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Abstract

This year, the PicSOM group participated only in the Video to Text (VTT), Description Generation subtask. For our submitted
runs we used either the MSR-VTT dataset only, or MS COCO and MSR-VTT jointly for training. We used LSTM recurrent
neural networks to generate descriptions based on multi-modal features extracted from the videos. We submitted four runs:
• PICSOM 1: uses ResNet features for initialising the LSTM generator, and object and scene-type detection features as persistent

input to the generator which is trained on MS COCO + MSR-VTT,
• PICSOM 2: uses ResNet and object detection features for initialisation, and is trained on MS COCO + MSR-VTT, this is the

only run based on our new PyTorch codebase,
• PICSOM 3: uses ResNet and video category features for initialisation, and trajectory and audio-visual embedding features for

persistent features, trained on MSR-VTT only,
• PICSOM 4: is the same as PICSOM 3 except that the audio-visual embedding feature has been replaced with audio class

detection outputs.
The most significant difference between our runs came from expanding the original MSR-VTT training dataset by including
MS COCO, which contains images annotated with captions. Having a larger and more diverse training set seems to bring larger
improvements to the performance measures than using more advanced features. This finding has been confirmed also by our
post-submission experiments that we are still continuing.

I. INTRODUCTION

In this notebook paper, we describe the PicSOM group’s
experiments for the TRECVID 2018 evaluation [1]. We par-
ticipated only in the Video to Text Description (VTT) subtask
for Description Generation. Our approach is a variation of
“Show and tell” model [2], augmented with a richer set
of contextual features [3]. This year we are transitioning
from an old Theano-based neural captioning system to a new
PyTorch-based one, mainly because the new code base will
make future development and experimentation easier from a
practical standpoint. Both systems have been used to produce
the runs presented in this paper, and they are described in more
detail in Section II. Next, we describe the features (Section III)
and datasets used for training (Section IV). Our experiments,
submitted runs and results are discussed in Section V and
conclusions are drawn in Section VI.

II. NEURAL CAPTIONING MODELS

In our experiments we have used two different Python-based
software projects for caption generation. The first and older
one, NeuraltalkTheano, uses the Theano library whereas the
second and newer one, DeepCaption, uses the PyTorch library.

A. NeuraltalkTheano

The Theano-based neural captioning system is described in
our recent paper [3], and the source code of the implemen-

tation is freely available.1 The neural architecture is similar
to the one proposed in [2], but adds several novel properties
including residual connections between the LSTM layers, and
the effective usage of persistent features. Persistent features are
given as an additional input to the recurrent model at each step
of the caption generation, while in the typical setup features
are used only for initializing the LSTM generator. The loss
function is Cross Entropy between the real caption and the
probabilities of the caption produced by the model. A full
description of the method can be found in [3].

B. DeepCaption

This year we have started to develop a new PyTorch code
base, also available as open source.2 The goal is to re-
implement NeuraltalkTheano in a PyTorch architecture that
is more maintainable in the long run, and thus facilitate faster
development and experimentation. So far we have not yet
implemented all the features of NeuraltalkTheano, in particular
beam search and residual connections are still missing and
have thus not been used in the DeepCaption-based result
presented here.

The features are translated to the hidden size of the LSTM
by using a fully connected layer. We apply dropout and
batch normalization [4] at this layer. As the loss function, we

1https://github.com/aalto-cbir/neuraltalkTheano
2https://github.com/aalto-cbir/DeepCaption
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similarly use Cross Entropy, in addition to the Reinforcement
Learning Self-critical loss function [5] in order to fine-tune a
well-performing model. The fine-tuning is implemented either
by switching to this loss in training time or by specifying a
pre-trained model to load.

III. FEATURES

In this section we describe the visual and auditory features
used in our experiments. Table I summarizes the features and
their dimensionalities. In the cases when an image modality
feature extraction method has been applied to a video object,
we have used the middlemost frame of the video.

TABLE I
SUMMARY OF THE FEATURES USED IN OUR EXPERIMENTS.

abbr. feature dim. modality
rn ResNet 4096 image

frA Faster R-CNN 480 image
frB Faster R-CNN 80 image
s SUN397 397 image
c category 20 image
t trajectory 5000 video

as audioset 527 audio
mm multimodal 2048 multimodal

A. CNN

We are using two types of CNN features, one representation
for still images, including single video frames, and one for the
sequence of images, i.e. videos. Both architectures are based
on the ResNet [6] model.

Image features, we are using pre-trained CNN features
from ResNet 101 and 152. The 2048-dimensional features
from the pool5 layer average to five crops from the original
and horizontally flipped images. These features have then been
concatenated together and are referred to as “rn” in Table I
and later in this article.

Video features, on the video level, when there is a sequence
of 16 images, we are using a 3D CNN ResNet architecture
with 152 layers [7], where final fully connected layers are
removed to produce a 2048-dimensional feature vector. These
features are fed to the language model.

B. FasterRCNN

The types of objects and their locations in the visual scene
have an effect on sentence formation and influences the adjec-
tives used in human sentences. To extract this information, we
use an object detector, specifically the Faster Region-based
Convolutional Neural Network (R-CNN) [8]. This network
predicts the object locations as bounding boxes and object
detection scores of the 80 object categories of Microsoft
Common Objects in Common Context (MS-COCO) database.3

We use these object proposals to create object location maps.
We divide the image into independent m horizontal and n
vertical strips. The vertical and horizontal cells will thus
overlap and the total number of cells is m+ n.

3http://cocodataset.org/

We first define a grid on the image where each of the cells,
Fc(i), accumulates the integral of Gaussian distributions fit to
the object proposals of the class category c as

Fc(i) =
∑

bk∈BB(c)

∫∫
bk∩G(i)

p(bk)N(center(bk), diag(bk)) , (1)

where BB(c) is the set containing bounding box object
proposals for category c, p(bk) is the confidence assigned by
the detector to proposal bk, G(i) is the grid cell at position
i and N(µ, σ) are Gaussians of given mean µ and standard
deviation σ. In our experiments we used m = n = 3 and
abbreviate these (3 + 3)× 80 = 480 -dimensional features as
“frA”.

We can further reduce the feature size by discarding the
location information completely and just encoding the object
detection scores on the image level. We obtain such an 80-
dimensional feature vector using the detection score for each
category, and refer to it as “frB”. For brevity of notation,
concatenation of “frA” and “frB” to 560-dimensional features
will be abbreviated as “frAB” in the tables below.

C. Semantic concept and category features

For still images, we use a scene-type cue as a feature to
the language model. We detect the scene-type using a bank
of specialized visual scene detectors trained on CNN fea-
tures extracted for the SUN Scene Categorization Benchmark
database.4 Scene-type classifiers are designed using Radial
Basis Function Support Vector Machine (RBF-SVM) [9]. CNN
features extracted from GoogLeNet [10] pre-trained on the
MIT Places dataset (from the 3rd classification branch) is used
to train a separate classifier for each variant. Each classifier
determines the degree of association of a given image to the
397 scene types of the SUN database. Thus, for an input
image, we form a 397-dimensional feature vector consisting of
these raw scene type scores in the range of [0, 1]. This feature
vector is referred to as “s” in Table I and below.

We also utilize the video category information, available in
the MSR-VTT, as a one-hot feature vector of 20 dimensions.
For the test set we have generated the corresponding feature
by training a set of 20 category detectors and using the MSR-
VTT category information as training data. For this purpose,
we again used RBF-SVM classifiers and GoogLeNet features
extracted using an ImageNet pre-trained model. This feature
vector is referred to as “c”.

D. Trajectory features

For encoding genuinely video content, we use trajectory
features. Dense trajectories [11] and their histogram of ori-
ented gradients (HOG), histogram of optical flow (HOF), and
motion boundary histogram x and y directions (MBHx and
MBHy) descriptors are first extracted for the entire video.
These five features are separately encoded into a fixed-size
vector using a bag-of-features encoding with a codebook of
1,000 vectors. Each codebook was obtained using k-means

4https://groups.csail.mit.edu/vision/SUN/
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clustering on 250,000 random trajectory samples from the
training set. Finally, concatenating the vector encodings of
each of the descriptors results in a video feature vector of
5000 dimensions. This feature vector is referred to as “t” in
our tables.

E. Audio features
The provided audio features are the occurrence probabilities

for the 527 classes of the Google AudioSet Ontology[12].
AudioSet contains over 2 million 10-second human-labeled
soundtracks segmented from YouTube videos. Each sound-
track can have multiple labels such as “acoustics guitar” or
“door bell”. Instead of providing the original audio files,
AudioSet gives compact 128-dimensional embeddings which
are the output of a modified VGG model, namely VGGish, for
the log-mel spectrogram of audio with around a length of one
second. Thus the dimension of the training data is 10 × 128
after being fed into the VGGish.

Inspired by the work [13] and [14], we built a similar multi-
level attention model for the 10-second audio classification
and achieved a mean average precision of 0.344. Since the
length of the audio files in TRECVID are around 6 seconds,
we decided to concatenate the same audio twice or more times
and then truncated the extra parts to match the 10-second
requirements. Finally, the modified 10-second audios are fed
into a multi-level attention model to get the probabilities. This
feature vector is referred to as “as” in Table I and below.

F. Multimodal features
To encode audiovisual information, we adopted a joint

embedding space based on the ResNet [6] deep neural ar-
chitecture. The architecture has two branches, one for audio
and one for video. The audio branch consists of 7 residual
convolution blocks and accepts a log spectrogram as input. The
log spectrogram, corresponding to one second of audio data, is
processed into a vector of 2048 prior to the combination with
the video data by going through two fully-connected layers.
On the video branch, we use the video features described in
Section III-A. The output of the audio branch is used to re-
weight the video branch weights. These combined responses
are then fed into another fully connected layer, producing a
vector of size 2048.

For training we borrow the weights for the video branch
from pre-trained models of [7], which are trained on the
kinetics database [15]. For the audio part, we train our network
on the speech commands database [16] and then, borrow
the weights from this model. The audio-visual embedding is
then trained on an auxiliary task, namely action recognition.
Afterwards, the obtained feature representations from this new
architecture, referred to as “mm” in Table I, are used for
multimodal caption generation.

IV. TRAINING DATA

Here we describe the datasets used for training our caption-
ing models. Table II gives a summary of the databases and the
features we have extracted for them. In Tables II and III, we
have shortened the dataset names with one letter abbreviations.

TABLE II
SUMMARY OF THE TRAINING DATASETS USED IN OUR EXPERIMENTS.

dataset items captions features
C COCO 82,783 img 414,113 rn frAB s
M MSR-VTT 6,513 vid 130,260 rn frAB s c t as mm
T TGIF 125,713 vid 125,713 rn frAB s
V MSVD 1,969 vid 80,800 rn frAB s

A. COCO

The Microsoft Common Objects in COntext (MS COCO)
dataset [17] has 2,500,000 labeled instances in 328,000 im-
ages, consisting on 80 object categories. COCO is focused on
non-iconic views (or non-canonical perspectives) of objects,
contextual reasoning between objects, and precise 2D local-
ization of objects.

B. MSR-VTT

The MSR-Video to Text (MSR-VTT) dataset [18] provides
10,000 web video clips with 41.2 hours and 200,000 clip-
sentence pairs in total, covering a comprehensive list of 20
categories and a wide variety of video content. Each clip
was annotated with about 20 natural sentences. Additionally,
the audio channel is provided too. It is intended to foster
spatio-temporal information modelling and pooling strategies
in video data, as well as make a broader range of domains
available as opposed to previous datasets.

C. TGIF

The Tumblr GIF (TGIF) dataset [19] contains 100,000
animated GIFs and 120,000 natural language sentences. This
dataset aims to provide motion information involved between
image sequences (or frames). Authors explain that focusing
on a limited series of still frames, often without narrative or
need for context, and always without audio is an easier step
towards full video understanding.

D. MSVD

The Microsoft Research Video Description Corpus
(MSVD) [20] consists of 85,000 English video description
sentences and more than 1,000 for a dozen more languages.
Gathering efforts for this dataset presented early crowd-
sourcing methodologies for video annotation. It contains a
set of 2,089 videos, showing a single, unambiguous action or
event. Additionally, descriptions of the same video segment
can then be used as translation data if they are in different
languages.

V. EXPERIMENTS AND RESULTS

During the development stage, we ran a number of ex-
periments to select the best combinations of features and
training data. We evaluated our results using the previously
released TRECVID VTT 2016 test set. The four runs that we
finally submitted are identified as “s1” to “s4” in Table III.
Runs “b1” to “b4” we had created also before the submission
deadline and we evaluated them locally when the 2018 ground
truth was released. Then, experiments “a1” and “a2” were



TABLE III
RESULTS OF OUR SUBMISSIONS (S1,. . . , S4) AND SOME NOTEWORTHY PRE (B1,. . . , B4) AND POST (A1,. . . , A4) EXPERIMENTS.

setup 2016 2018
id mod loss init pers data METEOR CIDEr METEOR CIDEr CIDErD BLEU STS
b1 dc ce rn – C+M 0.2135 0.2620 0.1513 0.1584 0.0471 0.0110
b2 dc ce rn+frAB – C+M 0.2186 0.2872 0.1515 0.1714 0.0475 0.0082
b3 nt ce rn+c t M 0.2005 0.2379 0.1415 0.1495 0.0364 0.0051
b4 nt ce rn frAB+s C 0.1890 0.1907 0.1675 0.1808 0.0641 0.0091
s1 nt ce rn frAB+s C+M 0.2147 0.2886 0.1488 0.1720 0.0450 0.0053 0.3806
s2 dc ce rn+frB – C+M 0.2214 0.2750 0.1540 0.1660 0.0480 0.0091 0.3739
s3 nt ce rn+c t+mm M 0.2039 0.2437 0.1468 0.1520 0.0390 0.0055 0.3676
s4 nt ce rn+c t+as M 0.2021 0.2413 0.1464 0.1590 0.0400 0.0048 0.3713
a1 dc ce rn+frAB+s – C+M+T 0.2238 0.3158 0.1562 0.1910 0.0525 0.0122
a2 dc ce rn+frAB+s – C+M+T+V 0.2300 0.3080 0.1654 0.1984 0.0653 0.0166
a3 dc ce rn – C+T 0.2343 0.2997 0.1776 0.1948 0.0700 0.0197
a4 dc ce+sc rn – C+T 0.2562 0.4827 0.2058 0.2843 0.1028 0.0298

performed before the workshop and reported in the notebook
draft, whereas “a3” and “a4” were run after the workshop.

For the NeuraltalkTheano system (abbreviated as “nt” in
Table III), the beam size in the caption generation stage was
varied and it was found out that the models consistently
performed best with beam size equal to one. For this reason
we did not yet implement beam search for the DeepCaption
system (abbreviated as “dc” in Table III), instead we used a
simple greedy selection approach equivalent to having beam
size one.

With the NeuraltalkTheano system we first tried using either
only the COCO training data or only the MSR-VTT training
data. These are seen as runs “b3” and “b4” in Table III,
respectively. With the MSR-VTT training data we were also
able to experiment with the multimodal “mm” and audioset
“as” features, which was not possible with the image-only
COCO data. These experiments are seen as submissions “s3”
and “s4” in the result table, respectively. The best results
with the 2016 testing data were obtained when the COCO
and MSR-VTT data were used together by using only the
visual modality and the middlemost video frames of the latter
dataset. We regarded this as our overall best result when
evaluated as the CIDEr score on the 2016 testing data and
submitted it as “s1”. For all our NeuraltalkTheano experiments
we varied the combinations of the used features for the LSTM
model initialization and for the persistent features. The feature
combinations shown in Table III provided the best results on
the 2016 testing data. We also varied the beam search size, but
without an exception, the best results were always obtained
with the beam size equal to one.

Based on evaluation on the TRECVID 2016 test set, we
ended up using a 2-layer LSTM for DeepCaption with an
embedding vector size of 512 and 1024 for the hidden state
dimensionality. Exceptionally the runs “a1” and “a2” use 1024
for the embedding vector, which seems motivated as well by
the larger dimensionality of the input features. Both in the
input translation layer and in the LSTM we applied a dropout
of 0.5. We used centered RMSprop [21] with a learning rate
of 0.001 and weight decay (L2 penalty) of 10−6.

The last experiment “a4” starts from the “a3” pre-trained
model, minimizing Self-critical loss “sc” instead of the previ-
ous Cross Entropy “ce”. To compute the rewards for the loss,
CIDEr metric is used by providing all the reference captions
for an image. This is the same way as it would be done in the
test time, following the indications of the paper [5].

All experiments are briefly summarized and their results
presented in Table III. The five “setup” columns specify the
captioning model (nt=NeuraltalkTheano, dc=DeepCaption),
the loss function (ce=Cross Entropy, sc=Self-critical), the
initializing and persistent features, and the datasets used in
the LSTM model training.

The features are concatenations of the following:
rn = ResNet, see III-A

frA = Faster R-CNN 480-dim, see III-B
frB = Faster R-CNN 80-dim, see III-B
s = SUN397, see III-C
c = Category of 20 video genres, see III-C
t = Trajectory, see III-D

as = Audioset, see III-E
mm = MultiModal, see III-F

The used datasets are concatenations of the following
datasets, each described in one of the subsections of the
previous section:

C = COCO, see IV-A
M = MSR-VTT, see IV-B
T = TGIF, see IV-C
V = MSVD, see IV-D

Our results compared to those of the other submitted runs
are visualized with bar charts for each automatic performance
measure in Figures 1–5.

VI. CONCLUSIONS

The most practical conclusion for our group’s internal use
is that we have been successful in replacing our old Theano-
based captioning system with a new PyTorch-based one that
has overtaken the old system in performance.

Compared to the level of performance reached by some
of the other research groups we are, however, still clearly
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Fig. 1. METEOR results of our group and others.
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Fig. 2. CIDEr results of our group and others.

behind. We will still need to continue our efforts to improve
the evaluation scores obtained by our DeepCaption system.

Comparing the results we obtained by using the 2016 VTT
test data and those obtained with this year’s test data, we
can draw two conclusions. First, this year’s results seem to
be clearly worse than those of 2016. This will need further
studies as the number of reference captions has increased from
two to five, which in general should have had the opposite
effect on the results. Second, it seems that we were not able
to choose the best-performing models among the variants we
experimented with, based on the evaluation scores with the
2016 data.

The pre-submission results obtained by using only the
COCO training data now seem to be very competitive. In
general, however, our results indicate that using more training
data, even with only one image frame for each training set
video, is more beneficial than using genuinely video, audio or
multimodal features.

Our final post-workshop experiments evince the promise of
Self-critical learning as the final tuning method.
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Fig. 3. CIDErD results of our group and others.
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Fig. 4. BLEU results of our group and others.
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