF's, we first organize the dataset as
inverted file, and then extract threads from the posting list of each visual word. To speed up processing,
a small binary code (Hamming signature) is attached to each local feature, and only features with similar
binary codes are compared.

2. ToF Hashing. ToFs that links similar set of shots are extracted using Min-Hash. Multiple hash
tables are used and the collisions in each table correspond to correlated ToF clusters. Note the number
of ToF's found in each collision indicates the size of the instance. Larger instances (e.g., locations) lead to
larger collisions, and vice versa. In our experiment, we discard both very small collisions (mostly noises)
and very large collisions (mostly near duplicates). Only median size collisions are collected for further
processing.

3. Seed Generation. For each cluster of ToF's, all the linked images are considered as potential holders
of an instance. To further reduce noises, only the candidate images appearing in 80% ToF's are kept. We
define a seed as a pair of images sharing the same pattern, and extract all image pairs in the cluster as
the seeds.

As a result, our mining algorithm ends up with a pool of seeds S. Each entry p;; in P is given as the

number of seeds for shot (7, j) in S. Finally, each row of P is l;-normalized to fit as a Markov matrix,
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Figure 1: Left: Mean Average Precision of all 65 INS automatic runs in TRECVID 2013. Right: Internal
runs for INS 2013. Naming convention: wge (weak geometric consistency), dt (delaunay triangulation),
00 (retrieve with ROI only), ¢ (context modeling with “stare”), v (video level fusion), m (re-ranking
based on mining results).

whose largest eigenvalue equals to 1. Standard random walk iteration is applied to get the stationary
probability, which is then converted to the final ranking list.

1.2 INS Result Analysis

Figure 1 (left) shows the performance of all submission runs for this year’s INS task, where our runs are
marked with red color. Despite our low sampling rate (640k/470k keyframes per shot), our system is still
comparable to most submissions. The best run was given by DT plus Context Modeling.

The whole picture is detailed in Figure 1 (right), where additional results are given by combining
different techniques. A raw BoW method (bow) only has a mAP of 0.11, while our elastic topology
checking (dt) brings the performance to 0.16. DT is beneficial for ranking properly by modeling vari-
ous deformations introduced by different viewpoints for non-planar/non-rigid objects/scenes (e.g., 9097:
checkerboard spheres, 9070: small red obelisk, 9086: these scales, 9089: this pendant). It is worth noting
that: though some of the queries themselves (e.g., 9089: this pendant, 9079: this CD stand) may not be
non-planar or non-rigid, regions outside the ROI is often non-planar or non-rigid (e.g., the women wear-
ing the pendant; the moving crowds in front of the CD stand). In contrast, WGC does not improve the
performance this year, since it works best for near-duplicates with large number of clean and consistent
orientations/scales. Most of this year’s queries are small in size, and large portion of background con-
fuses the dominant transformation. Another reason is that the estimation of orientation/scale is sensitive
against viewpoint change and non-rigid motion.

As observed in Figure 1 (right), background context did contain useful information, since the method
with object alone (runs with “00”) always gives worse result. Searching with context modeling (runs
with “c”) weights features properly and always gave better mAP than runs using full image. The “stare”
seems to be a reasonable model for INS. Video level fusion (runs with “v”: see [2] for detail) does not
work as expected. This might due to our sparse keyframe sampling for each shot.

Unfortunately, re-ranking with mining (runs with “m”) only improves a few topics, and does not
improve the overall performance. As observed, most of the results are near duplicate images, which
introduce little new cue to a mature image search system. These links does not affect the ranking list
too much, since most of the near duplicates have already been retrieved. Figure 2 shows some less-
near-duplicate clusters mined from the dataset. Although our system is capable of extracting numerous
frequent instances (e.g., paintings on the wall, clothes, logos, boards) from the TV archive, only a small
portion is related with the 25 topics under evaluation, and is potentially useful to instance search system.
Other instances mined from the dataset might show negative impact, since the re-ranking is based on links
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Figure 2: Examples of the mining result.

other than the querying object. Our mining system only improves quite a few topics, which are directly
linked by the instance itself or by their highly correlated background context. Overall, the improvement
is unstable and more studies (e.g., considering the relationship of mined instances and the query) are
needed to avoid negative linking for re-ranking. Although our first try does not work as expected, it did

show some merits and could improve the searching system when used properly.

2 Multimedia Event Detection

2.1 Visual System (Visual PROGAIl_PS_100Ex_1)

In this run, we experimented our approaches with only visual features including static features (SIFT,
ColorSIFT) extracted from keyframes, motion and spatio-temporal features extracted along frame se-
quences.

For static features, one keyframe is sampled in every 5 seconds along each video sequence. Features are
then extracted in sampled frames. Local interest points are detected using DoG (Difference of Gaussian)
[5] and Hessian Affine [10] detectors. 128-dimension SIFT descriptors [5] are employed to describe the
local image patches. ColorSIFT [11] is further used to employ the missing color information in SIFT. For
SIFT and ColorSIFT, Bag-of-Words approach is employed in feature representation. The feature spaces
are first quantized into 2000 and 4000 words respectively. Soft weighting is used for word assignment and
each descriptor is mapped to the 3 nearest words.

For motion features, we employ motion relativity proposed in our previous work [12]. A video is first
segmented into a number of 5-second video clips. Keypoints are detected and tracked along the video
sequence. A histogram is then computed by accumulating the relative motion between each pair of visual
words in a given video volume. This results in a sequence of histograms to capture the relative motion
information between different objects/scenes in the video. EMD (Earth Mover’s Distance) is used to
measure the similarity between two videos and integrated into SVM kernel [12] for classification.

Compared with the original approach in [12], to avoid the false alarms in keypoint tracking by KLT
algorithm, we remove the trajectories between two frames which are more than 2 times longer than
the previous and next ones. Given a trajectory t = (q1,¢2, - ,qn) where ¢; is the location of the
keypoint at i-th frame, the motion between ¢; and ¢;41 is ignored if dist(q;, q;+1) > 2 * dist(¢;—1, ¢;) and



dist(qi, git1) > 2 * dist(qi+1, ¢i+2) where dist(.) calculates the motion between two neighboring frames.
In our experiments on development set, this improves the MAP by about 6%.

For spatio-temporal features, STIP are extracted. Laptev’s algorithm is adopted. It captures a space-
time volume in which video pixel values have large variations in both space and time. Histogram of
Oriented Gradients (HOG; 72 dimensions) and Histogram of Optical Flow (HOF; 90 dimensions) are
computed as the descriptors.

For classifier learning, LIBSVM [13] is employed. We consider two kinds of approaches: x?> — RBF
kernel and EMD (Earth Mover’s Distance) based temporal matching [14]. x2—RBF kernel is employed for
SIFT, ColorSIFT, and STIP, while temporal matching for motion relativity. The results of all classifiers
are combined with linearly-weighted fusion.

2.2 Full System (Visual PROGAII_PS_100Ex_1)

In the full system, audio features are fused with the visual system for event detection. MFCC coefficients
are extracted in every audio frame of 50ms, where each frame overlaps with neighboring ones by 25ms.
Bag-of-Words representation is used for MFCC feature and a vocabulary of 8000 words is constructed.

We found that MFCC is insensitive to a certain audio spectrum. This has inspired us to investigate
the other audio features. Eventually, a combination of audio features is adopted, including line spectral
frequency (LSF), octave band signal intensity (OBSI), linear predictor coefficients (LPC), MFCC and
their first and second derivatives.

In our system, linear fusion is used to combine audio and visual features, where the weights are

estimated on the development set.
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Figure 3: Performance of our full system (red bars) in MED task among all submitted full systems.
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Figure 4: Performance of our visual system (red bars) in MED task among all submitted visual systems.



2.3 Evaluation Results

Figure 3 and Figure 4 present the evaluation results of our full system and visual system in MED task
respectively. Our performance is close to the median of all submitted systems, and the visual features
contribute the most to the full system. Compared to the visual system, the MAP (Mean Average
Precision) is improved by around 4% after combining audio features. For the detection of some events
such as Birthday_party and Marriage_Proposal, OCR and ASR are good hints, and should be investigated
and incorporated into our system. Furthermore, the fusion of different features should be carefully studied

to effectively combine different modalities for event detection.

3 Multimedia Event Recounting

The objective of this task is for every clip that the MED system deems to be positive for an event,
textual descriptions have to be generated to recount the important evidence. Ideally, the recounted
evidence should be the evidence used to detect the event in the MED system. We consider the problem
by constructing an event network to represent each of the event. There are two-fold reason behind. First
of all, it gives an ontology representation of the relevant concepts and the pertaining relationships in
an event. More importantly, it allows us to exploit the relationships for creating more comprehensive
sentence structure. In the following we explain how we generate the event network in the evidence

collection and describe the process of how the recounting sentences are constructed.

3.1 Evidence Collection

The evidence of an event is mainly composed of those visual concepts and non-speech audio concepts.
Besides of that, transcripts from both automatic speech recognition (ASR) and optical character recog-
nition (OCR) are also important. We first focus on the evidence collection based on the visual and audio

concepts, later we elaborate the details of ASR and OCR implementations.

3.1.1 Visual Concepts from ConceptNet

Each event kit explicitly defines an event. Given these event kits, we extract the important keyphrases
from the event kits using text mining technique. Based on the keyphrases, we infer the relevant concepts
of an event from the ConceptNet [15]. ConceptNet is a semantic network generated automatically from
the 700,000 sentences. The knowledge of ConceptNet encompasses the spatial, physical, social, temporal
and psychological aspects of everyday life. It is encoded with common sense knowledge by linking two
concepts with their appropriate relationship. It focuses on diverse relational ontology, and its emphasis
on conceptual relationship allows us to make practical and context-oriented concept inference over an
event. The inference is similar to that of principal component analysis (PCA). More relevant concepts
pertaining to the event are acquired.

Based on all these obtained concepts, a subgraph, namely event network, is extracted from the huge
structure of the ConceptNet to represent an event. To build a single graph without any isolated vertex,
we run the shortest path algorithm to link those isolated vertices or subgraphs with intermediate vertices.
Normally the concepts are not far apart as the concepts are having related meaning to an event. Post-
processing is carried out to get rid of the abstract concepts and the subgraph is then packed to fewer
concepts by removing most of the noisy concepts with less connections at the boundary. After that, the

remaining concepts are categorized into a few categories, namely none, object, scene, event and action.



The process is done automatically based on the reasoning using the relationships of the edges in the
event network and the word type from the WordNet. Since the event network is of multiple directed
edges, we consider the category of a concept in a hierarchy nature, in which object and action are at the
lowest and highest ranks respectively. For example, the concept kitchen is first assigned to the category
of object when the object relationship, such as UsedFor, is observed. However, it is promoted to scene
when the corresponding relationship, such as AtLocation, is observed. There are 26 types of relationships
in the ConceptNet and we use most of them for this purpose. The concept will never be demoted. Thus
there are very few action concepts. WordNet is used for checking the word type of a concept in assistance
with the relationship for category classification. This process is crucial as it helps in building the sentence
structure in the latter part.

For the object and scene concepts, we crawl Flickr images for training the concept detectors, while
for action concepts, we use the training data, annotated with action labels for every 5-second interval,
for the training of the concept detectors. SIFT is used in the object and scene detectors while motion
relativity is employed [16] in the action detectors. There 122 object and scene concepts, and 8 action
concepts determined in our system. All of the detectors are learned using chi-square SVMs. During
testing, keyframes are extracted from test videos and the object and scene detectors are used to detect
the existence of the objects and scenes in the keyframes. For action detection, we split the test videos

into 5-second intervals and examine the occurrence of the particular action using action detectors.

3.1.2 Non-speech Audio Concepts

In additional to visual concepts, 14 non-speech audio concepts, including cheering, clapping, hammering,
etc. are determined manually in our system. The audio concepts are important in certain events. For
instance, it is easier to detect the hammering sound than detecting the hammer itself in the event of
working on a metal crafts project. We found that MFCC is not sensible to certain audio spectrum, and
thus we train the audio detectors using a combination of audio features, namely line spectral frequency
(LSF), octave band signal intensity (OBSI), linear predictor coefficients (LPC), MFCC and their first
and second derivatives. The training data, annotated similar to that of the action concepts, is used for
training the audio concepts. Identical training and test methods are adopted for the audio detectors,
similar to that of the action detectors.

3.1.3 Automatic Speech Recognition and Optical Character Recognition

Apart from the audio-visual concepts, important keywords are extracted from the speeches and optical
characters as the evidence for an event. In this work, we use the Sphinx-III [17] speech recognition engine
to transcribe the videos. Instead of outputting the transcripts, we mine the transcripts for important
keywords that are related to an event. It could be difficult to detect the small objects in the event of
“making a sandwich” and “working on a sewing project”, but it would be easy if the keywords, such as
sandwich and fabric, are detected in the speeches. The keywords being mined are the concepts determined
in the event networks. Along the lines of that ASR analysis, the texts appear in the video keyframes are
also a useful information for event recounting, we use the tesseract-ocr [18] engine to recognize the texts.
The same method is applied for mining the important keywords similar to that of ASR.

3.2 Sentence Generation

Since the action and audio concepts are detected every five seconds, we recount the test videos in this

basis. Although the detections of object and scene are performed every second on the keyframes, we



Table 1: Performance summary.
MER-FullSys

Accuracy | ObsTextScore | PRRT

Mean 59.58% 1.60 80.12%

VIREO | 36.91% 2.06 22.93%

consider the appearance of the object and scenes in a five-second basis too. In other words, we recount
the evidence of all the concepts every five seconds. We form the sentence using a parser tree by setting the
detected concepts to the appropriate part of speech (POS) tags. Thus different combination of sentences
can be formed using the POS tags. The generation of a sentence is action centric. It means the sentence
is built upon an action. If an action is detected, we first change the action (verb) to gerund. Next,
determine whether an object concept is associated with the action from the event network. For example,
climbing mountain. Afterward, check if there is any scene concept in the event network. If there is, set
the scene concept to proper POS tag, so that it will appear at the end of the verb phrase. If there is a
gerund, we set the subject to “Someone is”, else the subject is set to “There is” or “The background is”
accordingly. Eventually, the sentence is formed using the concepts available according to the POS tags.
For example, with the relationship of AtLocation in the edge between the concepts of plate and kitchen,
sentence “There is a plate in the kitchen.” is generated if both the concepts are detected. The sentence
generated is still far from perfect. For example, in this sentence “Someone is climbing in the rock wall.”,
the preposition is inappropriate and should be void in this case.

Although the sentence generation is action centric and not all of the event networks have an action
concept, it does not affect the recounting performance. In fact, the action concepts in ConceptNet are
basic actions, i.e. run, jump, climb etc. These basic actions are easier to be detected by motion classifiers.
Those complex actions, such as making sandwiches, which composed of multiple different basic actions
are difficult to be defined and detected.

For non-speech audio, we manually create a short sentence, like “Engine sound is heard.”, “Someone
is laughing.”, etc. to represent each of the audio concept detected. For the important keywords mined in
the ASR and OCR, snippets of the corresponding keywords in speech and text are extracted and shown
as the evidence.

The evidence is presented according to the detection scores. The audio-visual evidence is presented
before the ASR and OCR evidence as the performance of the audio-visual evidence is observed to perform
better in our case. The concept detection scores are normalized to cumulative distribution function values
for fair comparison. If there are multiple recountings with the same descriptions, the latter ones will be
skipped if there are more than 10 unique evidences to be presented. This will preserve the variety of

evidence to be presented at the top ranked list, especially in the lengthy clips.

3.3 MER Results and Analysis

For a test clip deemed as a positive video by the MED system, evidence collection is carried out. The
recounting output consisting of the evidence describing the object, scene, action and audio concepts of the
particular event. Note, this constraint causes the false positive videos to have no observation in general,
in turn jeopardizes the accuracy in the performance evaluation, as depicted in Table 1.

Tables 2 and 3 show the numbers of video detected to contain such a concept corresponding to an
events for the top 200 test videos in each event. From the tables, it is noticed that there are more right

action concepts happen in the right events. There are also fewer false positive concepts happen in other



Table 2: Performance of the action detectors. The values show the numbers of video detected to contain
such a particular concept corresponding to an event. The highlighted cells represent the right concepts
in the right events.

EO006 | EO0O7 | EOO8 [ E0O09 | EO10 | EO11 | E012 | E013 | E014 | E015 | E021 | E022 | E023 | E024 | E025 | E026 | E027 | E028 | E029 | E030
bike trick 0 3 0 1 3 4 2 4 3 4 201 3 2 6 7 9 3 7 5 2
climb 1 4 6 11 6 6 5 11 19 18 10 4 16 9 5 7 135 1 11 12
dance 0 3 161 2 2 0 7 1 2 1 2 1 2 2 1 0 1 2 7 1
jump 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
march 5 6 4 5 2 3 126 4 6 1 5 5 9 5 11 5 4 10 2 6
run 1 5 2 8 3 1 6 7 8 2 7 4 10 10 3 4 4 6 141 4
somersault 0 0 0 0 0 0 0 14 0 0 0 0 1 0 0 1 0 1 0 0
swim 0 0 1 3 3 0 1 4 6 2 3 3 2 8 4 4 2 0 20 1

Table 3: Performance of the audio detectors. The values show the numbers of video detected to contain
such a particular concept corresponding to an event. The highlighted cells represent the right concepts
in the right events.

EO006 | EO07 | EO0O8 | EO09 | E010 | EO11 | E012 | E013 | E014 | E015 | E021 | E022 | E023 | E024 | E025 | E026 | E027 | E028 | E029 | E030
band 5 15 24 16 6 7 30 6 5 7 19 8 4 12 10 10 11 19 14 18
birthday song 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cheering 24 12 76 9 16 9 52 21 13 7 23 21 39 10 23 10 24 46 75 22
clapping 17 5 36 7 9 6 38 9 7 2 13 18 26 4 15 12 5 57 43 17
dog barking 36 16 53 23 27 17 43 22 28 15 27 44 51 19 19 16 17 58 51 35
engine sound 0 2 10 10 3 1 5 1 2 2 3 3 3 4 1 3 2 4 4 3
hammering 11 31 22 19 47 37 25 19 46 26 34 51 19 18 9 28 32 21 24 66
laughing 16 15 30 12 16 6 7 8 11 8 17 23 14 14 10 9 8 28 25 20
power tool 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
sewing machine 0 0 2 0 0 0 1 0 0 1 0 4 2 0 0 1 0 1 0 2
talking via mic 6 10 6 7 13 15 5 1 44 16 8 16 6 14 7 8 10 38 3 20
tool sound 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




Table 4: Performance of the object detectors. The values show the numbers of video detected to contain
such a particular concept corresponding to an event. The highlighted cells represent the right concepts

in the right events.

EO006 | EO0O7 | EO0O8 [ E009 | E010 | EO11 | E012 | E013 | E014 | E015 | E021 | E022 | E023 | E024 | E025 | E026 | E027 | E028 | E029 | E030
automobile 0 15 3 8 5 8 5 8 11 3 13 6 6 8 7 3 0 2 6 7
bicycle 0 9 4 0 0 3 2 1 6 3 19 3 0 0 0 0 0 1 3 1
cake 33 58 29 37 45 81 41 20 81 73 37 44 38 30 26 33 62 16 26 74
car 0 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 2
crowd 18 27 114 8 16 11 87 25 19 20 31 7 49 37 39 11 47 47 32 21
dancer 6 16 50 5 5 4 45 4 8 14 14 2 22 13 17 4 21 5 9 9
dog 0 1 0 1 4 0 0 2 0 0 3 0 2 0 1 0 2 1 2 0
fabric 1 3 1 0 3 2 3 4 6 8 0 4 2 7 2 7 12 0 3 7
kitchen 9 20 21 3 11 43 23 23 25 22 9 44 8 19 17 46 10 24 9 18
mountain 7 36 26 52 46 46 20 64 56 36 90 34 35 60 26 24 75 20 49 52
parade 14 35 128 14 15 18 101 11 11 14 40 8 67 49 31 7 29 18 41 14
park 0 4 12 14 5 3 10 25 2 1 36 2 11 17 4 2 11 2 18 6

events for the action detectors. The action detectors basically perform better compared to the audio
counterparts. Besides the discriminative power of the descriptors, it could be mainly contributed by
the high dimensionality, namely 100,000, of visual words used in the action detectors compared to that,
namely 4,000, of the audio detectors.

Due to the length limit, only partial analysis of object/scene detectors corresponding to events is
depicted in Table 4. It can be seen that the object/scene detectors perform badly in overall. There are a
few factors behind. It is observed that the main problem in detecting the object/scene is caused by the
difference of scale and the position/location of the object. The classifiers for audio concepts do not suffer
from this spatial problem. While the classifiers of the motion concepts are trained using the videos from
the training data set, the scales of the objects corresponding to a motion in the training and test videos
are of the similar ratios. Most of the successful cases of the object/scene detection happen in the scene
concepts, e.g. "crowd”, "parade”, ”kitchen” etc. in which the visual appearance is of the same pattern
over the whole image. Normally the objects we try to detect are not occupying the whole image. As
the SIFT features are quantized into visual words and pooled into a vector to represent an image, the
discriminative power for detecting an object is diluted by the background features, and this is the major
drawback of our system.

As mentioned earlier, the sentences for recounting are generated automatically using our parser tree
mechanism based on the concepts detected in the event network. The relationship of the edges are used in
the recounting process, a more complicated sentence can be generated as the result. A good performance
is observed in the score obtained in the evaluation of precision of the observation text, namely 2.06
compared to the mean score 1.60, as shown in Table 1. Although it is difficult to conclude the recounting
mechanism performs well, in some way it shows the effectiveness of the automatic recounting mechanism.

In the other evaluation of percent recounting review time (PRRT), the score of our result (22.93%) is
much lower than the mean (80.12%). It is due to the limited number of evidence to be evaluated as only
the related concepts in an event network are recounted, in additional to the non-speech audio, ASR and
OCR evidence. Furthermore, the false positive videos without any observation speed up the evaluation
process too. However, low value of PRRT, on the other hand, could also mean that our system is precise

in recounting the most relevant concepts for an event, and thus save up the time of evaluation.



4 Semantic Indexing

In previous years, we have provided valuable tries to improve the semantic concept detection in video
domain by using free-sampled image or video data. However, due to the large domain gap, the Web data
seems less effective when sufficient training instances are available in TRECVID. In addition, according
to our recent findings [19, 20], the performance is affected by other two factors: 1) concept category and
2)degree of data distribution mismatch. This year, there are no new training instances, but the evaluated
concepts are different from previous year. Thus, to further confirm our observations, we reuse the models
learned with Web images in our TRECVID 2012 system. Furthermore, our focus will be on evaluating
new visual representations. In specific, we try to employ the visual features extracted from deep neural

networks (DNN), which has been successfully applied in image classification.

4.1 Visual Features

Same with our TRECVID 2012 system [2], we considered Bag-of-visual-words (BoW) representation
derived from local keypoint features, and two global features grid-based color moments (CM) and grid-
based wavelet texture (WT). Specifically, SIFT feature are computed for each local keypoint which is
detected using DoG and Hessian Affine. In addition, spatial information is considered by using 2 x 2 and
3 x 1 partitions.

Recently, deep neural networks (DNN) has demonstrated its effectiveness in learning image repre-
sentation and classifier simultaneously with a large number of training instances. The learnt image
representation from DNN is close to semantics, and ever exceeds current estimate of Inferior Temporal
(IT) representation performance in macaque’s visual cortex [21]. Inspired by the success of DNN, we use
it to generate visual representation as another visual feature in our system, which is a 1024-dimensional
feature vector. Similar to [22], the used DNN architecture is denoted as Image — C64 — P — N — C128 —
P—-—N-C192 - C192 — C128 — P — F4096 — F'1024 — F'1000, which contains five convolutional layers
(denoted by C following the number of filters) while the last three are fully-connected layers (denoted by
F following the number of neurons); the max-pooling layers (denoted by P) follow the first, second and
fifth convolutional layers; local contrast normalization layers (denoted by N) follow the first and second
max-pooling layers. The weights of DNN are learnt on ILSVRC-2010, which is a subset of ImageNet
dataset with 1.26 million training images from 1,000 categories. For each keyframe, its representation is
the neuronal responses of the layer F'1024 by input the keyframe into the learnt DNN.

As a result, we extract six kinds of visual features which are further used for learning SVM models
respectively. Given a testing keyframe, the SVM classifiers are applied on the corresponding feature

representation and the raw outputs of SVM are converted to posterior probabilities.

4.2 Feature Fusion

The extracted visual features represent the instances from different view points, such as color, textual
and semantics. The complementary nature of multiple features is likely to improve the performance
even further. Thus we evaluate the usefulness of features using late fusion to combine the posterior
probabilities of classifiers learnt with different features. Except the classifiers using DNN feature, other
models are learnt in our TRECVID 2012 systems. The evaluated fusion strategies are summarized as

follows:

- Concept detectors are learned on TRECVID training set.

* Baseline: Late fusion using the two global features, three local features.



* DNN': Using DNN feature only.
* Baseline+DNN': Late fusion using all six features.

- Classifiers are learned on Web images sampled using Semantic Pooling approach [4].

* SP: Both local and global visual features are used.
* SP_KW: Only local features are employed.

4.3 SIN Results and Analysis

Figure 5 shows the mean average precision (MAP) performance of all 98 full version submitted system
runs where our five runs are marked in red. Similar to the observations in our TRECVID 2012 system,
there is a larger performance gap between the classifiers learnt using TRECVID training data and free-
sampled Web images. We can see that SP performs similar to SP_KW. This may indicate that the gap
is less likely to be narrowed by using the features which may be not able to model the common visual
aspects of instances from two domains. For the new visual representation, we observe that Baseline+DNN
with M AP = 0.154 improves the Baseline with M AP = 0.127 by 21.2%. This verifies the effectiveness
of DNN feature in semantic-level similarity measurement. This can also be observed in Figure 6, which
further details the average precision (AP) of our five submissions. For some concepts such as “Hand”
and “Chair”, the DNN even performs best. In addition, while overall result of Baseline, which adopts
multiple visual features, is similar to that of DNN, the DNN is much more efficient as the dimension of
feature vector is much less than that of Baseline. Both the computational costs in training and testing
will be saved significantly.

MAP
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0.3 Baseline+DNN

M
0.25 Baseline

0.2 \ % DNN
0.15 ﬁ;

0.1

Sp SP_ KW
0.05
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98 System Runs

Figure 5: Mean average precision of all 98 SIN full version runs submitted to TRECVID2013. Our
submissions are marked in red.

5 Summary

For INS, we experimented three searching paradigms for object retrieval: elastic spatial topology checking
(DT), background context modeling (stare), and object mining based re-ranking. We gain substantial
performance improvement by using the first two techniques, especially DT. Our elastic topology matching
has again been proven a suitable model for instance search, since it encodes the spatial topology rather
than hard locations, and bypass the geometry estimation using noisy orientation/scale of local features.

Context modeling gives a good tradeoff in finding near duplicates of the query and novel results with
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Figure 6: Per-concept performance of our submitted systems.

diverse backgrounds. Though our attempt of object mining hurts the overall performance, we did find
some links involving the query objects. How to leverage instance mining for instance searching remains
our future work.

For MED, we mainly focused on visual features especially motion information which is good at de-
scribing motion-intensive events. The low-level audio features can help detect some events and slightly
improve the performance. Semantic information such as ASR and OCR can be employed in future work.
Furthermore, the fusion methods of different modalities should be carefully studied.

For MER, basically our model is suffering from the accuracy of detection. The problem is in fact in
lines with the lack of ability to locate the position of objects detected. Methods for object detection and
localization play an inevitable role in multimedia recounting. Much efforts have been devoted to solve
the problems by using different methods, among others but not limited to, template-based and graph-
based matching methods. The deformable part models have proved to be efficient and have achieved
state-of-the-art performance on benchmarks, such as the PASCAL dataset. It is of interest to study and
implement the method in our framework to improve the detection accuracy. Besides that, we are also
interested to implement the classification models for weakly labeled data. This is crucial for handling the
training data from the Internet, which are with noise and without the bounding boxes of the objects or
concepts we are looking for. Finally, more sophisticated forms of sentence should be explored by further
exploiting the ontology structure of the event networks.

For SIN, we tried the feature extracted using a DNN trained on a large amount of instances for 1,000
concepts. Compared to the models learned in our TRECVID 2012 system, DNN, which is much more
efficient, performs similar to the fusion result of local and global visual features. The performance is
further improved by combining all the visual features. In addition, current features are still less effective
for narrowing the domain gap. Further directions include a more distinctive visual representation for
addressing the problem of domain gap, and incorporating features representing other aspects of visual

instances into our system, such as attribute features.
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