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Abstract—We submit the following three runs for the
TRECVID 2016 AVS task.

1) kobe nict siegen D M 1: This combines the results of sev-
eral small-scale multi-layer neural networks, called micro
neural networks (microNNs). Although a large number of
concepts are necessary for treating various queries, the
computational cost of preparing detectors for all these
concepts is huge. Thus we use microNNs as lightweight
concept detectors. The input of each microNN is a vector
of outputs extracted by a pre-trained convolutional neural
network (CNN), which is fine-tuned to a target concept
using ImageNet and/or IACC video data. Fine-tuning is
carried out using imbalanced numbers of positive and
negative data.

2) kobe nict siegen D M 2: This is identical to
kobe nict siegen D M 1 except that fine-tuning is
performed using the same numbers of positive and
negative data.

3) kobe nict siegen D M 3: This combines the results of
several long short-term memory (LSTM) networks for
different concepts. The input of each LSTM is a vector
of outputs extracted by a pre-trained CNN, which is fine-
tuned to a target concept using ImageNet and/or IACC
video data. The numbers of positive and negative data are
imbalanced for fine-tuning.

The results of these runs validate the efficiency of training
microNNs for various concepts and their usefulness for achieving
reasonable retrieval performances. Furthermore, LSTMs signif-
icantly improve the retrieval results for some queries.

I. INTRODUCTION

The TREC Video Retrieval Evaluation (TRECVID) is an
annual worldwide competition where large-scale benchmark
video data are used to evaluate methods developed around
the world [1]. At TRECVID 2016 [2], we participated in the
ad-hoc video search (AVS) task, where an end-user searches
shots containing people, objects, activities, locations and so
on, as well as combinations of these. This paper presents our
methods developed for the AVS task.

In recent years, deep learning, in particular convolutional
neural networks (CNNs), have often been used for video anal-
ysis. A CNN is a type of forward propagation neural network
that achieves excellent performance in many tasks and has
attracted much research attention. Also, a CNN can be used
effectively as a feature extractor, where a feature vector for an

image is formed by the output values from a hidden layer in
the CNN. In this feature extraction, we need to consider which
layer should be used. A CNN constructs a feature hierarchy
where features from one layer are recursively abstracted into
higher-level features in the next layer. The features from lower
layers represent primitive but generic visual characteristics,
while features from upper layers describe content that is
semantic but specialized to the target domain. We have showed
that using the output of the seventh layer is the most effective
choice for the IACC dataset in TRECVID 2015 [3].

Using the features obtained from a CNN, we can easily
implement transfer learning and use these features to build
classifiers that work in different domains. However, this ap-
proach has an expensive computational cost when building
several classifiers. In the AVS task, an accurate search for one
query requires combining detection results for several related
concepts. Thus, to respond to various queries, it is necessary to
build a large number of classifiers that detect diverse concepts.
Therefore, we propose learning small networks that use fea-
tures obtained from the learned network (CNN) as the input for
efficient transfer learning. Each small-scale network is referred
to as a micro neural network (microNN). A microNN is small
in terms of the number of layers and nodes, so it can be trained
quickly. In the following, we present retrieval methods using
microNNs and demonstrate their usefulness in the AVS task.

II. THE PROPOSED METHOD

Given an ad-hoc query, we begin by manually selecting
relevant concepts for each shot. A simple rule is used so that
this process can be easily automated in the future. A list of
the concepts selected for each query in this study is shown
in Fig. 1. An arrow indicates that the model on the left-hand
side is transferred into the model on the right-hand side.

Fig. 2 shows an overview of three methods that are used
to construct microNNs for the concepts in Fig. 1. All of them
use the outputs of a hidden layer in a CNN.

First, the feature extraction process uses the model learned
by VGGNet [4], which achieved the second-highest perfor-
mance at ILSVRC (ImageNet Large Scale Visual Recognition
Competition) 2014. VGGNet is a CNN with a very deep
architecture consisting of 16 or 19 layers and with very



Fig. 1. A list of concepts selected for each query.

small receptive fields (3x3). We use VGGNet with 16 layers.
However, the outputs of VGGNet are specific to concepts
defined in ImageNet, and do not match the concepts for the
AVS task. Thus, we use a 4096-dimensional feature vector that
consists of neuron outputs from the second fully-connected
layer “fc7” of VGGNet. Based on this, two approaches are
used for building microNNs. The difference between these
approaches is the balance between the number of positive
and negative examples. The last approach uses a long short-
term memory (LSTM) network on top of the microNNs in the
previous two approaches to integrate the temporal information
in a video.

In recent years, many frameworks for deep learning, such
as Caffe [5], Chainer [6], and Tensor Flow [7], have be-
come available. In this study, microNNs are constructed using
Chainer, which is a neural network framework developed by
Preferred Networks. Chainer supports various network archi-
tectures, including feed-forward nets, convnets and recurrent
nets, and is flexible enough to build networks for different pur-
poses. It also supports CUDA computation and only requires
few lines of code to leverage a graphics processing unit (GPU).

A. Feature extraction using CNN

In general, it is not realistic to learn a deep neural network
for video recognition from scratch, because of the computa-
tional cost of training using a large amount of data. Pre-trained
networks, such as AlexNet [8], VGGNet and GoogLeNet [9],
are usually transferred to a classifier suitable for a target
problem. In our case, we convert the version of VGGNet
released in the model zoo of Caffe so that it can be used
in Chainer.

However, VGGNet is specific to concepts defined in
ILSVRC 2014, so it cannot be used for accurate detection
of concepts that are appropriate for the AVS task. To over-
come this, we focus on a phenomenon called representation
learning [10], where lower layers in a deep neural network
characterize visual features that can be used universally for
various images or videos. Based on this, we extract features
from a middle-level layer of VGGNet trained on natural
images, and use those features to build microNNs for concepts
that are suitable for the AVS task. In this study, we perform
experiments using the output of the second fully connected
layer “fc7” in VGGNet. This feature extraction is applied
to the images in the ImageNet dataset, the videos in the
TRECVID dataset, and the videos in the UCF101 dataset [11].
For the video datasets, we use VGGNet on one out of every
30 frames in each shot. An overall feature is extracted by
aggregating the features extracted from the frames based on
max-pooling.

B. Micro Neural Networks structure

In kobe nict siegen D M 1 and kobe nict siegen D M 2,
a microNN is constructed for each concept based on features
extracted by VGGNet. This microNN is a binary classifier that
outputs two values for the presence and absence of the concept.
The microNN consists of the input, hidden and output layers,
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Fig. 2. An overview of our three AVS methods.

which are fully-connected and contain 4096, 32 and two nodes,
respectively. This small-scale structure allows the microNN to
be efficiently trained. During learning, we apply Dropout [12]
to improve learning by ignoring randomly selected nodes.
Dropout can avoid overfitting by reducing the degrees of
freedom and raising the generalization performance.

Finally, an important issue in training a microNN for
a concept is the balance between the number of positive
examples and the number of negative examples. The former
is usually much smaller than the latter, because any kind of
image or video that does not contain the concept is negative.
However, using too many negative examples may bias the
microNN to preferentially produce high output values for
the absence of the concept. To check this, the microNNs in
kobe nict siegen D M 1 are trained in an imbalanced setting
where positive examples are significantly outnumbered by
negative examples. In particular, we use all the available
positive examples, and then randomly select negative examples
until the total number of training examples is 30000. On the
other hand, the microNNs in kobe nict siegen D M 2 are
trained by balancing the numbers of positive and negative
examples. Specifically, the numbers of positive examples and
of negative examples are both 15000.

C. Learning MicroNNs

Under the settings described above, we perform gradual
transfer learning for each concept using the following two
steps.

(i) We learn a microNN using images from the ImageNet
dataset.

(ii) We refine the microNN using videos from the TRECVID
dataset or the UCF101 dataset by regarding the weight
parameters learned in the first step as initial values. If the
annotation of the concept is available only in the image
dataset (ImageNet) or the video dataset (TRECVID
or UCF101), the microNN is trained only using that
dataset.

In general, CNN learning is strongly affected by the initial
values. Especially in the case of little training data, it is
important to obtain suitable initial values to prevent overfitting.
Therefore, compared with learning a microNN from full
scratch, we often obtain better results by using parameters
that have been optimized on images as initial values.

In addition, only a few minutes are required to learn a
microNN for a concept. This is much faster than learning
a support vector machine (SVM) in the Semantic INdexing
(SIN) task from TRECVID 2015.

D. Long Short Term Memory

In kobe nict siegen D M 3, an LSTM [13] [14] [15] was
used to aggregate the outputs of the microNNs over multiple
video frames. The LSTM is a kind of recurrent neural network
(RNN) introduced by Hochreiter and Schmidhuber (1997). An
LSTM replaces units in a hidden layer of an RNN with LSTM
blocks that individually consist of memory functionality and
three gates (input, output and forget). With this architecture,
an LSTM can maintain long-term dependencies that cannot
be captured by an RNN. We consider microNNs for different
concepts that produce output values for multiple frames in a
shot. Because max-pooling over these output values causes
a significant loss of temporal information, we aim to use an
LSTM to capture temporal characteristics. (This is designed
to avoid the long-term dependence problem and to store the
information for a long period of time. Unlike max-pooling,
the feature vector obtained by an LSTM reflects the temporal
characteristics of a shot.) In the present study, LSTM-based
microNNs are trained for 14 concepts for which the temporal
relationships among video frames are important (see the bold-
font concepts in Fig. 1). Also, each LSTM-based microNN is
trained using an imbalanced numbers of positive and negative
examples as in kobe nict siegen D M 1.

E. Shot Retrieval based on Selected Concepts

Assume that the concepts related to a given query are se-
lected based on Fig. 1. To balance the output values produced
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Fig. 3. A comparison between the retrieval results using the summation of microNN scores and those using multiplication for the query 502.

by microNNs for different concepts, we normalize the output
values for each concept so that the maximum and minimum
are 1 and -1, respectively. For each shot, we calculate the sum
of the output values of the microNNs for the selected concepts
to use as the overall score representing the appropriateness of
the shot for the query.

In preliminary experiments, we tested how summation and
multiplication combine the output values for selected concepts.
We use summation because it outperformed multiplication on
the data tested. For the query 502, Fig. 3 shows a comparison
between the retrieval results using multiplication (upper row)
and those using summation (bottom row). Although these
results are similar in terms of the top-ranked shots, they
are different for lower-ranked shots. In particular, the 50th
shot retrieved using multiplication shows a “woman” which
is irrelevant to the query 502, while the 50th shot retrieved
using summation is still relevant to the query. One reason
for this is that multiplication is sensitive to errors in concept
detection. More specifically, when using multiplication, the
overall score of a shot becomes very small even if only
one concept related to the query is not detected (i.e., the
corresponding microNN outputs a very low value). Compared
to multiplication, summation is more tolerant to errors in
concept detection.

III. EVALUATION EXPERIMENT RESULTS

Fig. 4 shows retrieval results for kobe nict siegen D M 1
and kobe nict siegen D M 3. Each row shows the results for
one query by displaying key frames of the shots ranked in the
first, second, third, 50th, 100th, 500th and 1000th positions.
Each key frame is selected as the middle frame in a shot.
The results for queries 502, 503, 525 and 529 are obtained
using kobe nict siegen D M 1. The first two queries show
the effectiveness of transferring microNNs from the image
to the video domain, while the last two queries indicate
the insufficiency of microNNs that are trained only in the
image domain. The result for the query 509 is obtained using
kobe nict siegen D M 3.

We demonstrate the utility of microNNs for the AVS task
using IACC.3.C. Fig. 5 shows a performance comparison
between kobe nict siegen D M 1, kobe nict siegen D M 2
and kobe nict siegen D M 3 on each of the 30 queries. This
figure indicates that, for most of the queries, using imbalanced

training examples leads to a higher average precision than
using balanced training examples. This implies that, rather
than balancing the numbers of positive and negative examples,
it is more important to use numerous negative examples to
accurately determine the boundary between the presence and
the absence of a concept.

Fig. 6 presents a comparison between our methods and other
methods developed for the manually-assisted category in the
AVS task. Fig. 7 shows a comparison between our methods
and all other methods developed for the AVS task. In both
figures, the mean average precision (MAP) of each method is
represented by a bar. The MAPs of our methods are yellow.

As can be seen in Figs. 6 and 7, our method using LSTM
achieves the best accuracy of 0.047. In particular, the MAP
for query 509 using LSTM is more than three times higher
than the MAP not using LSTM. This means that LSTM can
successfully capture temporal characteristics for this query. On
the other hand, using LSTM degrades the performance for
some queries. One main reason is that our current method
has low sampling and only considers a small number of
frames in each shot. These frames are clearly insufficient for
appropriately capturing temporal characteristics in the shot.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have introduced AVS methods that use
microNNs to detect concepts related to a query. A microNN
has a simple small-scale structure compared to VGGNet, so
it can be efficiently learned for the large number of concepts
required for the AVS task.

For transfer learning based on a pre-trained CNN, an SVM
is often used as a classifier using features obtained from the
CNN. In comparison, our proposed micron classifier can be
trained more efficiently. In addition, it can be incrementally
refined using different training data. For example, the mi-
croNNs in this paper are first trained using the ImageNet
dataset, and are then refined using the TRECVID and UCF
101 video datasets. Although we manually extract concepts
from the query, automatic selection is easy because the rule
used in manual selection is very simple.

Our current method only samples one frame from every
30 frames in a shot. The experiment shows that this is
clearly insufficient for building an LSTM to capture temporal
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Fig. 4. An illustration of retrieval results for kobe nict siegen D M 1 and kobe nict siegen D M 3. Each row shows the results for one query by displaying
key frames of the shots ranked in the first, second, third, 50th, 100th, 500th and 1000th positions. Each key frame is selected as the middle frame in a shot.

characteristics. Hence, we will explore training of LSTMs
using more densely sampled video frames in the future.

Our current method works as an object recognizer to classify
an object located in the center of an input image. We aim to ex-
tend this to a scene recognizer by considering correspondences
across an entire image. This will allow us to acquire a more
detailed meaning of an image by combining the object and
scene recognizers. In addition, we plan to incorporate optical
flows acquired from image sequences into the microNNs so
that they can capture both spatial and temporal characteristics.
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V. APPENDIX

A. Comparison between microNN and SVM

We compare microNN and SVM on the dataset of
TRECVID 2015 Semantic indexing (SIN) task. Fig. 8 shows
APs and MAPs of microNN and SVM over 30 concepts. In
addition, For each of microNN and SVM, Table.I shows the
MAP and the average computation time taken for learning a
detector of each concept.

TABLE I
PERFORMANCE COMPARISON BETWEEN SVM AND MICRONN

approach MAP(%) Average learning time (second/concept)
microNN 0.1626 0.1385
SVM 0.2148 110.44



Fig. 8 indicates that for some concepts, APs of microNN are
slightly lower than those of SVM. On the other hand, Table I
presents that the learning speed of microNN is more than 1,000
times faster than that of SVM.

B. Optimization of microNN

We check the effect of unit number in a hidden layer of
microNN. Fig. 9 shows APs and MAPs over 30 concepts
in TRECVID 2015 SIN task using different unit numbers.
Although a clear tendency is not observed, 32 units yield the
best result and are used in our actual implementation.

Next, we examine the influence of the number of hidden
layers in microNN. Fig. 10 shows APs and MAPs obtained
using one hidden layer and two hidden layers. By increasing
the number of layers in the hidden layer, no improvement is
obtained, so we use only one layer of microNN in this method.

C. Scene recognition

While some concepts like Car and Airplane are related to
objects, others like Indoor and Beach are related to scenes.
Although most of CNNs are trained for object recognition,
we consider that the accuracy of concept detection can be
improved by additionally using CNNs trained for scene recog-
nition. Two-stream CNN is an independent learning method of
multiple information sources. In this research, scene recogni-
tion and object recognition are performed by Two-stream CNN
by miroNN. Two-stream CNN of scene recognition advances
learning with microNN which concatenates features extracted
by VGGNet and features extracted by Place CNDS (Place)
into a single higher-dimensional feature vector.

Using the dataset of TRECVID 2015 SIN task, we compare
the performance by microNN learned only with features ex-
tracted from VGGNet to the performance by microNN learned
with the combination of features extracted from Place and
VGGNet. In Fig. 11, the former is represented by the dotted
line while the latter is depicted by the solid line. In Fig. 11,
for concepts such as “planes” and “news casters”, the addition
of features extracted from Place significantly degrades the
performance. On the other hand, , it improves the performance
for concepts related to scenes such as “bridge”, “office”, “hill”
are greatly improved. Place has an adverse effect on the
identification of a concept expressing an object, but has a
beneficial effect on detecting concepts for scenes. Therefore,
it is expected that an overall performance can be improved
using an ensemble learning model that dynamically change the
combination of features extracted from VGGNet and Place.
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Fig. 10. Performance comparison due to number of layer
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Fig. 11. Performance comaprison between microNN learned only with
features extracted from VGGNet and features combining features extracted
from Place and VGGNet.


