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Abstract—This paper reports our experiments for TRECVID and local binary patterns; and local features using SIFT (c.
2009 tasks: high level feature extraction, search and content- Taple ). These features are extracted from a nxn grid of

based copy detection. For the high level feature extraction task the input image, normalized to zero mean and unit standard
we used the baseline features such as color moments, edge !

orientation histogram, local binary patterns and local features deviation and then stored for training and testing. Spedific
trained with SVM classifiers and nearest neighbor classifiers. For the normalized vector

the search task, we used . Concerning content based video copyz™®"™ = (x°"™, x5°"™™ .., x%"™) of an input raw vector
detection (CBVCD), using local features leads to good robustngs ,rew — (zhow z5ev . 27ev) is defined as follows:

to most types of photometric or geometric transformations.

However, to achieve both good precision and good recall when (259 — 1)

the transformations are strong, especially occlusions, feature ZT; —
configurationsshould be taken into account. This usually leads to

complex matching operations that are incompatible with scalable ~ where z*"™ and z}** is the i-th element of the feature

copy detection. We suggest a computationally inexpensive solutionyectors z°"™ and 2"** respectively, N is the number of

for m_cluqll_ng a mlnlmal amount of configuration mformatlon_ dimensions is the meanu; = % Z?\le;aw and o is the
that significantly improves the balance between overall detection o =
standard deviation

quality and scalability.

g

I. HIGH LEVEL FEATURE EXTRACTION 1
| 7= \| (5 o - w)?
A. Method Overview N~
In our framework, features are extracted from the input The number of positive shots for each concept is small, so
keyframe images representing for shots. We extracted fifg enlarged the positive set by extracting 5 keyframes from
keyframes per shot that are spaced out equally within thgch positive shot and manually revised annotation of these
provided shot boundary. In the training stage, we used th‘i«?yframes. As for the concepts used in the TRECVID 2008,
features to learn SVM classifiers and nearest neighbor class sed the annotations shared by LIG and ICT-CAS. As
sifiers. These classifiers were then used to compute the W ihe new concepts of TRECVID 2009, we only used 100
output scores for each test image in the testing stage. Thgggitive shots per concept.
output scores were further fused by taking the average for| j,sym 1 s used to train SVM classifiers with RBF kernel.
computing the final output score. In order to retuinshots e optimal (C,g) parameters are found by conducting a

most relevant for one concept query that then are evalgagrqjd search with 5-fold cross validation on a subset of 1,500
and compared in TRECVID benchmark, all normalized findlymples stratified selected from the original dataset.

output scores of shots are sorted in descending order and t0Rs for nearest neighbor classifiers, firstly, we construct a
K shots are returned. In_the case of a shot conS|st|ng,of steveggSH [1] indexing structure on top of the set of all training
sub-shots, only the maximum score among subshots’ scoregjgmples. The &sH takes a test item as input and retrieves

used for that shot. k training examples, that are considered similar in terms of
As for feature extraction, we used types of global features

color moments, color histogram, edge direction histogramthttp://www.csie.ntu.edu.twécjlin/libsvm



Feature Description
Early fusion of features such as color moments,

nsc.cCV MIXED.g3.gx.g Ibp20+g cm3 local binary patterns, edge orientation histograms,
+g3.0gx.g eoh36+g3.gx.och16 and color histograms

Early fusion of features such as color moments,
nsc.cCV_MIXED.g3.gx.g Ibp20+g cm3+g3.gx.geoh36 | local binary patterns, and edge orientation histogramg
Early fusion of features such as color moments,

nsc.cCV.MIXED.g3.gx.g Ibp20+g cm3 and local binary patterns extracted from 3x3 grid image
Early fusion of features such as color moments
nsc.cCV.MIXED.g5.gx.g Ibp30+g cm3 and local binary patterns extracted from 5x5 grid image
Local binary patterns extracted from 5x5 grid image
nsc.cCV GRAY.g5.q30.glbp and guantized into 30 bins per region
Color moments extracted from 5x5 grid image
nsc.cCV HSV.g5.q3.gcm in HSV color space
Color moments extracted from 5x5 grid image
nsc.cCV.RGB.g5.93.gcm in RGB color space

Bow model using SIFT and tf for weighting.
The keypoint detector provided by D. Lowe was used
nsc.DoG .sift.part-1000.M1000.m50.bow to extract keypoints in images

TABLE |
THE FEATURES USED FOR THEHLF TASK.

the Euclidean distance of the item’s feature vectors, iretim - Concept selection using visual feature: We used 30 concept
O(k + log n). detectors of the HLF task in 2008 and 2009, and did prediction
Given a test item we retriev@0 similar items from the on query video examples. The prediction scores for each
SAsH. In order to cope with noise we derive a class label byeyframe that are above the threshold of 0.5 were seleciéd an
a majority vote, that is, the class label observed most oftéme concepts corresponding to these scores were seletted. T
among thos&0 near neighbors is elected. fused detection scores of these concept detectors on tast sh
Since the fraction of positive and negative examples in theere used to rank these shots. For example, using our method,
20 retrieved items only provides a very coarse weightings for query 270 'Find shots of a crowd of people, outdoors,
we use the distancA between the test item and the closedilling more than half of the frame area’, there are two corngep
training example (from among & examples retrieved from detected in video examples that are Demonstra@nProtest
the SAsSH) to determine our vote’s certainty: If we vote for saand Hand. For each keyframe in the test set, we fused the
positive example, we apply the weightA, otherwise—1/A. prediction scores of the two concepts and used it for ranking
B. Result the keyframes. _ _ o
. , - Concept selection using textual description: We used the
We submitted 6 runs and the results are shown in Table {1 5| description of each query and that of the 30 concepts
There are two type: runs among the 6 runs that only US§yeqerined above for matching. After obtaining the caneidat
TRECVID 2005 dataset. Our best run is NIl.SECODE.Rl,ncents the same method with concept selection usinglvisu
(MAP 0.110). However, the run using only two features %ature was used to rank keyframes in the test set.
color moments and Io_cal bina_ry patterns can achie\_/e _O'O%As for high precision runs (P run), we simply picked top
MAP. In addition, our trial on using neare;t nelghborglbsm 10 shots returned by the corresponding N-run.
is bad. It concludes that K-NN is not suitable for this task.

Il. SEARCH B. Result
A. Method Overview We submitted 10 runs (fully automatic) and the results are
hown in Ill. Our best run (FA_N_NII.SEVIS.R1) achieves
AP 0.065. The run based on concept selection using vi-

query: sual feature(FA_N_NII.SEVIS.R3) is effective with MAP

- Visual ;earch “5"?9 SVM: We trained concept d?teCtobs.OSO. The performances of runs_@& N_NII.SEVIS.R5 and
corresponding to queries. In other words, each query |$x§er\f: N_NIL.SEVIS.R6) using exajlm?:)le_ keyframes to train

as one concept. We used the same approach with the HLF tgs g :
: ectors are not good. It indicates that pre-trained qance
to train concepts where example keyframes for each query

tectors are good for the search task.

keyframes were extracted for each example shot) are pssitiv
samples, and keyframes picked randomly from the training I1l. CONTENT-BASED COPY DETECTION
set of the HLF task are negative samples. The trained concept
detectors were then used to predict test keyframes and t%p
1,000 shots were selected based on the prediction score.  Experience with reused video content shows that the most
- Visual search using KNN: We used KNN described in thifequent transformations concern gamma and contrast esang
HLF task to rank keyframes. scaling, cropping, blurring, compression artifacts andewi

We used the following methods to return shots for ea

Introduction



RunID Description MAP
Fusion of 8 features: 7 global features (color moments, locedrp patterns,
color histogram and edge orientation histogram and easiofuof
A_NIL.SECODE.R1 | these features) and 1 local features 0.110
Fusion of & global features derived from
A_NIL.SECODE.R2 | color moments and local binary patterns only 0.096
Local feature using DoG+SIFT as keypoint detector+desatip
The vocabulary is formed by using RSC clustering with 725 telss
A_NII.SECODE.R3 | BoW model uses tf for weighting 0.040
Fusion of 8 features as_ANII.SECODE.RI.
However the training set is different.
a NI.SECODE.R4 | It used TV2005 dataset (US news video) 0.041
Fusion of 5 global features as NII.SECODE.R2.
However the training set is different.
a NIl.SECODE.R5 | It used TV2005 dataset (US news video) 0.040
KNN-based classifier using early fusion of features
A_NII.SECODE.R6 | such as color moments, local binary patterns, edge orientaigiogram 0.013
TABLE ||
THE PERFORMANCE OMNII' S RUNS FOR THEHLF TASK.
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Fig. 1. The performance of the run using color moments and ldcalry patterns.
RunID Description MAP
Fusion of the methods such as visual search using SVM,
concept selection using visual feature,
F_A_N_NILLSEVIS.R1 | and concept selection using textual description 0.065
Fusion of the methods such as visual search using SVM,
F_A_N_NII.SEVIS.R2 | and concept selection using visual feature 0.048
F_A_N_NIL.SEVIS.R3 | Concept selection using visual feature 0.050
Fusion of the methods such as concept selection using vieaalre,
F_A_N_NILLSEVIS.R4 | and concept selection using textual description 0.051
F_A_N_NILSEVIS.R5 | Visual search using SVM 0.032
F_A_N_NILLSEVIS.R6 | Visual search using KNN 0.003
Fusion of the methods such as visual search using SVM,
concept selection using visual feature,
F_A_P_NII.SEVIS.R7 and concept selection using textual description 0.22
Fusion of the methods such as visual search using SVM,
F_A_P_NII.SEVIS.R8 and concept selection using visual feature 0.13
F_A_P_NII.SEVIS.R9 Concept selection using visual feature 0.16
Fusion of the methods such as concept selection using vieaalre,
F_A_P_NI.SEVIS.R10 | and concept selection using textual description 0.14

TABLE Il
THE PERFORMANCE ORNII’ S RUNS FOR THE SEARCH TASK
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|

Video sequence matching Indexing methods for local descriptors, such as [7], [11]ldo

have been used. But to further improve the scalability of the
Fig. 2. Steps for database construction and self query. method, we have chosen to use a frame descriptor that embeds
the local descriptions. This description relies on a quatitin
of the description space and is described in next section. It
inlays (logos, frames, text). Trecvid contest also inchudeise is quite close to the well known bag of features []. Such a
addition, change of ratio, and picture in picture transfarmdescription allows to simplify the voting process needethwi
tions. In Trecvid the amplitude of the transformations igéa local descriptors after querying, thus reducing the comgon
and some may be seen as extrem. Concerning TV09 CBVEDsts.
we aim to propose a solution offering a good balance betweer2) The Glocal description:We start by briefly presenting
accuracy and computation costs so as to be scalable. the description and indexing method put forward in [12],
Note that we are using a framework for video database mititat serves as basis for our approach. The detection of the
ing. We construct a database using descriptors from referewideo sequences that occur more than once (with various
database and queries then a similarity self join is perfdrmemodifications) in a video database begins with the extractio
However we here added a constraint on the ID of the videosah keyframes from all the videos, using an algorithm finding
order to make impossible any match between two videos frdire maxima of the global intensity of motion (leading, on
the reference database or between two videos from the querayerage, to 1 keyframe / second). Then, a similarity séff-jo
Figure 2 sums up the processings used for TV09 CBVCD. Tleperation is performed on the set of keyframe descriptions,

different steps are detailed in the following sections. based on a specific indexing method. Eventually, these links
between individual keyframes allow to find the matching wide
B. Video Copy Detection sequences.

1) Features extraction: For obtaining a good accuracy Instead of directly using the set of signatures (descrigjio
(precision and recall) we have prefered local descriptior®f the local features extracted from a frame, in [12] this
which have shown the best results in many papers. Howew@t is first embedded into a fixed-length binary vector. The
this choice has basically many drawbacks concerning tirggbedding procedure is: (i) given the local features of a set
consumption and so scalability. First, the extraction of ttof frames, the description space (not the image plane) is
descriptors is usually very expensive. For performing stéa adaptively partitioned at a limited depth which produces
we have chosen to use only keyframes (about 3000 per ho@{),cells that are numbered according to some consistent rule
which implies a keyframe detector. We also have limited tHeee Fig. 3); (i) for each frame, its Glocal signature is the
number of extracted descriptors to 150 per keyframe. binary vector where the bitis set tol only if the description

Concerning the detector of Point of Interest (Pol) we havgignature) of at least one local feature of the frame faithiw
used the Improved Harris Corner Detector [13]. It runs fastéell :.
than the DoG detector or the Hessian detector. Then weThe Dice coefficient was employed to measure similarity
compute the local descriptor from [11] at these positiohss | between Glocal signatureSpic.(gi,82) = fg‘lglf‘gj where
a compact descriptor, only 20 dimensions. Its computaon§; is the set of bits set td in the signaturey; and|- | denotes
far faster than SIFT. However note that this descriptor is neet cardinality.
invariant to scale and so we did not expect to find any copiesFor the similarity self-join operation, the database of -Glo
based on transformation 2 (Picture in picture type 1), what ¢al signatures is divided into overlappimickets(stored as
confirmed by our results. inverted lists) such that, in each bucket, any two signature

This first set of choices allows to make scalability possiblare sufficiently similar. A self-join is then independently
The whole extraction process needs 1/20 of real time withpgrformed within each bucket. Following [12], a bucket is
2.4Ghz simple core and 1/35 using the two cores. defined by a specific set of 3 bits that are set to 1 in at least one

However indexing of the local descriptors is also necessaBlocal signature in the database. Every signature hasaever
for performing querying the database in a reasonnable tintits set to 1 (depending on the number of local features)aEac




(they are identical). This selection rule thus explditsth
the positions of the features in description space and their
neighborhood in the image plane.

For the locality constraint to be meaningful and in order
to cover well all the small salient areas of a frame, the
number of local features considered in the frame should be
high enough. But an increase in the number of local features
considered has an impact on the time and space complexity of
the CBVCD-based mining operations. Indeed, the number of
buckets necessarily increases with the number of localfeat
per frame. Also, having more features per frame may require
a finer partitioning of the description space, which implies
longer Glocal signatures that take more space and require mo
time for computing Dice coefficients. At the same time, the
length of the individual buckets is likely to diminish. Afte
various experiments we have sét = 150 the maximum
Fig. 4. Feature triplets selected in the original frame (o)l and in the number of local features use_d' _Qua“ty improvements from
copy (bottom line), with the previous rules (left) or withetmew locality L = 100 to L = 150 was significant, but no more from
constraint (right). L =150 to L = 200.

4) Use of simple configuration informatior:ocality con-
straints reinforce robustness of the indexing scheme tesira
signature can be stored in all the buckets that are definedtBymations that alter the longer-range structure of thenéra
all the combinations of 3 bits set to 1 in the Signature. Th{ﬁh"e keeping part of the Short_range structure. Additlona
produces a redundant index. Next section describes how {hgal geometric information should improve discriminatio
combinations are selected. power and thus allow to reach both better detection pratisio

To find the pairs of similar keyframes, the similarities (Bic and better recall.
coefficients) between Glocal signatures are computed nwithi A bucket is identified by using two neighbors (among
each bucket; if the similarity is above a decision threshld the 10NN) of a local featuref; in the frame. It is then
the identifiers of both keyframes are stored as a link. Hefgitural to associate in that bucket, to the Glocal signatfire
we serf) = 0.1 for the BALANCED run andf = 0.3 for the frame, data describing the relations between the featur
the NOFA run. At the end of this self-join operation, all thef; and the two neighbors. The data we add is the ratio
resulting pairs of connected keyframes are eventually émed between the shortest side and the longest side of the teiang|
recovering the matching video sequences. formed in the image plane by the featufe and the two

3) Locality-based bucket definitionSome of the triplets neighbors considered. This simple information is robust to
selected by these rules are represented by triangles on ti@slation, rotation and (isotropic) scaling, but not toren
left side of Fig. 4, for an original keyframe (top) and for ayeneral affine transforms like scaling with very differeatios
copy (bottom) where the video inlay replaced a large part of two different directions (anisotropic scaling). An eeplent
the frame. It can be seen that the triplets link local fe&urehoice would have been the angieighbog??neighbog, but
that are quite distant in the image plane and are unlikely tile computation of the length ratio is less expensive. Sinise
be preserved by strong cropping or video inlays. Since suigtiormation only considers the positions of the local feasu
transformations alter the longer-range structure of tiaen& in the image plane and not their individual descriptiongain
but maintain part of the short-range structure, we here take employed even with local descriptions that do not include
into accountlocality in the image plane when selecting theany orientation information. Also, it is only dependent on
triplets that define the buckets where the Glocal signatiire the robustness of the local feature detector and not on the
the frame is indexed. The impact of the locality constraint robustness of the feature description.
obvious when comparing with the left side of the same figure. According to our indexing scheme, the Glocal signature of

The selection and indexing procedure is: for each local frame is stored in every bucket selected by the locality-
featuref; in the frame, (i) find its 10 nearest neighbors (10NNpased rule, together with the ratio between the shortest sid
in theimage plane (i) the first triplet consists off; together and the longest side of the triangle between the local featur
with its 2NN and the corresponding bucket is identified bigdentifying that bucket. This is shown in Fig. 5. A similgrit
the numbers of the cells idescription spacevhere f; and its self-join is then performed in each bucket independentithef
2NN are found; (iii) the second triplet consists fyftogether other buckets. This operation now involves a joint conditio
with its 3rd and 4th nearest neighbors, and so on, defining thiecluding both the similarity between the Glocal signature
5 triplets for f;; (iv) store (or index) the Glocal signature ofand the similarity between their corresponding ratio date
the frame into these three buckets. Two local featyteanf thresholdd, on the difference between ratios is given by the
f; may share a triplet, if so, one or the other is withdrawexpected error of the local feature detector and by the redui




Feat tized ; ;
in description Spene Buckets not so far from the best one. The mean processing times are

almost the better ones. The NOFA run is less interesting, the
parameter set seems to strict but however let some falsaslar
occured, which strongly penalyzes the score. Processimgsti
are still the same.

Local features associated
in image plane

positions
1,3& 11

(X1 1010000000100000

C. Video + Audio Copy Detection

positions
5,6&14

The audio-only copy detection scheme is based on the
fingerprint extraction method proposed by Haitsma [14]. The
confidence score is defined by- BE R, whereBE R denotes
the Bit Error Rate between two audio segments. We fuse the
video-only and audio-only copy detection results at deaisi
level. We tried two operators, oneAdND and the other iOR.

In the case oAND, a pair of two segments is determined as a
copy if and only if it is detected by both video-only and audio
only methods; in the case of OR, a pair of two segments is
determined as a copy if it is detected by either video-only or
audio-only methods. For the fusion of the confidence score,
we used the weighted average method. We assume that the
confidence of the audio-only method is higher than that of the
video-only one. Therefore, a higher weightqb) is associated

to the confidence score of the audio-only results. The weight

0000110000000100

positions
5,12& 16

0000100000010001
Glocal description 1010110000110101

Fig. 5. Bucket selection for a frame signature, using bothufealocation
in description space and locality constraints in image plane

robustness to anisotropic scaling. This ratio informatiam
be stored in low precision. We here uséd= 0.1 both for .. video-only results is thus— 0.65 = 0.35.

the BALANCED and NOFA runs. _ We have two types of video-only results, which can be re-
The threshold), on the Dice coefficient above which WOgspectively denoted bBALANCED-Video andNOFA-Video.

Glocal signatures are considered to match is the decisigg; ihe audio-only method, we have only one result list.

threshold and has a key role in defining the balance betweffla, we used two operators. Thus, we have four runs, which

precision and recall. Two keyframes are considered to be jp, respectively denoted bBA, BO, NA, and NO. The

“copy” relation if their Glocal signatures collide in at Eaone explanation of these four runs is as follows.

bucket, their Dice coefficient is abovk and the difference  pa. BaAl ANCED-Video result andAND operator are used

between ratios in that bucket is lower th#@n. Actually, BO: BALANCED-Video result andOR operator are used
the ratios are comparefirst and then, if their difference is  \a- NOEA-Video result andAND operator are used

< 6, the Dice coefficient between the two Glocal signatures NO: NOFA-Video result andOR operator are used

is computed. Since the comparison of two small precisiony. < pmitted all of these four runs for boBALANCED
numbers is much less expensive than the computation of NOFA application profiles. In other words, we finally

Dice coefficient between the two Glocal signatures (esfigciay, o eight runs. As we expecteBO produced the lowest
for long signatures), this pre-filtering using simple locah- Min_NDCR for both BALANCED and AND application
f!guratlon information ac_tually Saves significant compiotat profiles (Fig. 7). This is because, the number of false alarms
time, at the expense of little additional space. is very small for bothBALANCED-Video andNOFA-Video

5) Video Sequences Matchinginally, we obtain a set of results, while the number of misses NDFA-Video results
pairs of matching keyframes between all couples of videgg. much larger than that oBALANCED-Video ones. On
For each couples we then look for some time consistenfye other hand, the usage &IND operator rejected many

between these pairs using the time codes. We here havgoprect results, so the runs usi@@R operator produced lower
set of contraints. FII’St, a Copy sequence must contain at Ieﬁ“n_NDCR than those usingND Operator.

Cp, pairs of keyframes @, = 2 for the BALANCED run _
and C;, = 3 for the NOFA run). Second, two following D. Conclusion

matching pairs must appear withifir seconds ¢ = 5 TRECVID CBVCD task includes several transformations
for the BALANCED run andCy = 3 for the NOFA run). with various strenght. Since transformations like strongpe
Third, there can be an time offset between two fO"OWing fpalbmg and video in|ays alter the |0nger-range structure of
but it must be shorter thad'o seconds ¢ = 0.4 for the the frame but maintain part of the short-range structure, we
BALANCED run andCy = 0.2 for the NOFA run). The copy suggest to take into accourbcality in the image plane
sequences respecting these constraints are kept. when indexing the video keyframes. We further include in
6) Results:The following graphs show our results (Fig. 6)the indexing and matching processes simple local geometric
Dots represents our run, squares the better runs and dasheslata, involving the nearest neighbors of a feature in thegema
median score. Concerning the BALANCED run, our result agdane. This data is selected to be as robust as possible to the
quite satisfying, always better than median one, and somsti most common types of image transformations. This method
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Fig. 7. BALANCED (left) and NOFA (right) runs of video + audimopy detection (BO)



give a good balance between quality of the results, both for
precision and recall, and is a scalable solution.
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