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Abstract

This paper presents the systems used by CLIPS-IMAG
and its partners, LSR-IMAG, LIS and LABRI labora-
tories, to perform the tasks proposed in the TRECVID
2004 workshop. SBD was performed using a system
based on image difference with motion compensation
and direct dissolve detection. This system gives con-
trol of the silence to noise ratio over a wide range of
values and for an equal value of noise and silence (or
recall and precision), the F1 value is 0.83 for all types of
transitions. Story segmentation was performed using a
combination of multi-modal detectors and the F1 value
for the optimal system configuration was 0.48. Feature
extraction was achieved using a combination of lexical
context based classification, a color and texture based
classification and face recognition. The search system
uses a user controlled combination of five mechanisms:
keywords, similarity to example images, semantic cate-
gories, similarity to already identified positive images,
and temporal closeness to already identified positive
images. The mean average precision of the system
(with the most experienced user) is 0.24.

1 Introduction

The CLIPS-IMAG laboratory and his partners, LSR-
IMAG, LIS and LABRI laboratories have participated
to the four tasks proposed at the TRECVID 2004 work-
shop.

2 Shot Boundary Detection

The system used by CLIPS-IMAG to perform the
TRECVID SBD task is almost the same as the one used
for the previous TREC video evaluations [2][1][15] This
system detects “cut” transitions by direct image com-
parison after motion compensation and “dissolve” tran-
sitions by comparing the norms of the first and second
temporal derivatives of the images. It also contains a
module for detecting photographic flashes and filtering
them out as erroneous cuts and a module for detect-
ing additional cuts via a motion peak detector. The
precision versus recall or noise versus silence tradeoff is
controlled by a global parameter that modifies in a co-
ordinated manner the system internal thresholds. The
system is organized according to a (software) dataflow
approach and Figure 1 shows its architecture.
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Figure 1: Shot boundary detection system architecture
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The original version of this system was evalu-
ated using the INA corpus and the standard pro-
tocol [3] (http://clips.imag.fr/mrim/georges.quenot /-
0T10.3/aim1/) developed in the context of the GT10
working group on multimedia indexing of the ISIS
French research group on images and signal processing.



This test protocol was partly reused (with different test
corpora) for the TREC-10, TREC-11 and TRECVID
SBD tasks. The reference segmentation for test collec-
tions of the TRECVID 2004 corpus was built with the
TRECVID 2003 version of this system.

Very little modification was made relatively to the
previous version of the system, only minor adjustments
of control parameter. The main additional work was an
attempt to get a precise control of the noise to silence
ratio.

2.1 Cut detection by Image Compari-
son after Motion Compensation

This system was originally designed to evaluate the in-
terest of using image comparison with motion compen-
sation for video segmentation. It has been comple-
mented afterward with a photographic flash detector
and a dissolve detector.

2.1.1 Image Difference with Motion Compen-
sation

Direct image difference is the simplest way for compar-
ing two images and then to detect discontinuities (cuts)
in video documents. Such difference however is very
sensitive to intensity variation and to motion. This
is why an image difference after motion compensation
(and also gain and offset compensation) has been used
here.

Motion compensation is performed using an optical
flow technique [4] which is able to align both images
over an intermediate one. This particular technique has
the advantage to provide a high quality, dense, global
and continuous matching between the images. Once
the images have been optimally aligned, a global dif-
ference with gain and offset compensation is computed.

Since the image alignment computation is rather
costly, it is actually computed only if the simple im-
age difference with gain and offset compensation alone
has a large enough value (i.e. only if there is significant
motion within the scene). Also, in order to reduce the
computation cost, the differences (with and without
motion compensation) are computed on reduced size
images (typically 88 x 60 for the NTSC video format).
A possible cut is detected if both the direct and the
motion compensated differences are above an adaptive
threshold.

In order for the system to be able to find shot conti-
nuity despite photographic flashes, the direct and mo-
tion compensated image difference modules does not
only compare consecutive frames but also, if needed,
frames separated by one or two intermediate frames.

2.1.2 Photographic flash detection

A photographic flash detector feature was implemented
in the system since flashes are very frequent in TV news
(for which this system was originally designed for) and
they induce many false positives. Flash detection has
also an interest apart from the segmentation problem
since shots with high flash densities indicates a specific
type of event which is an interesting semantic informa-
tion.

The flash detection is based on an intensity peak de-
tector which identify 1- or 2-frame long peaks on the
average image intensity and a filter which uses this in-
formation as well as the output of the image difference
computation modules. A 1- or 2-frame long flash is de-
tected if there is a corresponding intensity peak and if
the direct or motion compensated difference between
the previous and following frames are below a given
threshold. Flash information is used in the segmenta-
tion system for filtering the detected cut transitions.

2.1.3 Motion peak detection

It was observed from TREC-10 and other evaluations
that the motion compensated image difference was gen-
erally a good indicator of a cut transition but, some-
times, the motion compensation was too good at com-
pensating image differences (and even more when asso-
ciated to a gain and offset compensation) and quite a
few actual “cuts” were removed because the pre- and
post-transition images were accidentally too close af-
ter motion compensation. We found that it is possible
not to remove most of them because such compensation
usually requires compensation with a large and highly
distorted motion which is not present in the previous
and following image-to-image change. A cut detected
from simple image difference is then removed if it is not
confirmed by motion compensated image difference un-
less it also corresponds to a peak in motion intensity.

2.2 Dissolve detection

Dissolve effects are the only gradual transition effects
detected by this system. The method is very simple:
a dissolve effect is detected if the Ly norm (Minkowski
distance with exponent 1) of the first image derivative
is large enough compared to the L1 norm of the second
image derivative (this checks that the pixel intensities
roughly follows a linear but non constant function of
the frame number). This is expected to detect dissolve
effects between constant or slowly moving shots. This
first criterion is computed in the neighborhood (+ 5
frames) of each frame and a filter is then applied (the



effect must be detected or almost detected in several
consecutive frames).

2.3 Output filtering

A final step enforces consistency between the output
of the cut and dissolve detectors according to specific
rules. For instance, if a cut is detected within a dis-
solve, depending upon the length of the dissolve and
the location of the cut within it, it may be decided
either to keep only one of them or to keep both but
moving one extremity of the dissolve so that it occurs
completely before or after the cut.

2.4 Global tuning parameters

The system has several thresholds that have to be tuned
for an accurate detection. Depending upon their val-
ues, the system can detect or miss more transitions.
These thresholds also have to be well balanced among
themselves to produce a consistent result. Most of them
were manually tuned as the system was built in order
to produce the best possible results using development
data.

For the TREC-11 and following evaluations, as well
as for other applications of the system, we decided to
have all the threshold parameters be a function of a
global parameter controlling the recall versus precision
tradeoff (or, more precisely, the silence to noise ratio).
We actually used two such global parameters: one for
the cut transitions and one for the gradual transitions.
A function was heuristically devised for each system
threshold for how it should depend upon the global
parameters.

Ten values were selected for the global parameters.
These values were selected so that they cover all the
useful range (outside of this range, increasing or de-
creasing further the global parameter produces a loss
on both the silence and noise measures) and within
that range they set targets on a logarithmic scale for
the silence to noise ratio.

2.5 Results

Ten runs have been submitted for the CLIPS-IMAG
system. These correspond to the same system with a
variation of the global parameter controlling the silence
versus noise (or precision versus recall) tradeoff.

Table 2.5 shows the performance of the system for the
tradeoff values selected for the evaluation. The CLIPS-
IMAG system appears to be quite good for gradual
transitions both for their detection and location. This
indicates that the chosen method (comparison of the

first and second temporal derivative of the images)
is quite good even if theoretically suited only for se-
quences with no or very little motion.

All Cut Gradual Frame
Rec. Pre. | Rec. Pre. | Rec. Pre. | Rec. Pre.
.894 .446 927 435 824 474 749 596
.887 .614 925 .610 .805 .623 757 .700
877 732 921 .743 784 704 761 .764
.857 .806 900 .834 765 .744 754 .792
.819 .851 .858 .874 737 798 745 813
777 .883 .809 .904 709 .835 736 .825
.698 .912 718 931 .655 .871 723 .839
606 .932 605 .943 .608 .910 716 .851
491 942 474 952 .528 .924 731 .868
312 .948 241  .952 461 .943 725 .885

Table 1: Results for Shot Boundary Detection

3 Story Segmentation

3.1 Introduction

Among the different TRECVID tasks, the story seg-
mentation task is defined as: given a test collection,
identify the story boundaries with their location (time)
and optionally their type (miscellaneous or news) in the
given video clip(s), see [17] for details.

We describe here the multi-modal features used and
their respective performance for the story segmentation
task. These features are based on the audio, video and
text modalities. The preliminary system, which has the
advantage to be relatively free with respect to the use
of training data, is also presented.

3.2 Multi-modal Features

Our approach to story bound detection is to use a range
of different feature detectors and in this section we de-
scribe each of them in turn. Their measured perfor-
mance are given on the TRECVID 2003 test set to il-
lustrate their relative performance. These are gathered
in Table 2 in section 3.4. The evaluation metrics used
are also detailed in section 3.4.

3.2.1 Long pauses detection

A silence detection is applied on the audio channel. It is
only based on an energy bi-Gaussian distribution and
on a detection threshold between the two Gaussians.
The silence segment minimal length is set to 1 second
in order to only catch relatively long silence segments.
It is interesting to note that this basic feature alone



is already interesting for story segmentation. We have
tested it on the reference boundaries and found its F1
measure to be 0.44, when all the long pauses were as-
signed to a boundary in the story segmentation system
output.

3.2.2 Shot boundary detection

Shot boundaries have been detected using the system
described in section 2. The recall versus precision
global control parameter has been set to obtain a high
recall value.

Using this feature alone lead to a F1 measure of 0.25
with a recall of 0.934. This recall result, different from
1, confirms that a single video shot can contain multiple
story boundaries. Thus, selecting all the shot bound-
aries as candidate points for story boundaries is not
sufficient. Therefore, we take the union of shot bound-
aries and long pauses as candidate points for the story
segmentation task, but we remove duplications within a
5s fuzzy window. A similar proposal was made in [12]
and yielded 100recall rate. Our union however leads
only to 0.963 recall rate.

3.2.3 Audio change detection

Audio change detection may be a useful feature since
many story boundaries correspond to an audio change
on the audio channel. Examples of ”audio change” are:
speaker changes, speech to music transitions, speech
to speech-over-music transitions, etc... These audio
changes can be automatically obtained by detecting
abrupt changes on the audio channel.

At the moment, the CLIPS-IMAG audio change sys-
tem is based on a BIC Bayesian Information Criterion
(BIC) [8] detector. It is important to note that the
BIC criterion has been often used for speaker change
detection whereas it should be able to detect any other
abrupt change on the audio signal. Thus, we called our
feature “audio change detection” instead of “speaker
change detection”, even if a large part of the changes
found with the BIC criterion may actually be speaker
changes.

The signal is characterized by 16 mel cepstral fea-
tures (MFCC) computed every 10ms on 20ms windows
using 56 filter banks. Then the cepstral features are
augmented by energy. No frame removal or any coef-
ficient normalization is applied. The idea of the audio
change detection is to find audio signal discontinuities
that will help us to distinguish between two consecu-
tive audio sources (speech followed by music ; speaker
X followed by speaker Y ; ...). We can use two adjacent
windows and a similarity measure between them. For

the similarity measure we use the Bayesian Information
Criterion.

In order to apply the BIC we consider that the sound
signal is a Gaussian process in the space of acoustic pa-
rameters. This kind of approach is based on the deci-
sion theory. Let us consider two consecutive segments
of speech, each of them being characterized by a se-
quence of spectral acoustic parameters (ex: coefficients
MFCC, LPCC, etc) denoted by z, (n = 1..N;) and
respectively by y, (n = 1..N2). We suppose that ev-
ery sequence could be modeled by a multidimensional
Gaussian distribution and that the vectors are statisti-
cally independent.

The question that we are asking regarding the two
consecutive sequences is: do they belong or not to the
same fundamental model or do both sequences corre-
spond to the same acoustic source or not.We must test
the next two hypotheses:

Hj : the two sequences correspond to the same acous-
tic source,

H; : the two sequences correspond to two different
acoustic sources.

We can evaluate these two hypotheses using the gener-
alized likelihood ratio. We will compute the ratio using
maximum likelihood estimated models for the two se-
quences. Let’s say that L(z;u1,¥;) is the probability
that the sequence r was generated by the Gaussian
model characterized by the mean vector p1 and covari-
ance matrix X1, and L(y; p2, X2) is the same probabil-
ity for the sequence y; then the probability L; of the
two sequences being generated by two different models
is:

Ly = L(z; p1, 1)-L(y; p2, Xa) (1)

The probability of the two sequences being generated
by the same model is:

Lo = L(z;p, %) (2)

where z is the joint sequence of z and y, and u and X are
the parameters of the model estimated from sequence
z. If we consider that A is the generalized likelihood
ratio, then A = Ly/L; and if we use log-likelihood R =
—log A then we have:

R =log L(x; p1, £1) + log L(y; p2, T2) —log L(z; 1, X) (3)
It was proved that for mono-Gaussian distributions we
have:

_ N1+ N»

N N.
R log|E|—7110g|21|—7210g|22| (4)



We compute the ratio for all available data and we ob-
tain a sequence of values R(t). The estimate of the
audio change point is the value that maximizes R(t).

t=arg max R(t) (5)

Looking for audio change points means looking for
maximum points of the curve R(t), called the BIC
curve.
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Figure 2: The audio change detection process

Figure 2 illustrates the whole audio change detec-
tion process. To select the maximum points of the BIC
curve we use a sliding window that goes along the curve.
The window is centered on the potential speaker change
point. The point is selected if it has the highest BIC
value in the window and if its BIC value is superior to
1.3 x average BIC curve value. The size of the win-
dow is 0.3 seconds. The use of the average BIC curve
value gives us a data independent threshold. The use
of the sliding window selects only the highest maxi-
mum among multiple close maximum points giving us
a better precision.

For the story segmentation task, this feature alone
gives a F1 score of 0.29 with 0.78 recall rate. That
confirms our hypothesis that many story boundaries
correspond to audio changes, but of course there are

much more audio changes than story boundaries which
explains the relatively low precision rate obtained with
this feature alone (0.18).

3.2.4 Speaker segmentation

From the list of informative features that are provided
in the ASR transcript, speaker information is available:
for each speaker turn, a speaker label is assigned. This
kind of output is generally called speaker segmentation

[7][13].

This speaker segmentation output may be useful: for
instance, since we do not have yet a visual anchor face
detector at CLIPS, a complete speaker segmentation
output could be interesting to retrieve anchor person
shots which are known to be very useful for story seg-
mentation [12].

To illustrate the interest of speaker segmentation,
Figure 3 shows as example the speaker segmentation
of a complete 30mn video file, that can be obtained
from the LIMST ASR XML files. Each line corresponds
to a speaker occurring on the audio channel.

Figure 3: Speaker segmentation of a complete 30mn
video

Each speaker intervention is given by the black seg-
ments on each line. We clearly see here that most of
the speakers occur occasionally and on a limited pe-
riod, except for the news presenter (on the 5th line)
whose segments are spread over the whole video file.
Thus, such segmentation output is interesting for find-
ing the anchorperson shots without using the image
channel. Of course, an automatic segmentation makes
some errors on the speaker interventions. For instance,
best speaker segmentation systems obtain around 15%
of speaker segmentation error on broadcast news data,
as shown in [13] and [16].



From the speaker segmentation output obtained with
LIMSI ASR files, we extract automatically the news
presenter line. There is no speaker training data avail-
able for any of the news presenters. The extraction is
entirely based on the following empirical rules:

e The news presenter always speaks in the first five
minutes of a broadcast news document.

e The news presenter interventions are spread over
the entire news document. This is different from
a usual reporter who speaks only during his news
story.

e Finally, the news presenter is generally the main
speaker (the speaker who has the highest total
speech duration).

The first rule is applied as is, meaning that we first
select all the speakers that speak during the first five
minutes as ”presenter candidates”. For the second rule
we split the audio document in fixed length intervals
(3 minutes each). For each speaker we count the num-
ber of intervals where he actually does not speak. We
select the speaker(s) with the minimum number of “no
speech” intervals.. Finally if at this point we still have
more than one speaker as a potential news presenter,
the final criterion is the quantity of uttered speech
(third rule).

When we have extracted the news presenter line, we
know the start and the end of each of his interven-
tions. The story boundaries then correspond to each
start point of the news presenter interventions. On the
contrary, the end points of the news presenter inter-
ventions correspond generally to a reporter start in-
side the same story ; thus, these end points are used
as "anti-story-boundaries” to remove story detection
points that could be found by other multi-modal fea-
tures at the same time.

For the story segmentation task, this feature alone
gives a F'1 score of 0.32 with 0.205 recall rate and 0.702
precision rate. It is not as efficient as a complete anchor
face detector (the one from [12] leads to 0.51 F1 score
on CNN data for instance), but this “presenter infor-
mation”, extracted only from the audio channel helps
to extract the general structure of a video document.
It could also be very useful for story segmentation on
radio broadcast, for instance, where no video channel
is available.

3.2.5 Jingle detection

Detecting some key sounds (so called jingles) on the
audio channel can reveal the beginning or the end of

a particular sequence or announce it. This may be
useful for the story segmentation part. Though most
jingles include music, our jingle detector is not a music
detector.

To detect and locate such jingles we used only one
example of each jingle, taken on a separate video set.
Each reference jingle was described by low level de-
scriptors based on a spectral analysis while dissimilarity
was measured between the target jingles and the whole
video test set with an Euclidian distance, as done in
[14] for instance.

More precisely, our low level descriptors were 8 co-
efficients corresponding to the spectral flatness feature
computed on 8 frequency bands. This spectral flatness
feature is part of the MPEG-7 low level description and
has shown to give interesting results for audio finger-
printing [10].

We have selected 10 jingles from ABC and CNN
(CNN headline news jingles, CNN top stories, CNN
sport, ABC short jingles, etc...) which have a length
between 2s and 10s.

Of course, for the story segmentation task, this fea-
ture gives very few boundaries which results in a very
low recall rate when used alone (0.028). However, the
boundaries obtained generally correspond to effective
story changes, since the precision obtained with this
feature alone is 0.735.

3.2.6 ASR Text output

The LIMSI laboratory provided to all participants of
TRECVID the output of their automatic speech recog-
nition (ASR) system [9] for the whole 2003 and 2004
database. Our ASR-based feature was based on the
selection of a set of lexical sequences likely to corre-
spond to story transitions. To extract our list of lexi-
cal sequences, we calculated on the development data
the most frequent N-grams (N=1 to 5) computed from
ASR outputs located around reference story bound-
aries. From this, we manually made a list of 27 tran-
sition word sequences. Examples of word sequences
extracted are : “A. B. C. News”, “C. N. N.”, “Just
before we leave”, “Back with more news”, “Coming up
in two minutes”, ... This feature is rather similar to
the “cue phrases” proposed and used in [11].

To find the story boundaries using the ASR output,
we have selected all the speaker turns containing at
least one of our ”transition word sequences”. Then, the
story boundaries were obtained by selecting the begin-
ning or the end of each selected speaker turn according
to the transition sequence concerned.



The use of this feature alone gives a F1 score of 0.41
with a relatively good precision (0.73).

3.3 System Overview

3.3.1 Candidate Points

A good candidate set should have a very high recall
rate on the reference boundaries. As seen previously,
we decided not to use only shot boundaries, but the
union of shot boundaries and long pauses which lead
to 0.963 recall rate.

3.3.2 Overall strategy

At the moment, our strategy is very basic, but it has
the advantage to be free of any development set which
is not the case when some SVM-based combination
schemes are used, for instance. It could however benefit
from training when there is time and opportunity for it.
This will be the case for additional features currently
considered.

The general idea is to evaluate, for each candidate
point, the output of each separate detector (described
in section 2) which indicates the presence or not of a
story boundary. For audio change (AC) and Pauses
(P) features, a boundary is considered to be detected
if it is found inside a 2s fuzzy window around a candi-
date point. For ASR, Speaker Segmentation (SS) and
Jingles (J), a boundary is considered to be detected if
it is found inside a 4s fuzzy window around a candi-
date point. Then, the combination of features is based
on logical operations between each separate detectors.
For instance, in Table 3.4, (AC A P) V J means that a
candidate point is considered to be a story boundary if
one of the following cases is encountered:

e the audio change and pause detectors both found
a boundary around it,

e the jingle detector found a boundary around it.

3.4 Results
3.4.1

We used the official TRECVID precision P and recall R
measures for the story segmentation task. Since there is
no ranking considered in this task, it is not possible to
compute the classical Mean Average Precision (MAP)
for system ranking. Since there are two values with
very variable P versus R tradeoffs between system, it is
not easy to compare systems. In order to obtain a single
measure to permit such comparison and ranking, we
chose the classical F-measure (harmonic mean between

Story boundary detection metric

P and R) and, more precisely, the F1 measure (giving
equal weight to P and R in the mean).

3.4.2 Characterization on TRECVID 2003

We have made these experiments using the data and
methodology proposed by TRECVID but we did so af-
ter the official evaluation period and the results pre-
sented here were not submitted to NIST. Therefore our
results should not be directly compared to the official
TRECVID 2003 official results because a) we would
compare our system to systems that are older and could
have evolved in the interval and b) though we have fol-
lowed the methodology and we have made an appropri-
ate use of development and test data respectively, we
had knowledge of the results of other systems (which
feature worked and didn’t work for instance).

The story boundary detection performance on the
TRECVID 2003 test set for the different detectors
alone, as well as for their combination with logical op-
erators are given in Table 2.

Rec. | Pre. F1

Pauses (P) 0.613 | 0.344 | 0.44

Shots (S) 0.934 | 0.142 | 0.25

P Vv S (candidate points) | 0.963 | 0.146 | 0.25

Audio Change (AC) 0.782 | 0.176 | 0.29

Speaker Segmentation (SS) | 0.205 | 0.702 | 0.32

Jingles (J) 0.028 | 0.735 | 0.05

ASR 0.280 | 0.734 | 0.41

ACAP 0.495 | 0.382 | 0.43

(ACAP)V] 0.516 | 0.394 | 0.45

ACADP)VSSVJ 0.567 | 0.405 | 0.47

(ACAP)VSSVJVASR | 0.616 | 0.450 | 0.52
(ACAP)VSSVIVASR

+ commercials detection | 0.613 | 0.467 | 0.53

Table 2: Story boundary detection performance on
TRECVID 2003 evaluation data (105*30mn files)

The comments concerning the detectors alone are to
be found in section 3.2. The association of audio change
and pause feature (AC A P) is slightly disappointing
since it leads only to a F1 score of 0.43 which is ap-
proximately the same performance as the pauses used
alone. However, we kept the boundary points found
because the precision is improved in that case. Adding
the jingle detector (AC A P) Vv J improves the overall
performance which shows the interest of this detector.
It seems to be able to find boundaries that are not re-
dundant with the boundaries found by other detectors.
Adding now the news presenter information obtained
from speaker segmentation (AC A P) V SS Vv J improves



again the overall performance since we reach 0.567 re-
call and 0.405 precision rate. It is also interesting to
note that the association of these 4 features (AC, P, SS
and J) leads to a system with acceptable performances
without using the ASR text output (this corresponds
to condition 1 of TRECVID 2003 evaluation plan).

If we add the ASR-based boundary detector, we
reach a F1 score of 0.52. At this point, an analysis
of the errors shows some false alarms occurring during
commercial sequences. We have done a final experi-
ment to detect and remove candidate points which are
inside a sequence of commercials. The sequences of
commercials were detected by applying a black frames
detector on the video channel, since we noticed that
commercials are generally separated by a variable num-
ber of consecutive black frames. This final process al-
lowed to slightly increase the precision rate, leading to
a F1 score of 0.53.

3.4.3 Results on TRECVID 2004

Table 3 shows the results of two variants of the above
described segmentation systems for the three tests con-
ditions specified for the task (removing when applicable
some features in the logical combination). A small loss
is observed between the test on TRECVID 2003 (F1
at 0.52) and the test on TRECVID 2004 (F1 at 0.48)
in similar conditions. The system was not trained on
the TRECVID 2003 test set and the difference may
come from thefact that the TRECVID 2003 develop-
ment collection is a bit closer to the TRECVID 2003
test collection than to the TRECVID 2004 test collec-
tion.

System cond. | Rec. | Pre. F1
Primary 1 0.539 | 0.404 | 0.46
Primary 2 0.585 | 0.407 | 0.48
Primary 3 0.265 | 0.677 | 0.38
Secondary 1 0.539 | 0.400 | 0.46
Secondary 2 0.585 | 0.403 | 0.48
Secondary 3 0.265 | 0.676 | 0.38

Table 3: Story boundary detection performance on
TRECVID 2004 evaluation data (128*30mn files)

3.5 Future work

In the near future, we notably plan to use our own
speaker segmentation system [7][13] instead of the
LIMSI one and to improve our commercial detection
system in order to reduce false alarms. We also plan
to include more features from the image track and
from ASR analysis. We are currently developing a

multi-modal story classification tool (politics, sports,
weather, commercials, ...) and to integrate story seg-
mentation and story classification together with a feed-
back to each other. We finally consider the integration
of external feature detectors (developed elsewhere than
at CLIPS) and the use of a more flexible, more analog
(non-Boolean) and less ad’hoc fusion procedure.

4 High-Level Feature Extraction

High-level features were extracted in three different
methods and the output of the various detectors were
merged. The first method used the ASR transcript pro-
vided by LIMSI to build lexical models for the features
(CLIPS feature detector). The second method classi-
fied the reference key frames using a SVM on color and
texture vector descriptors (LIS feature detector). The
third method was used only for the person features and
used a face detector followed by a face classifier (LABRI
feature detector). Two simple strategies were used for
the fusion of detector outputs: the estimated relevance
of two outputs are either multiplied or linearly com-
bined to produce the final relevance.

4.1 Lexical context

Detection of high-level features in video documents is
usually done by categorizing key images from signal
information. These approaches use low-level extrac-
tion process for color, texture and motion features and
a supervised learning phase such as KNN, SVM, NN
methods. The speech flow can also help to distinguish
categories since the different classes are semantically
far enough. Existing approaches show that lexical con-
text perform well for emotion detection ‘citeDevi04 and
topic classification [19]. Thus, we have developed and
experiment a classifier based on a lexical analysis of
speech transcription from LIMSI.

Since our approach is supervised, we must predefine
a set of classes and build a model for each one in 3
steps:

e Extract text from ASR around apparitions of vi-
sual feature: In order to catch lexical context of
visual features, we define temporal offsets around
apparition of a shot containing visual features. We
choose offsets for each class by computing cross
validation in the development data.

e Textual analysis: This process tags the text us-
ing our specific knowledge base by finding named-
entities, or applying stemming and stop- lists. We
also define a set of entities referring the same con-
cept, such as “Madeleine Albright” and “secretary



of state”, or very closed entities such as “train”
and “locomotive”.

e Compute probability pwe of each term, entity, or
concept w being in the class e.

Learning a semantic class by lexical analysis aim to
perform a co-occurrence like process between semantic
and lexical information. In this way, the following lines
are the top 5 entries in the “Madeleine Albright” model,
with offsets 4.5 and 1.5, respectively before and after
apparition of visual feature:

0.042693 | Madeleine Albright
0.032841 | United States
0.026273 | Iraq

0.016420 | Balkans

0.013136 | Saddam Hussein

Next, during the detection process, our system ex-
tract textual information aligned with the shot bounds
and offsets, find named-entities and assigns a score
value Vse for each shots s being in semantic class e:

Ew€s|pw>’y log Apwet(1-N)pw
Vse = 1Pw (6)

EwEs\pw>'y

Where p,, is the probability of a word w to be in the
general model (computes on development set). Accord-
ing to the Zipf law, we define a threshold v and only
terms that have p,, > v are computed. We define
experimentally using cross validation. We notice that
v value depends of the kind of the semantic class.

A shot could be in several classes since the classes
are not exclusive. For instance, it is possible that
Madeleine Albright and Bill Clinton occur together in
a shot.

4.2 Key frame classification
4.2.1 Extraction of color and texture

It is well-known that color and texture are visual cues
in the classification of images. Color is the most widely
used feature in content based retrieval and texture is an
important feature in the perception of images. More-
over, color indexing methods are limited to retrieve
images which have a similar color composition as the
query image but they can have a completely different
content. Color indexing is then combined with texture
indexing methods.

Color feature

Among the color descriptors, we retain color his-
togram which offers a great simplicity. A color his-
togram captures global color distributions in an image.

Selected color space is YCbCr space, which is used in
compression MPEG. However, we do not use an uni-
form quantization of the color space which gives the
same weight to the pixels near the centre of a bin as
those that are located at the edges. The use of the
fuzzy sets makes it possible to associate a membership
degree at each pixel according to each bin. Each dimen-
sion of YCbCr following is quantified following figure 4
and a fuzzy 3D histogram with 8 x8x8 components is
computed.

o S50 100 150 200 250

Figure 4: A membership degree of pixels according to
each bin of one dimension

Texture feature

First, a retinal filter [20] is applied on each key frame.
The photoreceptors of the retina perform an adaptive
compression of brightness intensity. This adaptation
leads to provide more dynamic for the values corre-
sponding to dark-colored zones. Then, the neuronal
circuits carry out high-pass filtering, which corresponds
to a spectral whitening because of 1/ f image amplitude
spectrum. Finally, the filtering enhances the local vari-
ations of contrast and the details.

Some cells of the primary visual cortex are sensitive
to stimuli having a certain orientation and a certain
frequency in a specific position of the visual field; we
modeled this using two-dimensional Gabor function. A
Gabor filter is defined like a Gaussian with spatial ex-
tent s, and s, modulated by a complex exponential
with frequency fr in a direction 6;. We chose 7 fre-
quency bands fi, = 2¥f, and 7 orientations 6; = iw/7
(figure 5).

We carried out this filtering by directly multiplying
the retina output with the Gabor filter in the Fourier
domain. Before achieving the Fourier transform, we
multiplied it by an Hanning window to remove edge ef-
fects. Finally, we obtain maps E(f,0;) depending on
the frequency and the orientation. We carry out a nor-
malization of the characteristic vector (49 dimensions)
as described in [21]. The blur is an isotropic function of
the G(f) frequency and the normalization carried out
by frequency band removes this term. Each key frame
is characterized by a matrix 7x7 which corresponds to
energy according to an orientation and a frequency.



Figure 5: Bank of 49 Gabor filters

4.2.2 Classification

First, Principal Component Analysis (PCA) has been
used to reduce feature dimensionality. We reduce the
number of components from 512449 to 128. Then, we
apply SVM (Support Vector Machine) to learn each
TRECVID concept. SVM is successfully used in a va-
riety of pattern recognition tasks. We use SVM in the
binary classification. Let {z;...z,} be a set of train-
ing data which are feature vectors of labeled images.
We are also given their labels {y;...y,} where y; €
{—1,+1}. SVM are simply hyperplanes that separate
the training data by a maximal margin. A ground truth
of each concept is carried out on TREC 2003 develop-
ment set. Finally, this classifier is applied on the key
frames of the 2004 test set.

4.3 Face recognition

We resort to Support Vector Machines (S.V.M.) be-
cause they offer state-of-the-art capabilities in the con-
text of supervised detection and recognition. Their ef-
fectiveness resides in part in the manner they address
the fundamental issue of generalization [22].

In [23], LABRI applied M.I.T. SVM quadratic op-
timized classifier [24] for the face detection problem
in video at various scales. We proposed also a set of
pre-process tools in order to alleviate problems of illu-
mination variations and noise produced by background
for example. In TREC Vid 2004 feature extraction
task we use and train a S.V.M. for Bill Clinton and
Madeleine Albright’s face recognition problem. CLIPS-
IMAG used OpenCV [25] face detector to supply face
detection results. The performances of S.V.M. classi-
fier are dependent of the quality of the input data with
regard to training conditions. OpenCV [25] face detec-
tor did not supplied perfectly centered on face images,
thus we developed an automatic face centering process

as a preliminary step to face recognition.

4.3.1 Face Detection & Recognition Coopera-
tion

The method we suggest improves face localization by
determining face location respectively to the center of
the picture. We divide process into two steps: As-
suming face color is modeled by a Gaussian on each
RGB component, the first step, called “training step”,
is based on detection of face color pixels and estima-
tion of normal distribution parameter. First the face
color space segmentation is first performed by the well
known K-Mean algorithm on each RGB component.
Then, assuming that faces occupy the major part of
the image, we consider the most representative cluster
as the dominant color in thumbnails images. An Open
Close filtering is next applied to regularize dominant
color mask in order to alleviate false detections. Filter-
ing gives convincingly better result of object integrity
and elimination of false detections as you can see in Fig-
ure 6. All pixels values of the thumbnails in dominant
cluster are finally used to determine normal distribu-
tion parameter. The Gaussian parameters were calcu-
lated on a set of 5000 pictures extracted from TREC
Vid 2003 corpus. RGB Gaussian parameters deducted
are g = 180.078 and 0% = 36.68, ug = 142.259 and
02 =30.74, and pup = 114.847 and 0% = 30.80.

Figure 6: The picture in the left gives an example of the
OpenCV Face Detection. The middle pictures repre-
sent “face-color” mask returned by 4-Means algorithms
and next post-processed by Open Close Algorithm. Fi-
nally the picture in the right shows centered faces ex-
tracted from the left picture.

The second step, “generalization”, classify each pixel
of thumbnails images extracted from TREC Vid 2004
into two classes, “face color” and “ no face-color” with
estimated Gaussian parameter. We next extract the
box centered on face where we get feature mainly rect-
angular. The new picture thus obtained is next pro-
cessed by our S.V.M. Face recognition.



4.3.2 Support Vector Machine Face Recogni-
tion

Here we will not exhaustively describe S.V.M. theory,
more details can be found in [22][26][27]. Applied to
the problem of face recognition in video frames to Fea-
ture Extraction task, the problem can be formulated
as follows. Let us consider fixed size windows selected
from image signal containing or not a face of interest.
The training step will consist in construction of a set of
classification surfaces from labeled examples by a “one-
against-all” method. The generalization step consists
in classifying windows from input images into three
classes: “Bill Clinton’s face”, “Madeleine Albright’s
face” and “Other face” class.

Taking into account the large variability of image
content of real scenes, we chose a polynomial second
order classifier in this case. The second difficulty con-
sists in variable lightening conditions as we aim to rec-
ognize faces in a natural video stream. Therefore, a
pre-processing step has been realized before training
and generalization. The pre-processing consisted in two
steps as follows:

e histogram equalization in order to alleviate differ-
ences in brightness between two images,

e illumination normalization. It consists of compu-
tation of mean intensity over all data base and
compensation for each picture of the training and
testing data set.

Training is realized by selecting and labeling N x N
windows on Bill and Madeleine and Other faces in full
resolution video frames. The generalization step con-
sists in classifying given picture into Bill Clinton’ s
face, Madeleine Albright’ s face and other face class
by trained classifier.

4.4 Fusion

In order to take advantage of multiple information
sources we submitted runs of systems combining key
frames classification, lexical analysis classification and
face recognition outputs. Since this was our first partic-
ipation for the TRECVID features extraction task, we
used a very simple way to combine these information:
after normalizing the classifiers outputs, we perform
linear combination or simple product. The main goal
is to obtain best results than just one classifier output,
moreover, the difficulty grow when classifiers provide
bad results.

4.5 Results

4.5.1 Lexical context alone

We submitted one run with the lexical analysis detector
alone and we obtained with it the best results for our
set of high-level features extraction submissions. De-
spite of the relatively low quality of our submissions,
we judge acceptable and promising the accuracy of the
lexical analysis approach. Especially, considering the
little amount of time we had, we weren’t able to tune
our system for each of the features. For the rest, we
are actually working on that aspect, and observe much
better results.

In accordance with official results and our new ex-
periments, we conclude that lexical analysis for detect-
ing visual and semantic features could be appropriate,
according to the contextual specificity of the feature.
Features appearing in a specific context should be de-
tected quite efficiently.

4.5.2 Face recognition alone

We evaluate first classifier on 64 videos extracted from
TRECVID 2003 where we classified manually 22920
faces into our three classes containing 600 Clinton’s
faces and 116 Albright’s faces. We divided sets of
faces in two sub sets, training and testing set. Also
we trained classifier with 411 Clinton’s faces and 90
Albright’s face and 7500 other faces chosen randomly
in faces database. We obtain, after classification on
remaining pictures, the results presented in table 4.5.2.

Recall | Precision | F1
“Clinton” 0.985 0.959 0.97
“Albright” | 0.962 0.898 0.93

Table 4: Performance of face recognition on properly
extracted faces

These results were very encouraging but many faces
of Bill Clinton & Madeleine Albright were selected from
the same shot for training and thus were very simi-
lar.We test, next, classification on overall TRECVID
2004 video stream. We trained classifier with 11571
Clinton’s faces, 1920 Albrigth’s faces and 21632 other
faces extracted manually from TRECVID 2003 video
streams. Despite the encouraging results on TRECVID
2003, the final results on TRECVID 2004, given in the
table 4.5.2 are much below what was expected.

There are two mains reasons for this: first of all only
10% to 35% of shot containing Bill or Madeleine’s faces
have been extracted by OpenCV face detector (mostly
due to inappropriate face size and/or orientation). Sec-
ondly, the training set we used was too homogeneous



Mean Average Precision
0.0023
0.0001

“Clinton”
“Albright”

Table 5: Performance of face recognition on properly
extracted faces

for deducing the best inference principle. These results
place us at about the two thirds in systems ranking for
Bill Clinton and Madeleine Albright search.

4.5.3 Fusion

We submitted 3 runs from fusion of ASR analysis and
key frames classification, and 2 runs from faces recog-
nition and ASR analysis combination. In both cases,
linear combination gives the best results, with weights
0.65 and 0.35 respectively for ASR and images anal-
ysis. These runs perform globally less than ASR only
(lexical context) run, however we can notice that linear
combination give better average precision for features
28, 32 and 37 (boat/ship, beach and roads) which are
typically visual features.

5 Search

The CLIPS-LIS-LSR search system uses a user-
controlled combination of five mechanisms: keywords,
similarity to example images, semantic categories, sim-
ilarity to already identified positive image, and tempo-
ral closeness to already identified positive image (Fig-
ure 7).

5.1 Keyword based search

The keyword based search is done using a vector space
model. The words present in the ASR transcription are
used as vector space dimensions. Stemming ans stop-
word list are used. Relevance is first assigned to speech
segments (as provided in the LIMSI transcription [9])
and projected onto overlapping shots.

5.2 Similarity to image examples

Visual similarity between key frames and image exam-
ples is looked for using color and texture characteristics.
The same primary vector descriptors than for the fea-
ture extraction task are used (8x8x8 color histograms
and 7x7 Gabor transforms. Distance are computed,
normalized and then turned into a relevance value for
each characteristic. A 65% color and 35% texture linear
combination is then used.

5.3 Feature based search

The goal of this part is to help focusing on specific
categories of the video shots, according to a non-crisp
labeling of their keyframes. All keyframes are auto-
matically labeled according to 15 categories (table 6).
These categories differ from the feature extraction task
ones. They have been chosen because of their avail-
ability from the TRECVID 2003 collaborative anno-
tation effort [28]. We picked the top categories from
the annotation hierarchy, and added the “Studio Set-
ting” category because of its expected usefulness on the
TRECVID 2004 collection.

1. Animal 9. Person Action

2. Cartoon 10. Physical Violence
3. Graphic And Text 11. Sport Event

4. Human 12.  Studio Setting

5. Man Made Object 13. Transportation
6. Outdoors 14. Transportation

7. Outerspace 15.  Weather News

8. People Event

Table 6: Categories used for feature based search

A different approach than the one of the feature ex-
traction task was used because of the different goals.
The background of this labeling comes from indexing
and retrieval of photographs and videos [29] [30], but
with major differences due to the kind of images pro-
cessed. The learning of the labels is defined as follows:

1. Extraction of features. The images are seg-
mented spatially according to a predefined pattern:

a) blocks of n x n pixels (overlapping from n/2 pixels
on both directions) are extracted from the images,

b) on each block, according to what is described in
[31] for image indexing, colors (in Y 1) space) fea-
tures and texture features (Gabor energy, on 6 di-
rections and 5 scales) are extracted. The stored
data about colors for one block are the Y charac-
teristic mean and standard deviation, the I char-
acteristic mean and standard deviation, and the Q
characteristic mean and standard deviation. So,
a 6-tuple is extracted for the color information of
one block. The stored data about textures for one
block are, for one direction D and one scale S, the
mean and standard deviations of the feature. So,
a 60-tuple is extracted for the texture information
of one block. For the color features extraction we
take the original images pixels, and for the gabor
features extraction we apodize the borders of the
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Figure 7: View of the CLIPS-LIS-LSR search system

images. The descriptor of one block B of an image
I is a 66-dimensional vector, called Vinitr p in the
following.

2. Learning set processing. The learning set is com-
posed, for each category label L, of a set I Py, of x pos-
itive images and a set I Ny, of y negative images. Each
of these set was built manually from TRECVID 2003
image data, because the labels are not exclusive. From
the positive images, a subset of blocks BPy, is used as
positive sample set. From this set of positive blocks,
we compute the mean pur (i) and standard deviation
or(i) of each Vinitr p(i) of the 66 features extracted
(1 <4 < 66). These means and standard deviations
are used to generate the final feature vector V finr p
of each block using a zero mean normalization for any
block feature considered (during the learning process
for the positive and negative samples, and also during
the recognition process).

3. Learning process. We use Support Vector Ma-
chines (SVM) to achieve the learning on the 15 labels.
SVM have been successfully used for labeling of home
photographs [32], [33]. The implementation SVM con-

sidered for this experiment is SVM_light [34]. For each
V finr g of a positive or a negative image, a polyno-
mial kernel SVM-based classifier is learned. On aver-
age, the size of the learning sample blocks is 1665 (880
for positive set and 785 for negative), and the learning
process takes on average 6 hours (Linux-based PC un-
der RH9.0, Pentium IV at 3.2 Ghz, 1GB memory) per
label, so 90 hours for the 15 labels.

4. Probabilization. We take for each category label
a set of positive and negative images (different from
the steps 2 and 3 above). Each block B of these im-
ages is extracted and the 15 corresponding final fea-
ture vectors (one per label) are computed. These vec-
tor are then input to the respective SVM classifiers,
that give a 15-dimensional binary histogram Hbp 1
with a 1 value if the block is classified as positive,
and 0 otherwise. Each bin of Hbp 1 is related to one
and only one label L associated to its identifier idy,

If we consider that one image I is split into N By
blocks, we generate a 15-dimensional histogram Hinity
that sums up for each dimension all the Hbp of I,
having 0 < Hinitr(idy) < NByr). A normalization
of this histogram is then achieved . We probabilize



these histograms by computing the probability of cor-
rect recognition having given values of the normalized
Hinitr(idr). More precisely, this is achieved through
the computation of the mean of correct labeled images
and the mean of wrongly labeled images for each label,
and by defining a probability density function based on
an approximation of a sigmoid function based on the
means computed. As a result, we obtain a probability
that an image is correctly labeled whith each of the
15 category labels. The computing of the probability
density functions (one per category label) is achieved
on average on 880 blocks for positive sets and 780 for
negative sets per category label.

During the recognition process, similarly to the step
4 above, we first extract the blocks of one keyframe,
then we compute the normalized histogram of the im-
age and eventually we probabilize the results using the
probability density functions defined in step 4. The re-
sult obtained for each keyframe is then a real number in
[0, 1] for each category label, indicating how likely the
keyframe is to be relevant for the category. During the
search task, each category can be assigned a positive
or a negative importance, and the retrieval is processed
through a combination of the assigned importance and
the probability to be labeled by the selected categories
(Figure 7).

5.4 Visual similarity to already identi-
fied positive images

Visual similarity to already retrieved images can be
used for the search. These images have to be marked
as positive examples for similarity based search by the
user (relevance feedback). The search is performed in
the same way as for the original image examples. Key
frames are ranked according to their closeness to thes
positive examples. The images selected for similarity-
based search need not to be actually positive example
for the current search.

5.5 Temporal closeness to already iden-
tified positive images

Temporal closeness (within the video stream) to al-
ready retrieved images can be used for the search.
These images have to be marked as positive examples
for similarity based search by the user (relevance feed-
back). Key frames are ranked according to their tem-
poral closeness to thes positive examples. The images
selected for similarity-based search need not to be ac-
tually positive example for the current search.

5.6 Combination of search criteria

The user can define dynamically his search strategy ac-
cording to the topic and/or the looking of the retrieved
images. Each search mechanism can be configured in-
dependently and each mechanism can be given a global
weight for the search (Figure 7). Relevance are com-
puted independently for each mechanism and for each
key frame (or subshot). The per-mechanism relevances
are then linearly combined according to the mechanism
weight to produce the final key frame relevance. A rele-
vance is computed for each shot at the maximum of the
relevances associated to each key frame (or subshot). A
ranked list of shots is the produced.

5.7 Search strategy

The system is designed for very fast response time and
efficient user feedback. The user is encouraged to use
whatever search mechanism seems best appropriate and
to view and mark as many images as possible in the
given time (900s). At each iteration, the system dis-
plays 49 images. By default they are marked as neg-
ative. The user only has to mark the positive that he
sees by clicking on them. In case of doubt he can see
them at actual size in a separate window just by mouse
overlap and, if still necessary, he can play the shot by
clicking below the images. By default also, the positive
images are also positive examples for visual similarity
and temporal closeness based search but this can be
changed also by the user. Any key frame marked pos-
itive by the user receives a relevance of 1 and any key
frame marked positive by the user receives a relevance
of 0.

The same system has been used for manual and inter-
active submissions. Manual submissions are the results
of the system at the first iteration (without any feed-
back). Interactive submissions are the results of the
system after as many iteration as possible within the
allocated time. The system keep track of the output
(ranked list of 1000 shots) at each iteration as well as
the time elapsed since the beginning of the topic pro-
cessing. This allows to display the evolution of the
Mean Average Precision (MAP) over time during the
search.

5.8 Results

Four users have participated to the tests. Some of them
did not have the time to process all topics and other
(new) users completed the processing of the remain-
ing topics. Each user processed each topic at most
once. One user did the search using only the mecha-
nism based on ASR (keywords). All three users used



all available modalities. The visual similarity based
search was not operational yet at the time at which
the experiments were conducted. Table 5.8 shows the
Mean Average Precision for each user for manual (a
single iteration, no feedback) and interactive searches.

User Type Manual | Interactive
1 unlimited | 0.0652 0.2471
2 unlimited | 0.0581 0.2105
3 unlimited | 0.0319 0.1306
4 ASR only | 0.0555 0.1623

Table 7: Mean Average Precision for the search task

It can be noticed that there is a significant variability
of the system performance according to the user. The
relative user performance is consistent with the knowl-
edge and the experience the user has of the system. It
is also most probable that the mother language as well
as the cultural background of the users significantly af-
fect the system/user performance. None of the users
here is an English native speaker. None of them either
is much familiar with the politics and sports in the US.

Table 5.8 shows the evolution over time of the Mean
Average Precision for user 1. M.A.P. 0 minutes corre-
sponds to a random answer. M.A.P. 1 minutes corre-
sponds to the manual search (the first iteration is usu-
ally done in less tha 1 minute). M.A.P. 5, 10 and 15
minutes were obtained using the system output trace.

Elapsed time | M.A.P.
0 minutes 0.0002
1 minutes 0.0652
5 minutes 0.1593
10 minutes 0.2243
15 minutes 0.2471

Table 8: Evolution of M.A.P. over time for user 1

6 Conclusion

We have presented the systems used by CLIPS-IMAG
and his partners, LSR-IMAG, LIS and LABRI labora-
tories, to perform the tasks proposed in the TRECVID
2004 workshop. SBD was performed using a system
based on image difference with motion compensation
and direct dissolve detection. This system gives con-
trol of the silence to noise ratio over a wide range of
values and for an equal value of noise and silence (or
recall and precision), its F1 value is 0.83 for all types

of transitions. Story segmentation was performed us-
ing a combination of multi-modal detectors and the F1
value for the optimal system configuration was of 0.48.
Feature extraction was achieved using a combination
of lexical context based classification, a color and tex-
ture based classification and on face recognition. The
search system uses a user-controlled combination of five
mechanisms: keywords, similarity to example images,
semantic categories, similarity to already identified pos-
itive image, and temporal closeness to already identi-
fied positive image. The mean average precision of the
search system (with the most experienced user) is 0.24.
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