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Abstract

LIG participated to the semantic indexing main task.
LIG also participated to the organization of this task.
This paper describes these participations which are
quite similar to our previous year’s participations
(within the Quaero consortium).

For the semantic indexing main task, our approach uses
a six-stages processing pipelines for computing scores
for the likelihood of a video shot to contain a target
concept. These scores are then used for producing a
ranked list of images or shots that are the most likely
to contain the target concept. The pipeline is composed
of the following steps: descriptor extraction, descriptor
optimization, classification, fusion of descriptor vari-
ants, higher-level fusion, and re-ranking. We used a
number of different descriptors and a hierarchical fu-
sion strategy. We also used conceptual feedback by
adding a vector of classification score to the pool of de-
scriptors. The main innovation this year consisted in
the inclusion of semantic descriptors computed using a
deep learning method. We also used multiple frames
for some features and this did lead to a significant im-
provement. The best LIG run has a Mean Inferred
Average Precision of 0.2935, which ranked it 5'* out of
15 participants.

1 Participation to the organiza-
tion of the semantic indexing
task

For the Sixth year, LIG has co-organized the semantic
indexing task at TRECVid [1]. From 2010 to 2013
included, this was done with the support of Quaero!
but this project has been completed by the end of 2013.
The task is the same as in 2013 with the same set of
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60 target concepts of which 30 were evaluated by NIST
on the 2015 section of the test data.

A list of 500 target concepts has been produced, 346
of which have been collaboratively annotated by the
participants and by Quaero annotators. A subset of 60
of them was selected for participants’ submissions, 30
of which have been officially evaluated in 2015.

The 500 concepts are structured according to the
LSCOM hierarchy [17]. They include all the TRECVid
“high level features” from 2005 to 2009, the CU-
VIREO374 set plus a selection of LSCOM concepts so
that we end up with a number of generic-specific re-
lations among them. We enriched the structure with
two relations, namely implies and excludes. The goal
was to promote research on methods for indexing many
concepts and using ontology relations between them.

TRECVid SIN provides participants with the following
material:

e a development set that contains roughly 800 hours
of videos;

e a test set that contains roughly 600 hours of videos,
decomposed in three parts or roughly equal sizes,
respectively for the 2013, 2014 and 2015 evalua-
tions;

e shot boundaries (for both sets);

e a set of 500 concepts with a set of associated rela-
tions;

e clements of ground truth: some shots were collab-
oratively annotated. For each shot and each con-
cept, four possibilities are available: the shot has
been annotated as positive (it contains the con-
cept), the shot has been annotated as negative (it
does not contain the concept), the shot has been
skipped (the annotator cannot decide), or the shot
has not been annotated (no annotator has seen the
shot).



The goal of the semantic indexing task is then to pro-
vide, for each of the 60 selected concepts, a ranked
list of 2000 shots that are the most likely to contain
the concept. The 2015 test collection contains 113,467
shots. More information about the organization of this
task can be found in the TRECVid 2015 overview pa-
per [2]. The pair version of the task that was proposed
in 2012 and 2013 has been discontinued. The localiza-
tion subtask, introduced in 2013 is also proposed and
organized by NIST.

1.1 Development and test sets

Data used in TRECVid are free of right for re-
search purposes as it comes from the Internet Archive
(http://www.archive.org/index.php). Table 1 provides
the main characteristics of the collection set.

Table 1: Collection feature
| Characteristics | TACC 2010-2015

#videos 27,964
Duration (total) ~1,400 hours
# shots 879,873

# shots (dev) 545,923

# shots (test 2013) | 112,677

# shots (test 2014) | 107,806

# shots (test 2015) | 113,467

The whole set of videos has been split into two parts,
the development set and the test set. The test set has
been split in three part dedicated to the TRECVid SIN
evaluations of 2013, 2014 and 2015. This has been done
in order to be able to measure the performance progress
over the three years. All sets were automatically split
into shots using the LIG shot segmentation tool [18].

1.2 The evaluation measure

The evaluation measure used by TRECVid is the MAP
(Mean Average Precision). Given the size of the corpus,
the inferred MAP is used instead as it saves human
efforts and has shown to provide a good estimate of

the MAP [19].

1.3 Annotations on the development
set

Shots in the development set have been collaboratively
annotated by TRECVid 2010-2013 participants and by
Quaero annotators. As concepts density is low, an ac-
tive learning strategy has been set up in order to en-
hance the probability of providing relevant shots to an-
notators [3]: the active learning algorithm takes ad-
vantage of previously done annotations in order to pro-

vide shots that will more likely be relevant. Although
this strategy introduces a bias, it raises the number of
examples available to systems. Moreover, it exhibits
some trend in the concept difficulty. As an example,
the number of positive examples for the concept Per-
son is larger than the number of negative examples.
This means that the active learning algorithm was able
to provide more positive examples than negative ones
to annotators, meaning that Person is probably a “too
easy” concept. An improved algorithm for annotation
cleaning has also been used in the annotation tool [14].
8,158,517 were made directly by annotators and a total
of 28,864,844 was obtained by propagating them using
“implies” or “excludes” relations.

No new annotations were produced for 2014 and 2015;
the development set is frozen so that difference of sys-
tem performance is due only to algorithmic innovation
and not to additional training data. 346 concepts were
annotated on the development collection.

1.4 Assessments

30 concepts were selected for evaluation out of the 60
ones for which participants were asked to provide re-
sults for the main SIN task. Assessments were done
part by NIST. Assessments were done by visualizing
the whole shot for judging whether the target concept
was visible or not at any time within the shot.

2 Participation to the semantic
indexing main task

2.1 Introduction

The TRECVid 2015 semantic indexing task is de-
scribed in the TRECVid 2015 overview paper [1, 2].
Automatic assignment of semantic tags representing
high-level features or concepts to video segments can
be fundamental technology for filtering, categoriza-
tion, browsing, search, and other video exploitation.
New technical issues to be addressed include meth-
ods needed/possible as collection size and diversity in-
crease, when the number of features increases, and
when features are related by an ontology. The task
is defined as follows: “Given the test collection, master
shot reference, and concept/feature definitions, return
for each feature a list of at most 2000 shot IDs from
the test collection ranked according to the possibility
of detecting the feature.” 60 concepts have been se-
lected for the TRECVid 2015 semantic indexing task.
Annotations on the development part of the collections
were provided in the context of the collaborative anno-
tation and by Quaero.



As last years, our system uses a six-stage processing
pipeline for computing scores for the likelihood of a
video shot to contain a target concept. These scores are
then used for producing a ranked list of images or shots
that are the most likely to contain the target concept.
The pipeline is composed of the following steps:

1. Descriptor extraction. A variety of audio, image
and motion descriptors have been considered (sec-
tion 2.2).

2. Descriptor optimization. A post-processing of the
descriptors allows to simultaneously improve their
performance and to reduce their size (section 2.3).

3. Classification. Two types of classifiers are used as
well as their fusion (section 2.4).

4. Fusion of descriptor variants. We fuse here vari-
ations of the same descriptor, e.g. bag of word
histograms with different sizes or associated to dif-
ferent image decompositions (section 2.7).

5. Higher-level fusion. We fuse here descriptors of
different types, e.g. color, texture, interest points,
motion (section 2.8).

6. Re-ranking. We post-process here the scores using
the fact that videos statistically have an homoge-
neous content, at least locally (section 2.9).

Our system also includes a conceptual feedback in
which a new descriptors is built using the prediction
scores on the 346 target concepts is added to the al-
ready available set of 47 audio and visual descriptors
(section 2.10). Compared to last year, our system in-
clude more semantic descriptors computed using a deep
learning method (section 2.2.2) and the use of multiple
key frames (section 2.5).

2.2 Descriptors

A total of 57 audio and visual descriptors have been
used. Many of them have been produced by and shared
with the IRIM consortium and two of them were pro-
vided by Xerox (XRCE). These include variants of a
same descriptors (e.g. same methods with different
histogram size or image decomposition). These descrip-
tors do not cover all types and variants but they include
a significant number of different approaches including
state of the art ones and more exploratory ones. They
are described in the IRIM consortium paper [11] and
they are separately evaluated in section 2.6. They are
decomposed into “classical” and “semantic” descrip-
tors.
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Figure 1: Semantic indexing system

2.2.1 Classicel descriptors

Classical descriptors include color histogram, Gabor
transform, quaternionic wavelets, a variety of inter-
est points descriptors (SIFT, color SIFT, SURF), local
edge patterns, saliency moments, and spectral profiles
for audio description. Many of them rely on a bag of
words approach.

2.2.2 Semantic descriptors

Semantic of “high-level” descriptors are vectors of
classification scores computed on the current data
(here IACC) using classifier trained on other data and
also with (generally) different target concepts (e.g.
TRECVid HLF 2003 or ImageNet). They are opposed
to classical or “low-level” ones in the sense in which
the latter are computed using explicit algorithmic pro-
cedures (e.g. histograms or Gabor transforms) while
the former comes from learning using annotated data.

We introduced in 2013 two semantic descriptors com-
puted using Fisher vectors on ImageNet images and
annotations:

XEROX/ilsvrc2010: Attribute type descriptor con-
stituted as vector of classification score obtained
with classifiers trains on external data with one
vector component per trained concept classi-
fier. For XEROX/ilsvrc2010, 1000 classifiers were
trained using annotated data from the Pascal VOC
/ ImageNet ILSVRC 2010 challenge. Classification
was done using Fisher Vectors [21].



XEROX /imagenet10174: Attribute type descrip-
tor similar to XEROX/ilsvrc2010 but with 10174
concepts trained using ImageNet annotated data.

These were completed in 2014 by similar descriptors
computed using deep convolutional networks on Ima-
geNet images and annotations:

EUR/caffe1000: This descriptor was computed by
Eurecom using the CAFFE Deep Neural Net [22]
developed by the Vision group of the University of
Berkeley, for which both the source code and the
trained parameter values have been made avail-
able. The network has been trained on the Im-
ageNet data only, and provides scores for 1000
concepts. The network is applied unchanged on
the TRECVID key frames, both on training and
test data. The resulting scores are accumulated in
a 1000 dimension semantic feature vector for the
shot.

LIG/caffeb1000: This descriptor is equivalent to the
EUR/caffe1000 one and was also computed using
the CAFFE Deep Neural Net [22] but with a dif-
ferent (later) version.

We also used descriptors based on the hidden layers
of the deep convolutional network used for the compu-
tation of the LIG/caffeb1000 descriptor. We consid-
ered only the last two hidden layers (fc6 and fc7) since
they were expected to also extract high-level informa-
tion close to the semantics though not yet being tuned
for other final target concepts:

LIG /caffe_fc[6|7]b_4096 : This descriptor corre-
spond to the LIG/caffeb1000 one and was also
computed using the CAFFE Deep Neural Net [22]
but is made of the 4096 values of the last two hid-
den layers.

We introduced this year new DCNN-based descriptors
and some early fusion of them:

EUR /b4096: descriptor of dimension 4096 obtained
by early fusion of several other descriptors, includ-
ing various local and global features, and the out-
put of several pre-trained Deep Networks (Caffe
[23], VGG16 and VGG19 [24][25]). The fusion is
done by selecting the components for which the
average conditional entropy of concepts given the
component is the lowest. The selection is done in-
dependently for each component.

LIG/googlenet_pool5b_1024 : This descriptor is
obtained by extracting the output of the last but
one layer (pool5) of the GoogLeNet model [26] ~~
1024 dimensions.

LIG /vgg_all fc8 : This descriptor is obtained by ex-
tracting the output of the last layer of the VGG19
model [24][25] before the last normalization stage
~» 1000 dimensions.

LIG /alex_goog_vgg early : Early fusion of
LIG/caffe_fc6_4096, LIG/googlenet_pool5b_1024
and LIG/vgg_all fc8 after descriptor optimization
as described in section 2.3 ~» 1931 dimensions.

IRIM/all_dcnn_early : Early fusion of EUR/b4096
and LIG/alex_goog_vgg_early after descriptor op-
timization as described in section 2.3 ~» 604 di-
mensions.

2.3 Descriptor optimization

The descriptor optimization consists into a PCA-based
dimensionality reduction with pre and post power
transformation [15]. Optionally, a Ly or Ly unit length
normalization can also be performed before the PCA-
based dimensionality reduction.

2.3.1 First power transformation

The goal of the power transformation is to normalize
the distributions of the values, especially in the case of
histogram components. It simply consists in applying
an x « z% (v «— —(—2) if z < 0) transformation on
all components individually. The optimal value of «
can be optimized by cross-validation and is often close
to 0.5 for histogram-based descriptors.

The optimization of the value of the « coefficient is
optimized by two-fold cross-validation within the de-
velopment set. It is done in practice only using the
LIG_.KNNB classifier (see section 2.4) since it is much
faster when a large number of concepts (346 here) has
to be considered and since it involves a large number of
combinations to be evaluated. Trials with a restricted
number of varied descriptors indicated that the opti-
mal values for the kNN based classifier are close to the
ones for the multi-SVM based one. Also, the overall
performance is not very sensitive to the precise values
for this hyper-parameter.

2.3.2 Principal component analysis

The goal of PCA reduction is both to reduce the size
(number of dimensions) of the descriptors and to im-
prove performance by removing noisy components.

The number of components kept in the PCA reduction
is also optimized by two-fold cross-validation within the
development set using the LIG_KNNB classifier. Also,
the overall performance is not very sensitive to the pre-
cise values for this number.



2.3.3 Second power transformation

A second power transformation can be applied after
PCA dimensionality reduction/ It has an affect which is
similar to a post-PCA whitening but is has been proven
to be more efficient and easy to tune. The optimal value
of as can be optimized by cross-validation and is often
close to 0.7.

2.4 Classification

The LIG participant ran two types of classifiers on the
contributed descriptors as well as their combination.

LIG_KNNB: The first classifier is kNN-based. It
is directly designed for simultaneously classifying
multiple concepts with a single nearest neighbor
search. A score is computed for each concept and
each test sample as a linear combination of 1’s for
positive training samples and of 0’s for negative
training samples with weights chosen as a decreas-
ing function of the distance between the test sam-
ple and the reference sample. As the nearest neigh-
bor search is done only once for all concepts, this
classifier is quite fast for the classification of a large
number of concepts. It is generally less good than
the SVM-based one but it is much faster.

LIG_MSVM: The second one is based on a multiple
learner approach with SVMs. The multiple learner
approach is well suited for the imbalanced data
set problem [8], which is the typical case in the
TRECVid SIN task in which the ration between
the numbers of negative and positive training sam-
ple is generally higher than 100:1.

LIG_BUSEB: Fusion between the two available clas-
sifiers. The fusion is simply done by a MAP
weighted average of the scores produced by the two
classifiers. Their output is naturally (or by con-
struction) normalized in the the [0:1] range. kNN
computation is done using the KNNLSB pack-
age [9]. Even though the LIG.MSVM classifier
is often significantly better than the LIG_KNNB
one, the fusion is most often even better, proba-
bly because they are very different in term of in-
formation type capture. The MAP values used
for the weighting are obtained by a two-fold cross-
validation within the development set.

2.5 Use of multiple key frames

All descriptors (except audio and motion ones) have
been computed on the reference key frame provided
in the master shot segmentation. Additionally, some
of them have been computed on all the I-frames ex-
tracted from the video shots (typically one every 12

video frames and about 13 per shot in average). Clas-
sification scores are computed in the same way both for
the regular key frames and all the additional I-frames
and a max pooling operation is performed over all the
scored frames within a shot [6]. This max pooling oper-
ation is performed right after the classification step and
before any fusion operation (though it would probably
have been better to postpone it after).

2.6 Evaluation of classifier-descriptors
combinations

We evaluated a number of image descriptors for the
indexing of the 346 TRECVID 2012 concepts. This
has been done with two-fold cross-validation within the
development set. We used the annotations provided by
the TRECVID 2013 collaborative annotation organized
by LIG and LIF [3]. The performance is measured by
the inferred Mean Average Precision (MAP) computed
on the 346 concepts. Results are given in the IRIM
paper [11].

2.7 Performance improvement by fu-
sion of descriptor variants and clas-
sifier variants

In a previous work, LIG introduced and evaluated the
fusion of descriptor variants for improving the perfor-
mance of concept classification. We previously tested
it in the case of color histograms in which we could
change the number of bins, the color space used, and
the fuzziness of bin boundaries. We found that each of
these parameters had an optimal value when the oth-
ers are fixed and that there is also an optimal combi-
nation of them which correspond to the best classifica-
tion that can be reached by a given classifier (kNN was
used here) using a single descriptor of this type. We
also tried late fusion of several variants of non-optimal
such descriptors and found that most combinations of
non-optimal descriptors have a performance which is
consistently better than the individual performance of
the best descriptor alone. This was the case even with
a very simple fusion strategy like taking the average of
the probability scores. This was also the case for hi-
erarchical late fusion. In the considered case, this was
true when fusing consecutively according to the num-
ber of bins, to the color space and to the bin fuzziness.
Moreover, this was true even if some variant performed
less well than others. This is particularly interesting
because descriptor fusion is known to work well when
descriptors capture different aspects of multimedia con-
tent (e.g. color and texture) but, here, an improvement
is obtained using many variants of a single descriptor.
That may be partly due to the fact that the combina-
tion of many variant reduces the noise. The gain is less



than when different descriptor types are used but it is
still significant.

We have then generalized the use of the fusion of de-
scriptor variants and we evaluated it on other descrip-
tors and on TRECVid 2010. We made the evaluation
on descriptors produced by the ETIS partner of the
IRIM group. ETIS has provided 3 x 6 variants of two
different descriptors (see the previous section). Both
these descriptors are histogram-based. They are com-
puted with four different number of bins: 64, 128, 192,
256, 512 and 1024; and with three image decomposi-
tion: 1x1 (full image), 1x3 (three vertical stripes) and
2x2 (2 by 2 blocks). Hierarchical fusion is done accord-
ing to three levels: number of bins, “pyramidal” image
decomposition and descriptor type.

We have evaluated the results obtained for fusion
within a same descriptor type (fusion levels 1 and 2)
and between descriptor types (fusion level 3) [10]. The
fusion of the descriptor variants varies from about 5
to 10% for the first level and is of about 4% for the
second level. The gain for the second level is relative
to the best result for the first level so both gains are
cumulated. For the third level, the gain is much higher
as this could be expected because, in this case, we fuse
results from different information sources. The gain at
level 3 is also cumulated with the gain at the lower
levels.

2.8 Final fusion

Hierarchical fusion with multiple descriptor variants
and multiple classifier variants was used and optimized
for the semantic indexing task. We made several ex-
periment in order to evaluate the effect of a number
of factors. We optimize directly the first levels of the
hierarchical fusion using uniform or average-precision
weighting. The fusion was made successively on vari-
ants of the same descriptors, on variants of classifiers
on results from the same descriptors, on different types
of descriptors and finally on the selection of groups of
descriptors.

2.9 Re-ranking

Video retrieval can be done by ranking the samples
according to their probability scores that were pre-
dicted by classifiers. It is often possible to improve
the retrieval performance by re-ranking the samples.
Safadi and Quénot in [13] propose a re-ranking method
that improves the performance of semantic video in-
dexing and retrieval, by re-evaluating the scores of the
shots by the homogeneity and the nature of the video
they belong to. Compared to previous works, the pro-
posed method provides a framework for the re-ranking

via the homogeneous distribution of video shots con-
tent in a temporal sequence. The experimental re-
sults showed that the proposed re-ranking method was
able to improve the system performance by about 18%
in average on the TRECVid 2010 semantic indexing
task, videos collection with homogeneous contents. For
TRECVid 2008, in the case of collections of videos with
less homogeneous contents, the system performance
was improved by about 11-13%.

2.10 Conceptual feedback

Since the TRECVid SIN 2013 task considers a quite
large number (346) of descriptors and since these are
also organized according to a hierarchy, one may expect
that the detection scores of some concept help to im-
prove the detection score of related concepts. We have
made a number of attempts to use the explicit implies
or excludes provided relations but these were not suc-
cessful so far, maybe due to a normalization problem
between the scores of the different concepts. We tried
then an alternative approach using the implicit rela-
tions between concepts by creating a vector with the
classification scores of all the available concepts [16].
We used for that the best hierarchical fusion result
available. This vector of scores was then included as
a (n + 1)*" one in the pool of the N already available
descriptors and processed in the same way as the oth-
ers, including the power and PCA optimization steps
and the fusion of classifier outputs. The found opti-
mal power value was quite different of the ones for the
other descriptors (about 1.800 versus 0.150-0.700) for
the other ones. This is probably linked with the way
the score normalization is performed. Even though the
2013-2015 evaluation is done on 60 concepts only, as
the annotations are available for 346 concepts, we used
the full set for the conceptual feedback. The concep-
tual feedback vectors of concepts scores were built and
used several times for different fusion processes corre-
sponding to different sets of selected descriptors or to
different ways of fusing them.

2.11 Performances on the semantic in-
dexing task

In order to evaluate the systems’ progress between 2013
and 2015 as suggested in the main SIN task, we shortly
describe here the system variants that we used for our
2013, 2014 and 2015 submissions (four runs for each).
The 2013 submissions were labeled as “Quaero” but,
as this project is now finished, they are now labeled
“LIG”.

Four slightly different combinations of hierarchical fu-
sion have been tried in 2013. The variations concerned



the way the re-ranking was done: it can be locally tem-
poral, globally temporal and or conceptual. The varia-
tions also concerned the use or not of the uploader field
available in the metadata [12]. Not all combinations
could be submitted and the following were selected:

M_A_LIG,13.1 (was M_A_Quaero-2013-1_1):
combination of M_A_LIG,13.3 with uploader
information with 3:1 weights;

M_A_LIG,13_2 (was M_A_Quaero-2013-2_2):
combination of M_A_LIG,13.3 with uploader
information with 7:1 weights;

M_A_LIG,13_3 (was M_A_Quaero-2013-3_3):
manually built hierarchical fusion of a large
number (over 100) of jointly optimized descriptor-
classifier combinations including two iterations
of conceptual feedback combined with temporal
re-ranking;

M_A_LIG,13.4 (was M_A_Quaero-2013-4_4):
manually built hierarchical fusion of a large
number (over 100) of jointly optimized descriptor-
classifier combinations including a single iterations
of conceptual feedback combined with temporal
re-ranking.

Four slightly different combinations of hierarchical fu-
sion have been tried in 2014. The variations concerned
the use or not of the uploader field and the use of
extended conceptual feedback versus basic conceptual
feedback. Not all combinations could be submitted and
the following were selected:

M_D_LIG,14_1: combination of M_D_LIG,14_2 with
uploader information with 9:1 weights;

M_D_LIG,14_2: manually built hierarchical fusion of
a large number (over 100) of jointly optimized
descriptor-classifier combinations with extended
conceptual feedback and temporal re-ranking.

M_D_LIG,14_3: combination of M_D_LIG,14 4 with
uploader information with 9:1 weights;

M_D_LIG,14_4: manually built hierarchical fusion of
a large number (over 100) of jointly optimized
descriptor-classifier combinations with conceptual
feedback and temporal re-ranking. Extended con-
ceptual feedback is a version of conceptual feed-
back in which the components are weighted ac-
cording to the correlation between the source and
target concepts.

Four different combinations of hierarchical fusion have
been tried in 2015. The variations concerned the use or

not of the uploader field and the use of extended con-
ceptual feedback versus basic conceptual feedback. Not
all combinations could be submitted and the following
were selected:

M_D _LIG,15_1: is similar to the LIG-2015-2C-3 sub-
mission but it additionally includes the I-frames
in the prediction. However, the I-frames descrip-
tors were available only for some of the available
descriptors. We therefore made a I-frame pooling
for those for which the I-frames version was avail-
able followed by an ad hoc late fusion between the
predictions with I-frames and predictions without
I-frames. The overall gain would probably have
been higher if all the descriptors have been avail-
able on I-frames;

M_D_LIG,15 2: is similar to the LIG-2015-2C-4
baseline but it additionally includes the I-frames
in the prediction. This cannot be seen in the sub-
missions but the gain is significantly higher before
temporal re-ranking: the gain brought by the mul-
tiple key frames and by the temporal re-ranking
cumulates only partially, probably because the in-
formation obtained from the adjacent shots is par-
tially redundant with the information obtained
from the adjacent frames;

M_D_LIG,15_3: is similar to the LIG-2015-2C-4 sub-
mission but it additionally includes all the engi-
neered descriptors, including the semantic ones
from Xerox and the DCNN-based descriptors from
Eurecom. The engineered descriptors alone lead to
a performance much lower that the one obtained
using only the DCNN features so we made no sub-
mission using only them; this also correspond to
the performance of our 2013 system. Also, even
though some new descriptors were made available
from LISTIC and ETIS, we were not able to do
better (at least using the ad hoc LIG strategy)
than the 2014 fusion of them;

M_D _LIG,15_4: is the LIG baseline, it involves only
DCNN features extracted by the LIG using the
caffe software and three publicly available trained
networks (AlexNet, GoogLeNet and VGG). It also
uses only the main key frames (one per shot). This
baseline is very good and above the best 2013 LIG
submission.

Note: 2014 and 2015 rune were submitted as “type D”
while 2013 ones were submitted as “type A”. There is
actually no real difference in training type but the rules
regarding run types have been clarified in a more con-
servative way. Under the 2014 and 2015 understanding,
2013 runs would also have been labelled as “type D”,



mostly because of the use of ImageNet data and anno-
tations for the computation of the semantic descriptors.

Table 2: Mean InfAP result on the test set for all the 38
TRECVid 2013 evaluated concepts and/or for all the
30 TRECVid 2014 evaluated concepts

System /run MAP | MAP | MAP
2013 2014 2015
Best run (*) 0.3211 | 0.3320 | 0.3624
M_A_LIG,13_3 0.2848 | 0.2416 | 0.2011
M_A_LIG,132 0.2846 - -
M_A _LIG,13.4 0.2835 | - -
M_A_LIG,13_1 0.2827 | 0.2408 | 0.2012
M_D_LIG,14.3 0.3058 | 0.2659 -
M_D_LIG,14 4 0.3049 | 0.2643 -
M_D_LIG,14.2 0.3087 | 0.2586 | 0.2199
M_D_LIG,14_1 0.3094 | 0.2582 | 0.2254
M_D_LIG,15.1 0.3539 | 0.3460 | 0.2933
M_D_LIG,152 0.3421 | 0.3416 | 0.2935
M_D_LIG,15.3 0.3407 | 0.3151 | 0.2670
M_D_LIG,15.4 0.3288 | 0.3021 | 0.2533
Median submission | 0.1275 | 0.2063 | 0.2398

(*) This run uses extra annotations.

Table 2 shows the performance of the three times four
submitted variants in 2013, 2014 and 2015 for the 2013,
2014 and 2015 test collections, including the “progress”
runs.

The addition of engineered descriptors (and of the Eu-
recom DCNN-based descriptors) brings a significant
improvement (45.4% in relative value) when using only
the key frames (M_D_LIG,15_3 versus M_D_LIG,15.4)
but none when using also the I-frames (M_D_LIG,15_1
versus M_D_LIG,15_3). However, this is the case only
for the 2015 test data (otherwise an improvement is
also observed) and it has to be taken into account that
only some engineered descriptors were computed over
the I-frames.

The use of I-frames brings a very important im-
provement (M_D_LIG,15.1 and M_D_LIG,152 ver-
sus M_D_LIG,15_.3 and M_D_LIG,15.4): +15.4% and
+9.9% respectively for the DCNN-based descriptors
only and for all the descriptors.

Concerning the progress over years aspect, the values
for the 2013, 2014 and 2015 test collections for a given
run are not directly comparable because the test data
are different and (probably mostly) because the evalu-
ated concepts are different subsets of the 60 submitted
ones, the 2014 subset looking harder than the 2013 one,
and the 2015 subset looking harder than the 2014 one.

Considering our 2013 and 2014 runs, they are not di-
rectly comparable either because the variants have dif-
ferent tunings or because they were bugged. Only

the M_A_LIG,13_3 and M_D_LIG,14_3 are built exactly
with the same principles, the difference being in the
use of additional semantic concepts coming from deep
convolutional networks. These new descriptors yielded
an improvement from 0.2848 to 0.3058 (+7.4% relative)
on 2013 test data and from 0.2416 to 0.2659 (+10.0%
relative) on 2014 test data.

Considering our 2014 and 2015 runs, they are not di-
rectly comparable because the variants have different
tunings. The gain between our 2014 runs and our 2015
runs comes mostly from the use of multiple frames per
shot (I-frames) and partly from the use of more DCNN-
base descriptors.

3 Acknowledgments

This work was partly realized as part of the Quaero
Programme funded by OSEQ, French State agency for
innovation.

This work was partly realized as part of the CHIST-
ERA Camomile Project funded by ANR, French na-
tional research agency.

Most of the computations presented in this paper
were performed using the Froggy platform of the CI-
MENT infrastructure (https://ciment.ujf-grenoble.fr),
which is supported by the Rhne-Alpes region (GRANT
CPERO07.13 CIRA) and the Equip@Meso project (ref-
erence ANR-10-EQPX-29-01) of the programme In-
vestissements d’Avenir supervised by the Agence Na-
tionale pour la Recherche.

Results from the IRIM network were also used in these
experiments [11].

The authors also wish to thank Florent Perronnin from
XRCE for providing descriptors based on classification
scores from classifiers trained on ILSVRC/ImageNet
data.

References

[1] A. Smeaton, P. Over and W. Kraaij, Evaluation
campaigns and TRECVid, In MIR’06: Proceedings
of the 8th ACM International Workshop on Multi-
media Information Retrieval, pp321-330, 2006.

[2] Paul Over, Georges Awad, Martial Michel,
Johnatan Fiscus, Greg Sanders, Wessel Kraaij,
Alan F. Smeaton, Georges Quénot and Roeland Or-
delman, TRECVID 2015 — An Overview of the
Goals, Tasks, Data, Evaluation Mechanisms, and
Metrics In Proceedings of TRECVID 2015, Gaither-
burg, MD, USA, 16-18 Nov. 2015.

[3] Stéphane Ayache and Georges Quénot. Video
Corpus Annotation using Active Learning, In



30th European Conference on Information Retrieval
(ECIR’08), Glasgow, Scotland, 30th March - 3rd
April, 2008.

[4] J.L. Gauvain, L. Lamel, and G. Adda. The LIMSI
Broadcast News In Transcription System. Speech
Communication, 37(1-2):89-108, 2002.

[5] S. Ayache, G. Quénot, J. Gensel, and S. Satoh. Us-
ing topic concepts for semantic video shots classi-
fication. In Springer, editor, CIVR - International
Conference on Image and Video Retrieval, 2006.

[6] C.G.M. Snoek, M. Worring, J.-M. Geusebroek, D.
Koelma and F.J. Seinstra, On the surplus value of
semantic video analysis beyond the key frame, In
IEEE International Conference onMultimedia and
Expo (ICME), 6-8 July 2005.

[7] K. E. A. van de Sande, T. Gevers, and C. G. M.
Snoek. A comparison of color features for visual
concept classification. In ACM International Con-

ference on Image and Video Retrieval, pages 141—
150, 2008.

[8] B. Safadi, G. Quénot. Evaluations of multi-learners
approaches for concepts indexing in video docu-
ments. In RIAO, Paris, France, April 2010.

[9] Georges Quénot. KNNLSB: K Nearest Neigh-
bors Linear Scan Baseline, 2008. Software avail-
able at http://mrim.imag.fr/georges.quenot/
freesoft/knnlsb/index.html.

[10] D. Gorisse et al., IRIM at TRECVid 2010: High
Level Feature Extraction and Instance Search. In
Proceedings of TRECVid 2010, Gaithersburg, MD
USA, November 2010.

[11] H. Le Borgne et al. IRIM at TRECVID 2015: Se-
mantic Indexing, In Proceedings of the TRECVID
2015 workshop, Gaithersburg, MD, USA, 16-18
Nov. 2015.

[12] U. Niaz, M. Redi, C. Tanase, B. Merialdo, EU-
RECOM at TrecVid 2012: The Light Semantic In-
dexing Task, In Proceedings of TRECVid 2012,
Gaithersburg, USA, 25-28 Nov. 2012.

[13] B. Safadi, G. Quénot. Re-ranking by Local Re-
scoring for Video Indexing and Retrieval, CIKM
2011: 20th ACM Conference on Information and
Knowledge Management, Glasgow, Scotland, oct
2011.

[14] B. Safadi, S. Ayache, G. Quénot. Active Cleaning
for Video Corpus Annotation. International Mul-
tiMedia Modeling Conference, 7131:518-528, Kla-
genfurt, Austria, jan 2012. Glasgow, Scotland, oct
2011.

[15] Bahjat Safadi, Nadia Derbas and Georges Quénot.
Descriptor Optimization for Multimedia Indexing
and Retrieval. ,Multimedia Tools and Applications
Published online, May 2014.

[16] Abdelkader Hamadi, Georges Quénot, Philippe
Mulhem. Conceptual Feedback for Semantic Mul-
timedia Indexing, ,Multimedia Tools and Applica-
tions Published online, May 2014.

[17] Milind Naphade, John R. Smith, Jelena Tesic,
Shih-Fu Chang, Winston Hsu, Lyndon Kennedy,
Alexander Hauptmann, and Jon Curtis. Large-scale
concept ontology for multimedia. IEEE Multimedia,
13:86-91, 2006.

[18] Georges Quénot, Daniel Moraru, and Laurent Be-
sacier. CLIPS at TRECvid: Shot boundary de-
tection and feature detection. In TRECVid’2003
Workshop, Gaithersburg, MD, USA, 2003.

[19] Emine Yilmaz, Evangelos Kanoulas, and Javed A.
Aslam. A simple and efficient sampling method for
estimating AP and NDCG. In SIGIR. ACM 978-1-
60558-164-4/08/07, July 2008.

[20] Stéphane Ayache, Georges Quénot. Image and
Video Indexing using Networks of Operators. In
EURASIP Journal on Image and Video Processing,
2007.

[21] Jorge Séanchez, Florent Perronnin, Thomas
Mensink, Jakob Verbeek Image Classification with
the Fisher Vector: Theory and Practice In Inter-
national Journal of Computer Vision, Volume 105,
Issue 3, pp 222-245, December 2013.

[22] Jia, Yangqing, Caffe: An Open Source Convo-
lutional Architecture for Fast Feature Embedding,
2013

[23] A. Krizhevsky, I. Sutskever and G.E. Hinton, Ad-
vances in Neural Information Processing Systems
(NIPS), pp. 1097-105,2012.

[24] K. Chatfield, K. Simonyan, A. Vedaldi and A. Zis-
serman, Return of the Devil in the Details: Delving
Deep into Convolutional Nets, In British Machine
Vision Conference, 2014 (arXiv ref. ¢s1405.3531).

[25] K. Simonyan, A. Zisserman, Very Deep Convolu-
tional Networks for Large-Scale Image Recognition,
arXiv:1409.1556.

[26] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S.
Reed, D. Anguelov, D. Erhan, V. Vanhoucke and
A. Rabinovich, Going Deeper with Convolutions
arXiv:1409.4842.



