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Abstract. Without any prior knowledge, the non-rigid registration of
two images is a symmetric problem, i.e. we expect to find inverse results if
we exchange these images. This symmetry is nonetheless broken in most
of intensity-based algorithms. In this paper, we explain the reasons why
most non-rigid registration algorithms are asymmetric. We show that the
asymmetry of quadratic regularization energies causes an oversmoothing
of expending regions relatively to shrinking regions, hampering in par-
ticular registration-based detection of evolving processes. We therefore
propose to use an inversion-invariant energy to symmetrize the registra-
tion problem. To minimize this energy, two methods are used, depending
on whether we compute the inverse transformation or not. Finally, we
illustrate the interest of the theory using both synthetic and real data, in
particular to improve the detection and segmentation of evolving lesions
in MR images of patients suffering from multiple sclerosis.

1 Introduction

Non-rigid registration of two images I and J consists in finding a transformation
between the two sets of points of both images. If we make the assumption that
every point of an image has an homologous point in the other, and that the
topology has been conserved, the result of the algorithm should be a smooth
homeomorphic transformation T'(I, J), going from I to J.

Among non-rigid registration algorithms, intensity-based algorithms are dri-
ven by a similarity energy F;,, (e.g. the sum of square differences (SSD)) that
attracts both images toward each other using their intensity values [1]. At the
same time, the transformation T'(I,J) is kept smooth either by constraining
T(I,J) to belong to some space 7 of regular transformations (e.g. splines with
few control points [2]), or by choosing a regularization energy E,., (e.g. the
linear elastic energy), or both [3]. This energy E,., can be minimized with Eg;.,
in a weighted sum Eg;m + AE;4 [4,5], or minimized alternatively with E;., [6].
See [7] for a review of registration techniques.



1.1 Asymmetry and related problems

Without any other prior knowledge, the registration problem is symmetric and
we expect to obtain the inverse transformation if we exchange I and J: T'(J,I) =
[T(I,J)]. However, this symmetry is usually broken in practice, giving birth to
the terminology “reference” or “template” image and “study” or “floating” image
(here T(I,J) goes from the reference image I to the study image J). Most,
if not all, of the energies used in medical image non-rigid registration leads
to asymmetrical registration. This includes the usual similarity energies and
quadratic regularization energies such as linear elastic or thin plate energies.
Even the general, non-linear elasticity is conceptually asymmetric since one of
the images is supposed to be in a no-stress state and not the other; see [8] for
an example showing the importance of this consideration.

The first obvious problem with asymmetry is that we have to choose arbitrar-
ily a reference image, and thus the results of measures relying on this registration
depend on how the reference image is chosen.

However, there can be a more subtle problem than the previous one. Indeed,
using standard similarity measures and quadratic regularization energies will
lead to systematically biased solutions: they will smooth the transformation on
expanding regions more than on shrinking regions. Both T'(1, J) and T'(J, I) will
have more difficulty to describe a local growth than a local shrink.

In order to understand this, let
y f us present a 1D example where we
smooth a function f using a convolu-
tion with a kernel of some finite ex-
tension o: we use values of f in an
interval of length o to smooth f. As
shown on fig. 1, the same smoothing
is approximately obtained on f~! if
it is convolved with a kernel of size
o f'. Thus, the transformation around
an expanding region (f'>1) would be
X less smoothed if the images were ex-
changed and the inverse transforma-
Fig. 1. Smoothing f by a kernel of size ¢ tion smoothed with the same kernel
is roughly the same as smoothing f~" by a  of size o.
kernel of size o ' This explains why the detection
of evolving brain lesions using non-rigid registration has appeared easier on
shrinking lesions than on expanding lesions in our previous work [9]. We thus
detected expanding and shrinking regions by working on shrinking regions of
both T'(I,J) and T'(J, I).

1.2 Towards symmetry of registration

We have found that the asymmetry of intensity-based non-rigid registration is
due to one or several of the following reasons:



1. Order non-preservation of the energies: An energy E(1, J,T) being used
for registration, we may have E(I,J,Ty) < E(I,J,Ty) but not E(J,I,T,") <
E(J,1I, TQ_I) for two estimates 77 and T of the transformation.

2. Non-stable transformation space: The space of allowed transformation
T may not be a group and thus not stable by inversion, i.e. we may have T' € T
but not T-! € 7.

3. Local Minima: The optimization algorithm may get stuck in different local
minima of the energy when the images are exchanged.

A previous work on the symmetrization of the registration has been done
by Christensen [5]. In his work, two asymmetric registrations are made simul-
taneously, but are constrained to be close to the inverse of each other. This
constraint is efficient at smoothing the registration. However, the algorithm is
only asymptotically symmetric when the weight of this constraint tends towards
infinity. Also, it relies on the computation of an inverse transformation whose
existence is not ensured by linear elasticity. This work is nice but we felt that
the symmetrization could be handled theoretically in a more efficient way.

In this paper, we propose to tackle the first point of the previous list and to
ensure that the minima of the energy are invariant when exchanging the images,
by forcing the similarity energy FE;n, and the smoothness energy E,., to be
symmetric, i.e. invariant if we exchange I and J and invert the transformation:
Eyim(I,J,T) = Egim(J,I, T 1) and E,¢y(T) = Epeo(T1). This is close to a
very recent work by Trouvé and Younes [10] where the authors consider distances
of two parametric closed curves verifying some properties, including this kind of
symmetry.

In section 2 we present a way to construct symmetric energies. In section 3
we present two optimization procedures, depending on whether we compute the
inverse transformation or not. We illustrate the theory with a synthetic example
in section 4, and in section 5 we show the interest of this method to detect and
segment evolving lesions in multiple sclerosis.

2 Symmetric Energies

2.1 Symmetrization of regularization energies

Let x be a point of I, and let d"T'(x) be the n-th differential tensor of T at
x. Let E,.,(T) be a regularization energy that can be written as an integral of
some function ey of the differentials of T':

E,..,(T) = /eg(dT(x),dQT(x),...)dx (1)

E,.4 is symmetric (0 inversion invariant) if Ey.q(T) = E,co(T7!). If we change
variables in E,. (7!
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it appears that a sufficient condition for E,., to be symmetric is that
e2(dT (x),d*T(x), ...) = ea(d(T™) o T(x),d*(T™') o T(x), ...)|dT(x)|

where |dT'(x)| is the Jacobian of T at point x.

There are many such symmetric energies. Among them, we are more par-
ticularly interested in energies that are somehow linked to the asymmetric en-
ergies we are used to. There are several possibilities to symmetrize an asym-
metric energy. Among them, the most natural is perhaps to take the mean of
ea(dT,d?T, ...) and |dT |ea(d(T~1) o T,d*(T~1) o T),...), i.e. the symmetrization
E7., of a regularization energy E.., can be defined by

1
2
The trick is that es(d(T~1) o T,d?(T~1) o T,...) can be calculate (more or less
easily) from the derivatives of T'. Thus, E;, (T is indeed of the form (1) and
can be computed without inverting T'. For example, let us consider the following
quadratic energy in 2D: E,o(T) = [g. [ldT|* = [z [18.T|* + ||8,T||*. Since
d(TY)oT = (dT)~*, we find that the symmetrization of this energy using eq.
(2) is:

E, (T) =

reg

(Ereg(T) + Ereg(T71)) (2)

Biol®) = 5 [0+ ) (0TI +112,717) ®

Note that the integrand tends to +o0o when dT' tends to O: in practice, this will
force the transformation to be one-to-one.

2.2 Symmetrization of Similarity Energies

Similarity measures can be symmetrized using the same technique. If E;,,, (I, J,T')

is a similarity energy, a symmetric similarity energy can be deduced by setting;:
1
E:zm(-[a JaT) = §(E51m(-[7 JaT) + EszTn(JvIvT_ID (4)

Here again, changing the variables inside E;n (J, I, T~1) usually eliminates 7!
from the formulas, and therefore the inversion of 7' can be avoided. For example,
if Egim (I, J,T) = [(I—JoT)?*is the standard SSD criterion between two images,
then its symmetrization using (4) is

By, 1T) = 5 [+ 1T = ToT)" (5)

3 Optimization of the Symmetric Energy

3.1 Finite element implementation without inversion

Our first implementation uses the fact that the symmetric energies can be com-
puted and optimized without inverting the displacement field. To produce the



results presented in the next section, we have minimized in 2D the symmetric
energy (7) which is the symmetrization of (6):

E(I,J,T):/(I—JoT)2+)\/||dT||2 (©)

E*(I,J,T) = % [/(1 +[dT|)(I = JoT)? + A/(l + WI—T|)||dT||2 (7

In our experiences, the accuracy of the symmetry has been very sensitive to
the discretization of the continuous optimization problem. We found out that
results were significantly better using a finite element discretization of the energy
rather than a finite difference scheme. A triangularization of the rectangular grid
defined by the pixels is used. The images as well as the transformation are defined
as piecewise linear functions on this triangularization. To minimize the energy,
we use a simple gradient descent coupled with a multiresolution scheme.
We encountered two types of problems with the previous algorithm:

1. The energy is difficult to minimize, mainly because it includes the term
1/|dT| that raises numerical problems, especially when the smoothness con-
straint is set low (A < 1).

2. The optimization by gradient descent is asymmetric (point 3 of the list given
in introduction): for example, the derivative of the energy (7) with respect
to T uses the derivative of J and not the derivative of I. This hampers a
perfect symmetry of the result.

3.2 Alternate minimization with inversion

These last problems can be avoided if we compute the inverse transformation.
Our second method uses a very simple yet efficient alternated-minimization
method: instead of minimizing E*(I, J,T) = E(I,J,T) + E(J,I,T~!), we min-
imize alternatively the asymmetric energies E(I,J,T) and E(J,I,T~!) (given
by eq. (6)) using respectively I and J as the reference image. This requires an
inversion of the transformation every time we change of reference image.

For a better comparison with the previous algorithm in 2D we have used
the same finite element discretization. However, it is not necessary, which is one
advantage of this method: faster optimizations are possible with the same quality
of symmetry.

The inverse transformation is computed by finding the zero of fy(x) =y +
T'(x) using a Newton scheme. Interpolation of the transformation is necessary;
we have used a bi- or trilinear interpolation. The inverse is found with an error
usually less than 0.1 voxel. Note that we cannot have an arbitrarily small error
because the inverse of a piecewise bi/trilinear transformation is not piecewise
bi/trilinear.

We have to be careful with the computation of the inverse. Indeed, E(I, J,T')
does not guarantee that the transformations is invertible. Forcing the corrections
brought at each iteration to be small, and/or smoothing them, often helps the



transformation to be invertible at every iteration, especially during the first
iterations at full resolution when only a small number of points are moving.
Furthermore, imposing small corrections seems to give more symmetrical results.

4 Results on a Synthetic Example

In this synthetic example we have two 520 x 280 images containing two discs, one
multiplying its radius by 2 and the other shrinking symmetrically (fig. 3). We
have registered these images using the asymmetric energy (6) (Asym algorithm),
and using the algorithms described in sec. 3.1 (Sym1) and sec. 3.2 (Sym2).

o ‘ ‘ ‘ When we register these im-
ages using Asym, we are con-

fronted to the problem men-
J\ tioned in sec. 1.1 that shrink-
age is more easily recovered
than growth. We can analyse
it using the absolute value of
the logarithm of the Jacobian
(AVLJ) of the transformation,
which expresses the local in-
crease or decrease of area and
S 2 we used for the detection of
brain evolution in [9]. If the
growth and the shrinkage were
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Fig. 2. Mean error in pizels of T(1,J)oT(J,1I) for
4dsym (plain), Sym1 (dots) and Sym2 (dashes). recovered equally, we would
find equal AVLJ inside both

circles, and if they were furthermore exactly recovered, these numbers would be
equal to log [(m(2r)?)/(mr?)] = log(4) ~ 1.39. Instead, we find that both AVLJ
are increasingly underestimated with the strength of the smoothing, which is
expected, but also that the AVLJ of the expanding region is systematically un-
derestimated relatively to the AVLJ of the shrinking region (fig. 3). This short-
coming is reduced with Sym1, and virtually eliminated with Sym2. We have also
registered the images in both directions and computed 7'(1, J) o T'(J, I), which
should be equal to identity in the case of a perfect symmetry. Mean errors of this
composition relatively to the identity have been computed (fig. 2) and confirm
the previous results.

We would like to emphasize that for the same amount of smoothing, Sym1
and Sym2 do not find a solution closer to the real transformation than the asym-
metric algorithm for both circles: the small circle is registered better but the big
circle is less shrinked. The distance to the real transformation is not uniformally
decreased; errors are just shared more equitably.
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Fig. 3. Top: The two images to register (left and middle), and an example of a log-
Jacobian image on the right (positive numbers are white, negative are black). Bottom:
Graphs showing the mean absolute value of the log-Jacobian (AVLJ) inside the big
circle (in plain) and inside the little circle (in dashed) relatively to the strength of the
smoothing (z-axis), using respectively Asym (left), Symi (middle) and Sym2 (right). The
real AVLJ is log(4) = 1.39 (dashed-dotted line) for both circles.

5 Application to Multiple Sclerosis

In this section we would like to show that the method described in this paper
can significantly improve results in the detection and segmentation of evolving
lesions in multiple sclerosis [11,9]. In a previous article [9] we explain that small
expanding lesions can be difficult to detect with temporal analysis of apparent
deformations: if there is an important expansion locally between images I and J,
we would need a one to many mapping due to limited resolution of the image. To
avoid this, we considered only shrinking regions from I to J, and then shrinking
regions from J to I. By thresholding shrinking areas we obtained the sought
segmentations.

However it is possible to avoid the computation of 2 vector fields (direct and
reverse) between images I and J, by computing only one vector field thanks to a
symmetrical approach. Here, we have used the alternated minimization method
(sec. 3.2), without using a finite element scheme but the fast scheme of [6].

We have made some experiments on an evolving lesion extracted from two
T2-weighted MRI of a patient with multiple sclerosis. Time between the two
acquisitions is 8 weeks. The resolution of the images is really poor as we can see
on the first two columns of figure 4 (voxel size is 0.9 x 0.9 x 5.5mm?). We have
computed four vector fields for our experiment: asymmetric and symmetric fields
from I to J, and asymmetric and symmetric fields from 2 to 1. We compute the
Jacobian on each field, and we manually search for the Jacobian isovalue (in red
on fig. 4) that segments the lesion. As explained in [9], it does not exist any
efficient automatic method to find the best threshold at the moment.
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Fig. 4. Manual segmentations were done independently. Values are not inverse in the
case of asymmetrical computation, and inverse in the case of symmetrical approach.
Furthermore, the segmentation of evolving areas better corresponds to reality.

coronal ~ sagittal

axial

A symmetrical computation of the deformations significantly improves the
detection and segmentation of evolving lesions. First it makes it possible to
use the same value v to threshold the Jacobian (Jac> v > 1 for expansion, and
Jac< 1/v < 1 for shrinking). With an asymmetrical approach we had to compute
the direct and reverse field and only search for shrinking areas. In figure 4 manual
segmentations were done independently. Values are not inverse in the case of
asymmetrical computation, and inverse in the case of symmetrical approach.
Furthermore, the segmentation of evolving areas seems to better correspond to
reality as we can see in figure 4.

6 Conclusion

In this paper we have listed the reasons of the asymmetry of intensity-based
registration algorithms. We have shown that asymmetry may hamper the equal
retrieval of expanding and shrinking areas, perturbing registration-based detec-
tion of evolving processes. To reduce the asymmetry of registration, we have
introduced inversion-invariant similarity and smoothness energies, and a way to
symmetrize the widely used asymmetric energies.

We have worked on a particular asymmetric energy E* that is easily expressed
as a function of the transform 7. We have minimized E* with and without
computation of the inverse transform. On a synthetic example, we have shown
that the use of a symmetric energy was reducing considerably the shortcomings
of asymmetric energies, and that the computation of the inverse transform, if it
exists, is helpful. Finally, a symmetric approach improves segmentation results



and simplify the methodology of registration-based detection of evolving lesions,
especially in the case of small lesions and/or poor resolution.
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A APPENDIX

For a better comprehension, we develop the mathematics for obtaining the sym-
metric energies (3) and (5). If T : R? — R2 is a diffeomorphic 2D transformation,
we can compute its Jacobian matrix at a point p = (z,y):

T, o7,
i) = (S5 0) = <%T o 2 Ep;)

Since d(T~') o T = (dT)~!, we have

T, o,
AT () = (_%:Tff;) aaq@:(g)) ®

with q = T'(p). Now, if

= [ (Zw) +(Ze) +(2Zm) + (L)

then, using (8),

)= [ s [ (20) + (Zew) + (Botm)+ (Zew) | a
- [ | (o)« (2e0) e (o)« (2o0) |

Finally we sum this last equation to E,.,(T) to find the symmetrization of

Ereg(T) (eq. (3)).
Similarly, if Fgm (I, J,T) fRz — JoT(p))*dp,

Eom(J, I, T = /RZ(J(q) —ToT Yq))%dq
L [ (TT(w) - )T ()] dp
R2

We find eq. (5) by summing this last equation to Esin (T).



