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Abstract—This paper reports our experiments for TRECVID
2009 tasks: high level feature extraction, search and content-
based copy detection. For the high level feature extraction task,
we used the baseline features such as color moments, edge
orientation histogram, local binary patterns and local features
trained with SVM classifiers and nearest neighbor classifiers. For
the search task, we used . Concerning content based video copy
detection (CBVCD), using local features leads to good robustness
to most types of photometric or geometric transformations.
However, to achieve both good precision and good recall when
the transformations are strong, especially occlusions, feature
configurationsshould be taken into account. This usually leads to
complex matching operations that are incompatible with scalable
copy detection. We suggest a computationally inexpensive solution
for including a minimal amount of configuration information
that significantly improves the balance between overall detection
quality and scalability.

I. H IGH LEVEL FEATURE EXTRACTION

A. Method Overview

In our framework, features are extracted from the input
keyframe images representing for shots. We extracted five
keyframes per shot that are spaced out equally within the
provided shot boundary. In the training stage, we used these
features to learn SVM classifiers and nearest neighbor clas-
sifiers. These classifiers were then used to compute the raw
output scores for each test image in the testing stage. These
output scores were further fused by taking the average for
computing the final output score. In order to returnK shots
most relevant for one concept query that then are evaluated
and compared in TRECVID benchmark, all normalized final
output scores of shots are sorted in descending order and top
K shots are returned. In the case of a shot consisting of several
sub-shots, only the maximum score among subshots’ scores is
used for that shot.

As for feature extraction, we used types of global features
color moments, color histogram, edge direction histogram

and local binary patterns; and local features using SIFT (c.f.
Table I). These features are extracted from a nxn grid of
the input image, normalized to zero mean and unit standard
deviation and then stored for training and testing. Specifically,
the normalized vector
xnorm = (xnorm

1 , xnorm
2 , ..., xnorm

N ) of an input raw vector
xraw = (xraw
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N ) is defined as follows:
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The number of positive shots for each concept is small, so
we enlarged the positive set by extracting 5 keyframes from
each positive shot and manually revised annotation of these
keyframes. As for the concepts used in the TRECVID 2008,
we used the annotations shared by LIG and ICT-CAS. As
for the new concepts of TRECVID 2009, we only used 100
positive shots per concept.

LibSVM 1 is used to train SVM classifiers with RBF kernel.
The optimal (C, g) parameters are found by conducting a
grid search with 5-fold cross validation on a subset of 1,500
samples stratified selected from the original dataset.

As for nearest neighbor classifiers, firstly, we construct a
SASH [1] indexing structure on top of the set of all training
examples. The SASH takes a test item as input and retrieves
k training examples, that are considered similar in terms of

1http://www.csie.ntu.edu.tw/∼cjlin/libsvm



Feature Description

nsc.cCV MIXED.g3.qx.g lbp20+g cm3
+g3.qx.g eoh36+g3.qx.gch16

Early fusion of features such as color moments,
local binary patterns, edge orientation histograms,
and color histograms

nsc.cCV MIXED.g3.qx.g lbp20+g cm3+g3.qx.geoh36
Early fusion of features such as color moments,
local binary patterns, and edge orientation histograms

nsc.cCV MIXED.g3.qx.g lbp20+g cm3
Early fusion of features such as color moments,
and local binary patterns extracted from 3x3 grid image

nsc.cCV MIXED.g5.qx.g lbp30+g cm3
Early fusion of features such as color moments
and local binary patterns extracted from 5x5 grid image

nsc.cCV GRAY.g5.q30.glbp
Local binary patterns extracted from 5x5 grid image
and quantized into 30 bins per region

nsc.cCV HSV.g5.q3.gcm
Color moments extracted from 5x5 grid image
in HSV color space

nsc.cCV RGB.g5.q3.gcm
Color moments extracted from 5x5 grid image
in RGB color space

nsc.DoG.sift.part-1000.M1000.m50.bow

Bow model using SIFT and tf for weighting.
The keypoint detector provided by D. Lowe was used
to extract keypoints in images

TABLE I
THE FEATURES USED FOR THEHLF TASK.

the Euclidean distance of the item’s feature vectors, in time
O(k + log n).

Given a test item we retrieve20 similar items from the
SASH. In order to cope with noise we derive a class label by
a majority vote, that is, the class label observed most often
among those20 near neighbors is elected.

Since the fraction of positive and negative examples in the
20 retrieved items only provides a very coarse weighting,
we use the distance∆ between the test item and the closest
training example (from among the20 examples retrieved from
the SASH) to determine our vote’s certainty: If we vote for a
positive example, we apply the weight1/∆, otherwise−1/∆.

B. Result

We submitted 6 runs and the results are shown in Table II.
There are two typea runs among the 6 runs that only use
TRECVID 2005 dataset. Our best run is NII.SECODE.R1
(MAP 0.110). However, the run using only two features of
color moments and local binary patterns can achieve 0.096
MAP. In addition, our trial on using nearest neighbor classifiers
is bad. It concludes that K-NN is not suitable for this task.

II. SEARCH

A. Method Overview

We used the following methods to return shots for each
query:

- Visual search using SVM: We trained concept detectors
corresponding to queries. In other words, each query is served
as one concept. We used the same approach with the HLF task
to train concepts where example keyframes for each query (5
keyframes were extracted for each example shot) are positive
samples, and keyframes picked randomly from the training
set of the HLF task are negative samples. The trained concept
detectors were then used to predict test keyframes and top
1,000 shots were selected based on the prediction score.

- Visual search using KNN: We used KNN described in the
HLF task to rank keyframes.

- Concept selection using visual feature: We used 30 concept
detectors of the HLF task in 2008 and 2009, and did prediction
on query video examples. The prediction scores for each
keyframe that are above the threshold of 0.5 were selected and
the concepts corresponding to these scores were selected. The
fused detection scores of these concept detectors on test shots
were used to rank these shots. For example, using our method,
as for query 270 ’Find shots of a crowd of people, outdoors,
filling more than half of the frame area’, there are two concepts
detected in video examples that are DemonstrationOr Protest
and Hand. For each keyframe in the test set, we fused the
prediction scores of the two concepts and used it for ranking
the keyframes.

- Concept selection using textual description: We used the
textual description of each query and that of the 30 concepts
described above for matching. After obtaining the candidate
concepts, the same method with concept selection using visual
feature was used to rank keyframes in the test set.

As for high precision runs (P run), we simply picked top
10 shots returned by the corresponding N-run.

B. Result

We submitted 10 runs (fully automatic) and the results are
shown in III. Our best run (FA N NII.SEVIS.R1) achieves
MAP 0.065. The run based on concept selection using vi-
sual feature(FA N NII.SEVIS.R3) is effective with MAP
0.050. The performances of runs (FA N NII.SEVIS.R5 and
F A N NII.SEVIS.R6) using example keyframes to train
detectors are not good. It indicates that pre-trained concept
detectors are good for the search task.

III. C ONTENT-BASED COPY DETECTION

A. Introduction

Experience with reused video content shows that the most
frequent transformations concern gamma and contrast changes,
scaling, cropping, blurring, compression artifacts and video



RunID Description MAP

A NII.SECODE.R1

Fusion of 8 features: 7 global features (color moments, local binary patterns,
color histogram and edge orientation histogram and early fusion of
these features) and 1 local features 0.110

A NII.SECODE.R2
Fusion of 5 global features derived from
color moments and local binary patterns only 0.096

A NII.SECODE.R3

Local feature using DoG+SIFT as keypoint detector+descriptor.
The vocabulary is formed by using RSC clustering with 725 clusters.
BoW model uses tf for weighting 0.040

a NII.SECODE.R4

Fusion of 8 features as ANII.SECODE.R1.
However the training set is different.
It used TV2005 dataset (US news video) 0.041

a NII.SECODE.R5

Fusion of 5 global features as ANII.SECODE.R2.
However the training set is different.
It used TV2005 dataset (US news video) 0.040

A NII.SECODE.R6
KNN-based classifier using early fusion of features
such as color moments, local binary patterns, edge orientation histogram 0.013

TABLE II
THE PERFORMANCE OFNII’ S RUNS FOR THEHLF TASK.

Fig. 1. The performance of the run using color moments and local binary patterns.

RunID Description MAP

F A N NII.SEVIS.R1

Fusion of the methods such as visual search using SVM,
concept selection using visual feature,
and concept selection using textual description 0.065

F A N NII.SEVIS.R2
Fusion of the methods such as visual search using SVM,
and concept selection using visual feature 0.048

F A N NII.SEVIS.R3 Concept selection using visual feature 0.050

F A N NII.SEVIS.R4
Fusion of the methods such as concept selection using visual feature,
and concept selection using textual description 0.051

F A N NII.SEVIS.R5 Visual search using SVM 0.032
F A N NII.SEVIS.R6 Visual search using KNN 0.003

F A P NII.SEVIS.R7

Fusion of the methods such as visual search using SVM,
concept selection using visual feature,
and concept selection using textual description 0.22

F A P NII.SEVIS.R8
Fusion of the methods such as visual search using SVM,
and concept selection using visual feature 0.13

F A P NII.SEVIS.R9 Concept selection using visual feature 0.16

F A P NII.SEVIS.R10
Fusion of the methods such as concept selection using visual feature,
and concept selection using textual description 0.14

TABLE III
THE PERFORMANCE OFNII’ S RUNS FOR THE SEARCH TASK.



Fig. 2. Steps for database construction and self query.

inlays (logos, frames, text). Trecvid contest also includes noise
addition, change of ratio, and picture in picture transforma-
tions. In Trecvid the amplitude of the transformations is large,
and some may be seen as extrem. Concerning TV09 CBVCD
we aim to propose a solution offering a good balance between
accuracy and computation costs so as to be scalable.

Note that we are using a framework for video database min-
ing. We construct a database using descriptors from reference
database and queries then a similarity self join is performed.
However we here added a constraint on the ID of the videos in
order to make impossible any match between two videos from
the reference database or between two videos from the queries.
Figure 2 sums up the processings used for TV09 CBVCD. The
different steps are detailed in the following sections.

B. Video Copy Detection

1) Features extraction:For obtaining a good accuracy
(precision and recall) we have prefered local descriptions,
which have shown the best results in many papers. However
this choice has basically many drawbacks concerning time
consumption and so scalability. First, the extraction of the
descriptors is usually very expensive. For performing it faster
we have chosen to use only keyframes (about 3000 per hour),
which implies a keyframe detector. We also have limited the
number of extracted descriptors to 150 per keyframe.

Concerning the detector of Point of Interest (PoI) we have
used the Improved Harris Corner Detector [13]. It runs faster
than the DoG detector or the Hessian detector. Then we
compute the local descriptor from [11] at these positions. It is
a compact descriptor, only 20 dimensions. Its computation is
far faster than SIFT. However note that this descriptor is not
invariant to scale and so we did not expect to find any copies
based on transformation 2 (Picture in picture type 1), what is
confirmed by our results.

This first set of choices allows to make scalability possible.
The whole extraction process needs 1/20 of real time with a
2.4Ghz simple core and 1/35 using the two cores.

However indexing of the local descriptors is also necessary
for performing querying the database in a reasonnable time.

Fig. 3. Glocal signatures for a set of 6 local features with 3 different
quantizations (at a depth of 2, 3 and 4) of a 2D description space.

Indexing methods for local descriptors, such as [7], [11] could
have been used. But to further improve the scalability of the
method, we have chosen to use a frame descriptor that embeds
the local descriptions. This description relies on a quantization
of the description space and is described in next section. It
is quite close to the well known bag of features []. Such a
description allows to simplify the voting process needed with
local descriptors after querying, thus reducing the computation
costs.

2) The Glocal description:We start by briefly presenting
the description and indexing method put forward in [12],
that serves as basis for our approach. The detection of the
video sequences that occur more than once (with various
modifications) in a video database begins with the extraction
of keyframes from all the videos, using an algorithm finding
the maxima of the global intensity of motion (leading, on
average, to 1 keyframe / second). Then, a similarity self-join
operation is performed on the set of keyframe descriptions,
based on a specific indexing method. Eventually, these links
between individual keyframes allow to find the matching video
sequences.

Instead of directly using the set of signatures (descriptions)
of the local features extracted from a frame, in [12] this
set is first embedded into a fixed-length binary vector. The
embedding procedure is: (i) given the local features of a set
of frames, the description space (not the image plane) is
adaptively partitioned at a limited depthh, which produces
2h cells that are numbered according to some consistent rule
(see Fig. 3); (ii) for each frame, its Glocal signature is the
binary vector where the biti is set to1 only if the description
(signature) of at least one local feature of the frame falls within
cell i.

The Dice coefficient was employed to measure similarity
between Glocal signatures,SDice(g1,g2) = 2 |G1∩G2|

|G1|+|G2|
, where

Gi is the set of bits set to1 in the signaturegi and| · | denotes
set cardinality.

For the similarity self-join operation, the database of Glo-
cal signatures is divided into overlappingbuckets(stored as
inverted lists) such that, in each bucket, any two signatures
are sufficiently similar. A self-join is then independently
performed within each bucket. Following [12], a bucket is
defined by a specific set of 3 bits that are set to 1 in at least one
Glocal signature in the database. Every signature has several
bits set to 1 (depending on the number of local features). Each



Fig. 4. Feature triplets selected in the original frame (top line) and in the
copy (bottom line), with the previous rules (left) or with the new locality
constraint (right).

signature can be stored in all the buckets that are defined by
all the combinations of 3 bits set to 1 in the signature. This
produces a redundant index. Next section describes how the
combinations are selected.

To find the pairs of similar keyframes, the similarities (Dice
coefficients) between Glocal signatures are computed within
each bucket; if the similarity is above a decision thresholdθ,
the identifiers of both keyframes are stored as a link. Here
we serθ = 0.1 for the BALANCED run andθ = 0.3 for
the NOFA run. At the end of this self-join operation, all the
resulting pairs of connected keyframes are eventually usedfor
recovering the matching video sequences.

3) Locality-based bucket definition:Some of the triplets
selected by these rules are represented by triangles on the
left side of Fig. 4, for an original keyframe (top) and for a
copy (bottom) where the video inlay replaced a large part of
the frame. It can be seen that the triplets link local features
that are quite distant in the image plane and are unlikely to
be preserved by strong cropping or video inlays. Since such
transformations alter the longer-range structure of the frame
but maintain part of the short-range structure, we here take
into accountlocality in the image plane when selecting the
triplets that define the buckets where the Glocal signature of
the frame is indexed. The impact of the locality constraint is
obvious when comparing with the left side of the same figure.

The selection and indexing procedure is: for each local
featurefi in the frame, (i) find its 10 nearest neighbors (10NN)
in the image plane; (ii) the first triplet consists offi together
with its 2NN and the corresponding bucket is identified by
the numbers of the cells indescription spacewherefi and its
2NN are found; (iii) the second triplet consists offi together
with its 3rd and 4th nearest neighbors, and so on, defining then
5 triplets for fi; (iv) store (or index) the Glocal signature of
the frame into these three buckets. Two local featuresfi anf
fj may share a triplet, if so, one or the other is withdrawn

(they are identical). This selection rule thus exploitsboth
the positions of the features in description space and their
neighborhood in the image plane.

For the locality constraint to be meaningful and in order
to cover well all the small salient areas of a frame, the
number of local features considered in the frame should be
high enough. But an increase in the number of local features
considered has an impact on the time and space complexity of
the CBVCD-based mining operations. Indeed, the number of
buckets necessarily increases with the number of local features
per frame. Also, having more features per frame may require
a finer partitioning of the description space, which implies
longer Glocal signatures that take more space and require more
time for computing Dice coefficients. At the same time, the
length of the individual buckets is likely to diminish. After
various experiments we have setL = 150 the maximum
number of local features used. Quality improvements from
L = 100 to L = 150 was significant, but no more from
L = 150 to L = 200.

4) Use of simple configuration information:Locality con-
straints reinforce robustness of the indexing scheme to trans-
formations that alter the longer-range structure of the frame
while keeping part of the short-range structure. Additional
local geometric information should improve discrimination
power and thus allow to reach both better detection precision
and better recall.

A bucket is identified by using two neighbors (among
the 10NN) of a local featurefi in the frame. It is then
natural to associate in that bucket, to the Glocal signatureof
the frame, data describing the relations between the feature
fi and the two neighbors. The data we add is the ratio
between the shortest side and the longest side of the triangle
formed in the image plane by the featurefi and the two
neighbors considered. This simple information is robust to
translation, rotation and (isotropic) scaling, but not to more
general affine transforms like scaling with very different ratios
in two different directions (anisotropic scaling). An equivalent
choice would have been the angle ̂neighbor1 fi neighbor2, but
the computation of the length ratio is less expensive. Sincethis
information only considers the positions of the local features
in the image plane and not their individual descriptions, itcan
be employed even with local descriptions that do not include
any orientation information. Also, it is only dependent on
the robustness of the local feature detector and not on the
robustness of the feature description.

According to our indexing scheme, the Glocal signature of
a frame is stored in every bucket selected by the locality-
based rule, together with the ratio between the shortest side
and the longest side of the triangle between the local features
identifying that bucket. This is shown in Fig. 5. A similarity
self-join is then performed in each bucket independently ofthe
other buckets. This operation now involves a joint condition,
including both the similarity between the Glocal signatures
and the similarity between their corresponding ratio data.The
thresholdθr on the difference between ratios is given by the
expected error of the local feature detector and by the required



Fig. 5. Bucket selection for a frame signature, using both feature location
in description space and locality constraints in image plane.

robustness to anisotropic scaling. This ratio informationcan
be stored in low precision. We here usedθr = 0.1 both for
the BALANCED and NOFA runs.

The thresholdθs on the Dice coefficient above which two
Glocal signatures are considered to match is the decision
threshold and has a key role in defining the balance between
precision and recall. Two keyframes are considered to be in
“copy” relation if their Glocal signatures collide in at least one
bucket, their Dice coefficient is aboveθs and the difference
between ratios in that bucket is lower thanθr. Actually,
the ratios are comparedfirst and then, if their difference is
< θr, the Dice coefficient between the two Glocal signatures
is computed. Since the comparison of two small precision
numbers is much less expensive than the computation of the
Dice coefficient between the two Glocal signatures (especially
for long signatures), this pre-filtering using simple localcon-
figuration information actually saves significant computation
time, at the expense of little additional space.

5) Video Sequences Matching:Finally, we obtain a set of
pairs of matching keyframes between all couples of videos.
For each couples we then look for some time consistency
between these pairs using the time codes. We here have a
set of contraints. First, a copy sequence must contain at least
CL pairs of keyframes (CL = 2 for the BALANCED run
and CL = 3 for the NOFA run). Second, two following
matching pairs must appear withinCT seconds (CT = 5
for the BALANCED run andCT = 3 for the NOFA run).
Third, there can be an time offset between two following pairs
but it must be shorter thanCO seconds (C0 = 0.4 for the
BALANCED run andC0 = 0.2 for the NOFA run). The copy
sequences respecting these constraints are kept.

6) Results:The following graphs show our results (Fig. 6).
Dots represents our run, squares the better runs and dashes the
median score. Concerning the BALANCED run, our result are
quite satisfying, always better than median one, and sometimes

not so far from the best one. The mean processing times are
almost the better ones. The NOFA run is less interesting, the
parameter set seems to strict but however let some false alarms
occured, which strongly penalyzes the score. Processing times
are still the same.

C. Video + Audio Copy Detection

The audio-only copy detection scheme is based on the
fingerprint extraction method proposed by Haitsma [14]. The
confidence score is defined by1−BER, whereBER denotes
the Bit Error Rate between two audio segments. We fuse the
video-only and audio-only copy detection results at decision
level. We tried two operators, one isAND and the other isOR.
In the case ofAND, a pair of two segments is determined as a
copy if and only if it is detected by both video-only and audio-
only methods; in the case of OR, a pair of two segments is
determined as a copy if it is detected by either video-only or
audio-only methods. For the fusion of the confidence score,
we used the weighted average method. We assume that the
confidence of the audio-only method is higher than that of the
video-only one. Therefore, a higher weight (0.65) is associated
to the confidence score of the audio-only results. The weight
of the video-only results is thus1 − 0.65 = 0.35.

We have two types of video-only results, which can be re-
spectively denoted byBALANCED-Video andNOFA-Video.
For the audio-only method, we have only one result list.
Then we used two operators. Thus, we have four runs, which
are respectively denoted byBA, BO, NA, and NO. The
explanation of these four runs is as follows.

BA: BALANCED-Video result andAND operator are used
BO: BALANCED-Video result andOR operator are used
NA: NOFA-Video result andAND operator are used
NO: NOFA-Video result andOR operator are used
We submitted all of these four runs for bothBALANCED

and NOFA application profiles. In other words, we finally
have eight runs. As we expected,BO produced the lowest
Min NDCR for both BALANCED and AND application
profiles (Fig. 7). This is because, the number of false alarms
is very small for bothBALANCED-Video andNOFA-Video
results, while the number of misses ofNOFA-Video results
is much larger than that ofBALANCED-Video ones. On
the other hand, the usage ofAND operator rejected many
correct results, so the runs usingOR operator produced lower
Min NDCR than those usingAND operator.

D. Conclusion

TRECVID CBVCD task includes several transformations
with various strenght. Since transformations like strong crop-
ping and video inlays alter the longer-range structure of
the frame but maintain part of the short-range structure, we
suggest to take into accountlocality in the image plane
when indexing the video keyframes. We further include in
the indexing and matching processes simple local geometric
data, involving the nearest neighbors of a feature in the image
plane. This data is selected to be as robust as possible to the
most common types of image transformations. This method
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Run name:                           NII.v.nofa.Embed02
Run type:                           video-only
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Fig. 6. BALANCED (left) and NOFA (right) runs of video copy detection
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Run name:                           NII.m.balanced.BO
Run type:                           audio+video
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TRECVID 2009: copy detection results (no false alarms application profile)
 
Run name:                           NII.m.nofa.BO
Run type:                           audio+video
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Fig. 7. BALANCED (left) and NOFA (right) runs of video + audiocopy detection (BO)



give a good balance between quality of the results, both for
precision and recall, and is a scalable solution.
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