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1 Localization

This year, we introduced Faster R-CNN[I] and LSTM to our last year’s system[?] which uses multi-
frame score fusion and neighor score boosting. Faster R-CNN, the state-of-the-art method for object
detection on still image, is used not only to detect objects but also to generate region proposals. An
LSTM layer is introduced to Faster R-CNN for action concepts. Our best result was 0.2582 in I-frame
F-score and 0.1393 in Mean Pixel F-score, which was ranked second among 3 teams participated.

1.1 Training Data

IACC.1.A-C data sets are used as development data[3]. They have shot-level annotations but their
bounding-box information are not provided. For target concepts, we manually annotated bounding-boxes
on the representative key-frames (RKFs) in each shot. For Sitting Down, we annotated every frame in
shots in order not to miss the actions done in a short period of time which are not overlapped on the
RKFs. Table I shows the numbers of annotated frames and those of bounding-boxes for each concept.

ID | Concept name # Annotated frames | # Bounding-boxes
1006 | Animal 11545 9155
1013 | Bicycling 599 1355
1016 | Boy 1848 2492
1038 | Dancing 2118 5199
1049 | Explosion_fire 2483 2402
1071 | Instrumental Musician 4923 7229
1100 | Running 945 1394
1107 | Sitting_Down 124682 515
1163 | Baby 898 895
1434 | Skier 320 521

Table 1: The numbers of annotated frames and bounding-boxes for each concept.

1.2 Methods

We introduced Faster R-CNN[0] and LSTM to our last year’s system[?] as follows. First, region
proposals are generated from sparse sliding windows by Region Proposal Network of Faster R-CNN. In
contrast to other object detection methods such as R-CNNJ4], SPP net[6] and Fast R-CNNJf], Faster R-
CNN can generate region proposals from sparse sliding windows. Second, the objects in region proposals
are classified and scored by Detection Network of Faster R-CNN. We use a network with an LSTM layer
for those concepts with action. Finally, Score Fusion and Score Boosting are applied for each region
proposals.

1.2.1 LSTM Layer

This year, the Localization task includes concepts with actions such as Dancing, Running and Sit-
ting_Down. It is hard to distinguish Sitting Down from stable Sitting by a single image. In order to deal
with this problem, we introduced an LSTM layer into our network. LSTM is one of recurrent neural
networks which can recognize sequential data. It is suitable for detecting actions that have long and short
context since it can memorize long and short term information. We replaced the second last layer of a
network with an LSTM layer.
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1.2.2 Score Fusion [2]

To improve robustness against varying object appearance in video, we employ multi-frame score
fusion which calculates scores on four extra frames for each key-frame provided. Extra four frames are
selected from P-frames succeeding each key-frame. Scores are calculated for each region proposal over
the key-frame and the four P-frames, and are averaged to generate a final score.

1.2.3 Score Boosting [2]

Similar objects often appear spatially or temporally close to each other over more than one key-frame.
For each key-frame, we increase the score of a region proposal which has a large overlap with a high scoring
region in the adjacent key-frames as follows:
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where t is a temporal index of a frame, R; is a set of region proposals in ¢-th key-frame, ry; is the i-th
region proposal in Ry, I(r;) and I'(r;) are scores before and after boosting of region 74, 8 is a boosting
multiplier, th is a detection threshold. We used the same values of 8 and th as last year’s submission.

1.3 Experiments

We used Faster R-CNN[l] with ZF net[d], the smallest network for Faster R-CNN, implemented on
Caffe [17] for our system. We chose it because of the shortage of GPU memory. We trained two networks;
one is a ZF net without an LSTM layer used for all concepts except Sitting Down and another is a
ZF net with an LSTM layer put on its second last layer used for Sitting_Down. We used an LSTM
implementation for Caffe[d] made by L. A. Hendricks[R]. We summarize our runs in the following.

faster

Faster R-CNN without an LSTM layer. This run is our baseline. Score Fusion and Score Boosting
are not applied.

fusion

Faster R-CNN without an LSTM layer. Score Fusion is applied.

fusion.lstm

Faster R-CNN with an LSTM layer for Sitting_ Down and without an LSTM layer for the other
concepts. Score Fusion is applied.

boost

Faster R-CNN without an LSTM layer. Score Fusion and Score Boosting are applied.

boost.lstm

Faster R-CNN with an LSTM layer for Sitting Down and without an LSTM layer for the other
concepts. Score Fusion and Score Boosting are applied.

1.4 Results

Our result is shown in Figure 0 with the other teams’ result. Our runs were second among 3 partici-
pating teams. A tendency of our scores among concepts was almost the same as other team’s as shown in
Figure B and Figure B. Concepts with actions such as Running and Sitting_Down were difficult to detect
for all teams.

As shown in Table B, the scores of runs with LSTM were worse than those without LSTM. F-scores
of runs with LSTM for Sitting_ Down were zeros. The LSTM layer seems to be failed to train. Score
Fusion and Score Boosting were worked well as in the last year. We achieved the best I-frame and mean
pixel F-scores on Sitting_Down. This may be due to the frame-wise bounding-box annotation described
in Section .
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Figure 1: Overview of results of the localization task in TRECVID 2016. Runs are sorted with I-frame
F-score. Our runs are labelled.
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Figure 2: I-frame F-score comparison among 10 Figure 3: Mean Pixel F-score comparison among
concepts. A dashed line shows the best scores 10 concepts. A dashed line shows the best scores
among all runs from all teams. A solid line shows among all runs from all teams. A solid line shows

the best scores among all runs from us.

the best scores among all runs from us.

Sitting_Down

mean

Name Methods I-Frame F | Pixel F | I-Frame F | Pixel F
faster None 0.0007 0.0003 0.0723 0.0266
fusion Fusion 0.0027 0.0010 0.1640 0.0890
fusion.lstm | LSTM, Fusion 0.0000 0.0000 0.1637 0.0889
boost Fusion, Boost 0.0063 0.0022 0.2582 0.1393

boost.lstm

LSTM, Fusion, Boost

0.0000 0.0000

0.2576 0.1391

The best scores among all teams

0.0063 0.0022

0.4499 0.2743

Table 2: The results of each method

. Bold runs are submitted. F stands for F-score.
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Figure 4: SVM structure

1.5 Conclusion

We proposed a localization system using Faster R-CNN with an LSTM layer. However, an LSTM
layer did not work well on our experiment. Our best run achieved 0.2582 in I-frame F-score and 0.1393
in Mean Pixel F-score, which were second among 3 participating teams. We try to find why we failed to
train an LSTM layer and re-train the network.

2 Multimedia Event Detection

In Multimedia Event Detection task of this year, we only use deep feature [[0]. To get video rep-
resentation, firstly we extract frames every two seconds, which are the key frames for each video, then
we extract deep feature [I] of each frame. We use two ways to do this MED task. First, we train one
SVM classifier for each event, while the the negative samples are those background videos. Second, we
train only one LSTM model which has twenty classes (twenty events of PS task and the background).
We submit runs under the condition with 10Ex and 100Ex for the Pre-Specified (PS) task and 10Ex for
the Ad-Hoc task. With the EvalSub dataset, our result ranked 5th among 7 teams in PS 100Ex, and 6th
among 10 teams in PS 10Ex.

2.1 Deep feature

This year we only used the feature in [I0], which is a representation learned from deep convolutional
neural networks. It tries to leverage the complete ImageNet hierarchy for pre-training deep networks.
To deal with the problems of over-specific classes and classes with few images, a bottom-up and top-
down approach is used for reorganization of the ImageNet hierarchy based on all its 21,814 classes and
more than 14 million images. We used the features at the pool5 layer, with a 1,024-dimensional frame
representation.
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Figure 6: The comparison of infAP200 (%) in 2016 for Pre-Specified task under 100Ex

2.2 SVM

For each video, first, we extract deep features of the key frames to get frame representations, then we
average them to get a video representation as shown in Figure @. We totally train thirty SVM classifiers
for thirty events of PS task and Ad-Hoc task. The positive samples are different within twenty events,
while for negative samples we use same background videos for all SVM classifiers.

2.3 LSTM

Considering that each video consists of several sequential frames, which are relational, recurrent neural
network (RNN) may be a good way to deal with this MED task. Long short-term memory (LSTM) is a
RNN architecture (an artificial neural network), however, unlike traditional RNNs, an LSTM network is
well-suited to learn from experience to classify, process and predict time series when there are very long
time lags of unknown size between important events. We use nn package of Torch [I1] to do the LSTM
experiment, while the sequence of each video are variable. Unless SVM part, in which we train thirty
classifiers for thirty events, we only train one LSTM model for 100Ex of Pre-Specified task, where the
output is twenty-one classes, that is, twenty events and background.

2.4 Results

Our primary system only use deep features. This setting is common among all conditions: PS 100Ex,
PS 10Ex, AH 10Ex. We also did LSTM experiment only with PS 100Ex. From Table 1, we can see that
SVM results are greatly better than the LSTM results in evaluation set, however, in test dataset the gap
between these two methods were not that huge.

2.5 Conclusion

This year we only consider deep feature, and two ways are used in this task, while the SVM gets
better results than LSTM. With the EvalSub dataset, our result ranked 5th among 7 teams in PS 100Ex,
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Figure 7: The comparison of infAP200 (%) in 2016 for Ad-Hoc task

Method | EvalSub | EvalFull
LSTM 1.7 0.9
SVM 41.5 31.7

Table 3: The comparison of SVM and LSTM

and 6th among 10 teams in PS 10Ex. Though it didn’t get good results till now, we will focus on LSTM
structure for event detection as our future work.
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