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Abstract. Due to participation in TRECVID ActEV[1] competition, we con-

ducted research on temporal activity recognition. In this paper, we propose an 

architecture DT-3DResNet-LSTM to classify and temporally localize activities 

in videos. D represents that our system firstly detects objects in video frames. T 

represents that we use these detected results, as input to object tracking model, 

which can achieve data association information among adjacent frames of mul-

tiple objects. Lastly, we input clipped video frames of different objects into 3D 

Convolutional Neural Network to achieve features and then train a recurrent 

neural network that learns to classify video clips. What’s more, we process the 

output of RNN model to get the final classification of input video and determine 

the temporal localization of input video. 
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1 Introduction  

In recent years, activity recognition of videos has important applications in many 

scenarios, such as video surveillance, content-based video retrieval, and automotive 

autopilot technology.  

Traditionally, video activity recognition [2,3,4,5] is completed by extracting the 

features from the video frames and building a mathematical model of the status corre-

sponding to the features. Along with the rapid growth of deep learning, convolutional 

neural networks have been generally used in computer vision and activity recognition 

[6,7,8,9,10,11]. 

Significant progress has been made in research on video classification 

[11,12,13,14], which is supervised learning based on given labels. While this task has 

been very challenging, the current video datasets have been preprocessed to clear 

temporal information. However, a complete video recognition system needs to identi-

fy the activity in the unprocessed video and locate the start and end frames of the 

activity.  

In this paper, we would like to solve the problem: given an unprocessed video, 

identify the activity and find the temporal localization of the activity. We proposed an 
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architecture to solve the problem in three processes, which is object detection, object 

tracking and activity classification. Using this and other related work as a baseline, we 

then make the following two contributions: 

1.3DResNet LSTM network: we use 3D ResNet CNN [15] model pretrained in 

Kinetics [16] dataset to get the features of input video, and then we feed the feature 

into Long short-term memory (LSTM) [7] network to find the actual temporal locali-

zation. We show that combine CNN and RNN will get more accurate result of activity 

classification and temporal localization. 

2.Object tracking in video: our proposed tracking model ignore this objects that 

are predicted to be the same object but has a far distance between frames. Also, we 

compute the Intersection over Union (IoU) between predicted bounding box and de-

tected bounding box to get object type of tracking objects. 

As far as we know, this work is the first time to combine deeper 3D CNNs with 

RNN for activity classification task. Previous research shows deeper 2D CNNs has a 

good performance on the ImageNet dataset [17]. However, it is not taken for granted 

that deeper 3D CNN will also perform well in video activity recognition because the 

number of video datasets is less than the number of image datasets. The results of this 

study, which indicate deeper 3D CNNs are effective on activity classification, can be 

expected to promote the development of video recognition. And combined with 

LSTM, we can more accurately find the temporal localization of activities. 

2 Proposed Architecture 

As Fig. 1. shows, we promoted an activity recognition architecture that contains 

three different sections. First, we use Faster-RCNN [22] to detect the target object in 

video frames. Second, we use Kalman filter [39] to track detected different objects 

and then generate numerous continuously clipped frames which contains tracked ob-

jects. Third, we use 3DResNet [15] and LSTM [7] to classify activities and accurately 

temporally localize activities.  

In addition, in the Kalman filter target tracking process, we compute the IoU (In-

tersection over Union) between Kalman filter prediction frame and actual frame. The 

predicted bounding box whose IoU value is greater than a certain threshold will be 

output, and the target class corresponding to the frame detected by the video frame is 

actually given, thereby improving the overall recognition accuracy. 
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Fig. 1.  The proposed activity recognition architecture which contains three sub-processes. 

Object detection model is applied to generate the correct bounding box of objects. Object track-

ing model uses the results of object detection model and then track different objects among 

frames. Activity recognition model works as the final process of activity recognition architec-

ture to output the final prediction of temporal localization and classification of input videos. 

2.1 Faster RCNN Object Detection 

Since the main targets of the ActEV surveillance video task are pedestrians and 

vehicles, target detection is an important basis for subsequent activity identification. 

We use the Faster RCNN [22] with VGG16 [40] as the bottom feature of the video 

frame for object detection. The Faster RCNN network framework is shown in Fig. 2. 

For an arbitrary input image, the VGG16 model is used to obtain image features. The 

last layer of feature map is conv5-3. The RPN (Region Proposal Network) network 

performs a 3×3 convolution on the conv5-3 layer, followed by a 512-dimensional full-

connection layer, and the full-connection layer is followed by two sub-connection 

layers, which are used for the classification and regression of anchors, and then get 

the proposals through calculation screening. The anchors are a set of fixed-size refer-

ence windows, there are 3 scales and 3 aspect ratios. The ROI Pooling layer uses the 

generated proposal to extract the feature from the feature maps for pooling, and then 

enters the Fast RCNN network for classification and regression. Fast RCNN [21] 

identifies and classifies the proposals extracted from the RPN network, and then ad-

justs the regression parameters to obtain the precise location of the target. 

Fig. 2.  The architecture of Faster RCNN. The features extracted by VGG16 were fed into RPN 

to generate proposals and also used with the generated proposals to ROI pooling. ROI pooling 

layer make the input proposals resize to the same output size and then feed into FAST RCNN 

to achieve classification and bounding box. 

2.2 Kalman Filter Object Tracking 

As Algorithm 1 shows, we use the results of Faster RCNN as the input of object 

tracking model. The system output is tracking positions and types of detected objects. 

The system records the previous processed frame number and to prevent the frame 

number of two adjacent frames is greater than a threshold value which can reducing 

the possibility of false tracking. What’s more, when the frame number difference 

between two adjacent frames is smaller than a certain threshold, we compute the IoU 

(Equation 1) value between the predicted results and actual bounding box positions. If 

the IoU is bigger than a certain value, the tracking result will be added to final results. 
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The final results include valid frame number, object type and object position of de-

tected objects in each video frame. 

                                    DetectionResult GroundTruth
IoU

DetectionResult GroundTruth
=

             (1) 

We describe the object model, i.e. the representation and the motion model used 

to propagate a target’s identity into the next frame. We estimate the inter-frame 

movements of each object via a linear constant velocity model which is irrelevant of 

other objects and camera motion. The status of each object is modeled as: 

                                        ' ' '[ , , , , , , ]Tx u v s r u v s=                                             
 (2) 

where u and v indicate the horizontal and vertical pixel location of the center of the 

target object, while the scale s and r indicate the scale (area) and the aspect ratio of 

the target object’s bounding box respectively. When a detection is related to a target, 

the detected bounding box is used to regenerate the target status where the velocity 

elements are computed optimally through a Kalman filter [38]. If no detection is re-

lated to the target, its status is briefly forecasted without rectification using liner ve-

locity model. 

 

2.3 3DResNet+LSTM Activity Classification 

Previous research [16,41] shows that 3D CNNs does not perform well on UCF-

101, HMDB-51, and ActivityNet datasets whereas 3D CNNs trained on Kinetics per-

forms well. Deeper 3D CNNs may have good performance compared to shallow 3D 

CNNs. However, deep 3D CNNs have more parameters needed to learn through train-

ing, as a result, huge datasets are required to prevent overfitting when training this 

deep CNNs. Kinetics is a big enough dataset so we use this dataset to pre-train our 

ResNet model. 



5 

A basic ResNets block includes two convolutional layers, which is followed by 

batch normalization and a ReLU. A shortcut connection is between the input of the 

block and the layer before last ReLU model. To prevent many parameters needed to 

learning of superficial networks, we apply identity connections and zero padding for 

the shortcuts in basic blocks. 

ResNeXt add a different component in terms of depth and breadth, which is 

called cardinality. Different from the original bottleneck block, the ResNeXt block 

partitions feature maps into small groups, which is called group convolutions. Cardi-

nality represents the number of middle convolutional layer groups in the bottleneck 

block. In their study, Xie et al. showed that using more cardinality in 2D architectures 

can achieve more effectively compared with using wider or deeper ones [42]. In this 

study, we using the cardinality of 32 to assess the result of ResNeXt-101 on activity 

recognition, as shown in Fig. 3. 

Fig. 3.  Block of ResNeXt architecture. We represent conv, x3, F as the kernel size,and the 

number of feature maps of the convolutional filter are x×x×x and F, respectively, and group as 

the number of groups of group convolutions, which partition the feature maps into small 

groups. BN represents batch normalization. 

To improve the accuracy of temporal activity detection, as Fig. 4. depicted, we add 

LSTM (Long Short-Term Memory units) behind the 3DResNet output layers to clas-

sify a sequence of video frames. LSTMs are a type of RNNs that are able to exploit 

long and short temporal correlations in sequences, which makes them suitable for 

video applications. LSTMs have been used alongside CNNs for video classification 

[14] and activity localization in videos [43]. 
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Fig. 4.  Overview of proposed activity classification framework. Temporal features of inputted 

clipped video frames were extracted from a temporal CNN using 3D ResNet(middle-left) pre-

trained on Kinetics. The features were then fed into a stack of recurrent sequence models 

(LSTMs, middle-right), which finally produce a prediction (right). 

We design a network that extracts a sequence of C3D-f6 features of input video, 

and outputs a sequence of class probabilities for each 16-frames clip. We use LSTM 

layers, trained with dropout with probability p = 0.5 and a fully connected layer with a 

softmax as activation function. Fig. 4. shows our proposed architecture. 

Given a processed clipped video, the prediction of our model is a series of class 

probabilities for each 16-frame video clip. We processed the output to predict the 

activity class and get temporal localization. First, to obtain the activity prediction of 

the whole video, we average the class probabilities over all video clips generated by 

object tracking model. Second, we choose the class which has the maximum probabil-

ity among all candidate classes. 

In order to achieve the temporal localization of predicted activity clipped video, 

we first apply a mean filter of k samples to the predicted series to make the values 

become smoothly through time (see Equation 3). Then, for each 16-frames clip we 

predict the probability of activity and no activity, and the activity probability is the 

summation of all probabilities of activity classes, and the no activity probability is the 

probability that this video clip belongs to background class. Finally, only clips with a 

probability value bigger than a certain threshold γ can be saved and marked as previ-

ously predicted class. Notice that, for each video clip, all predicted temporal results 

are activity class type. 
~ 1

( ) ( )
2
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j i k

p x p x
k

+

= −

= 
                                                   (3) 
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3 Experiments 

Fig. 5.  Result of object detection model. We use the given bounding box information of person 

and vehicle to train a Faster RCNN model and use this model to detect objects in video frames. 

Number one in image represents person and number two represents vehicle. 

We train a Faster RCNN model to detect specified objects such as person and 

vehicle in VIRAT Video Dataset and detected result is shown in Fig. 5. We use detec-

tion bounding box results which has confidence more than 0.5. 

 

 Fig. 6.   Results of object tracking model in VIRAT video dataset. The top graph is original 

video frames. And the left graph is the tracking result of a moving vehicle on the top of the 

image. And the right graph is the tracking result of a moving pedestrian. 

We feed the results of object detection model into object tracking model, and 

track the motion of different objects among adjacent frames to achieve multiple se-
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quences of video frames which clipped according to detected bounding box infor-

mation as shown in Fig. 6. 

 

 

Fig. 7.   Results of p_missAtRfa_AOD in 12 activities. 

4 Conclusion 

In this study, we propose an architecture for classification and temporal localiza-

tion of activities in videos. Our architecture contains three inter-related processes. 

First, we use Faster RCNN as object detection model to detect objects which probably 

become a participant of a specific activity. Second, we feed the results of object de-

tection into object tracking model to generate several sequences of video frames about 

detected objects. Third, we use 3DResNet to get features of temporal video frames 

and LSTM to locate the temporal position of activities more accurately. 
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