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In this notebook we describe our TRECVID 2006 experiments. We TokyoTech team participated in
shot boundary detection and high-level feature extraction tasks.

1 Shot Boundary Detection

Our approach to shot bondary detection uses SVMs with generic features. Using the radial kernel for
SVMs, we ignore the difference among the types of gradual transitions (i.e. FOI, DIS, and OTH).
We classify shot boundaries into the following three categories.

e Cuts(CUT)
e Gradual transitions with five frames or less (Short Gradual; SG)
e Gradual transitions with more than five frames (Long Gradual; LG)

We prepare a kernel function and a feature set for each of these categories.

1.1 Cut Detection

Since shot boundaries with less than five frames are classified as “cuts” in the TRECVID evaluation, the
results for SG are added to the results in CUT, and are submitted as the results for “cuts”. For the
cut detection, we use two linear kernel SVMs (one for CUT and the other for SG) with different feature
sets. The features for a CUT-SVM are activity ratio (the ratio of “dynamic” pixels to all pixels, where
each dynamic pixel has larger difference than a predetermined threshold), the opticalflow, the change in
the Hue-Saturation color histogram and edge. The features for SG-HMM are the activity ratio and the
change in the Hue-Saturation color histogram.
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Figure 1: The shot boundary detection framework.



training number of thresholds ALL cuT GRAD GRAD(frame)
run | data portion | SG cost | LG cost for activity ratio R P R P R P R P
1 first half 1 2 2 79.7 | 82.2 | 87.0 | 81.9 | 59.9 | 83.7 | 66.1 94.0
2 last half 1 2 2 79.9 | 82.3 | 87.2 | 81.9 | 60.2 | 83.7 | 65.4 94.1
3 all 1 2 2 79.8 | 82.1 | 87.1 | 81.8 | 60.2 | 83.6 | 65.4 94.1
4 all 2 2 2 81.3 | 81.4 | 89.1 | 81.0 | 60.2 | 83.0 | 65.4 94.1
5 all 1 2 1 79.1 | 83.3 | 85.9 | 83.3 | 60.5 | 83.4 | 65.4 94.1
6 all 2 2 1 80.6 | 82.6 | 83.0 | 82.6 | 60.4 | 82.7 | 65.5 94.1
7 all 1 3 2 80.8 | 81.0 | 87.2 | 81.3 | 63.4 | 79.8 | 67.3 92.6
8 all 2 3 2 82.2 | 80.3 | 89.2 | 80.6 | 63.3 | 79.3 | 67.4 92.6
9 all 1 3 1 80.0 | 82.1 | 86.0 | 82.8 | 63.7 | 79.7 | 67.3 92.6
10 all 2 3 1 81.5 | 81.4 | 88.1 | 82.1 | 63.5 | 79.1 | 67.5 92.6

Table 1: The conditions and performance of submitted ten runs

Gradual transition Recall | Precision
SVMs 60.93 78.26
SVMs + additional detector | 70.80 81.23

Table 2: Comparison of the performance of the main and additional experiments.

1.2 Gradual Detection

For gradual detection, we use one radial kernel SVM (LG-SVM). The features for this SVM are the
difference (an average of absolute differences between successive two frames), the optical flow, the change
in the Hue-Saturation color histogram and edge. When the frames detected as CUT/SG are overlapped
with those detected as LG, we classify them as CUT/SG.

1.3 Experiment

We used test data of TRECVID 2005 shot boundary detection to train these SVMs. We selected feature
type and parameters of SVMs based on 2-fold cross-validation. Our 10 runs differ in the portion of data
used for training, cost-factors of SVMs, and the number of thresholds for activity ratio. By changing the
cost-factor of SVM, we can emphasize the positive examples (i.e, shot boundary).

Table 1 shows the whole results of our submission. Comparing our detection results with correct
labels, we found that many of the LG transitions our system failed to detect involved luminance changes
(e.g, FOI). This is probably because we employed the Hue-Saturation color space to obtain roboustness
against luminance variation (e.g, flashlights). To overcome this problem, we prepared an additional
simple detector using the Saturation-Value color space dedicated to these transitions, and conducted an
additional experiments with 2-fold cross-validation on the TRECVID 2005 test data. Table 2 compares
the performance of our former system and that of the system with the additional detector. The additional
detector significantly improved recall rates while maintaining precision rates.

2 High-level Feature Extraction

For the high-level feature extraction task, we use only visual features of keyframe images. Maximum
entropy models [1] are employed to model these visual features.

2.1 Visual Features

We use a sparse image representation [2] based on affine-invariant regions, which are thereafter represented

by visual words and color features. Figure 2 briefly shows the visual feature extraction process.
Affine-invariant regions are detected by Harris-Affine and Hessian-Affine detectors. To obtain affine

invariance and rotation invariance, the regions are normalized to a circular region, then rotated to the
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Figure 2: Overview of our visual feature extraction process

direction of the dominant gradient orientation. Finally we compute two kinds of features representing
the region in the following way.

Visual words The region is first described with a 128 dimensional SIFT descriptor. This descriptor is
then quantized with codebooks, which are constructed in advance for each high-level feature. We
call this quantized descriptor “visual word”.

Color features For each region, a 100-dimensional histogram in the Hue-Saturation color space is com-
puted. Each region is considered to have a color feature when more than half of its pixels are in
the single corresponding bin of the color histogram.

2.2 Classifiers

We use a maximum entropy model (MEM) [1] to classify the presence/absence of each of the high-level
features. A MEM estimates the posterior distribution of label (presence or absence) given the features
of a keyframe image. We use the implementation of MALLET [3].

2.3 Feature Selection

Color information is effective for some high-level features, but not so effective for others. Similarly, each
high-level feature has a suitable codebook size. Therefore, for each high-level feature, we tried to select
the combination of feature types (e.g, color features, visual words from codebook size 150, visual words
from codebook size 200, and so on) by 5 fold cross-validation. In this cross-validation, 70% of the videos
were randomly selected as a training set, and remaining 30% were used for testing.

2.4 Experiments

We used the TRECVID 2005 training data set to train the MEM. The A_Techl_2 run was trained on
the complete training set using all the features. On the other hand, for A_Techl_1 run, the feature
selection technique mentioned above was used. We constructed a codebook for each high-level feature
by clustering SIFT descriptors from keyframe images having the high-level feature. When there existed
more than 2000 relevant keyframes, randomly sampled 2000 keyframes were used. Figure 3 shows the
classification performance of our 2 runs (A_Techl_1 and A_Techl_2). Most of our performance is below
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Figure 3: Performance of A_Techl_1 and A_Techl_2 in terms of inferred average precision

the median except flag-US and animal. We also found that there is no big difference of performance
between the two runs.

2.5 Conclusions and Future works

In this paper, we reported experimental results for our preliminary system. To improve the performance,
our future work includes the following topics.

e To enhance the visual features (e.g, motion, shape context descriptor).

e To utilize the transcription of speech data.

e To model the temporal correlation and the inter-class relation of high-level features.
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