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Abstract

During a neuro-surgical intervention, the brain tissues
shift and warp. In order to keep an accurate positioning
of the surgical instruments, one has to estimate this defor-
mation from intra-operative images. 3D ultrasound (US)
imaging is an innovative and low-cost modality which ap-
pears to be suited for such computer-assisted surgery tools.
In this paper, we present a new image-based technique to
register intra-operative 3D US with pre-operative Magnetic
Resonance (MR) data. A first automatic rigid registration is
achieved by the maximisation of a similarity measure that
generalises the correlation ratio. Then, brain deformations
are tracked in the 3D US time-sequence using a “demon’s”
like algorithm. Experiments show that a registration ac-
curacy of the MR voxel size is achieved for the rigid part,
and a qualitative accuracy of a few millimetres could be
obtained for the complete tracking system.

1. Introduction

The use of stereotactic systems is now a quite standard
procedure for neurosurgery. However, these systems as-
sume that the brain is in fixed relation to the skull during
surgery. In practice, relative motion of the brain with re-
spect to the skull (also called brain shift) occurs, mainly
due to tumour resection, cerebrospinal fluid drainage, hem-
orrhage or even the use of diuretics. Furthermore, this mo-
tion is likely to increase with the size of the skull opening
and the duration of the operation.

Over the last years, the development of real-time 3D ul-
trasound (US) imaging has revealed a number of potential
applications in image-guided surgery as an alternative ap-
proach to open MR and intra-interventional CT. The major
advantages of 3D US over existing intra-operative imaging
techniques are its comparatively low cost and simplicity of
use. However, the automatic processing of US images has
not gained the same degree of development as other medical
imaging modalities, probably due to the low signal-to-noise
ratio of US images.

Context We present in this article a feasibility study
of a tracking tool for brain deformations based on intra-
operative 3D ultrasound (US) image sequences. This
work was performed within the framework of the Euro-
pean project ROBOSCOPE, a collaboration between The
Fraunhofer Institute (Germany), Fokker Control System
(Netherlands), Imperial College (UK), INRIA (France),
ISM-Salzburg and Kretz Technik (Austria). The goal of the
whole project is to assist neuro-surgical operations using
real-time 3D ultrasound images and a robotic manipulator
arm (fig. 1). The operation is planned on a pre-operative
MRI (MR1) and 3D US images are acquired during surgery
to track in real time the deformation of anatomical struc-
tures. The first US image (US1) is acquired with dura mater
still closed and a rigid registration with the preoperative MR
is performed. This allows to relate the MR and the US co-
ordinate systems and possibly to correct for the distortions
of the US acquisition device. Then, brain deformations are
tracked in the time-sequence of per-operative US images.
From these deformations, one can update the preoperative
plan and synthetize a virtual MR image that matches the
current brain anatomy.

MR/US registration The idea of MR/US registration is
already present in [3] where it is performed by interactively
delineating corresponding surfaces in all images and a vi-
sual rigid fitting of the surfaces using a 6D space-mouse.
In [6], the outlines of the 2D US image are registered to
the MR surface using a Chamfer matching technique. In
[10, 5, 4], the 2D US probe is optically tracked and the cor-
responding MR slice is displayed to the user who marks cor-
responding points on MR and US slices. Then, a thin plate
spline warp is computed to determine the brain shift. This
method is also developed in [1] with the possibility of using
3D US images and a deformation computed using a spring
model instead of splines. More recently, Ionescuet al [7]
registered US with Computed Tomography (CT) data after
automatically extracting contours from the US using water-
shed segmentation. In these studies, there is no processing
of a full time sequence of US images : the brain shift esti-



Figure 1. Overview of the image analysis part of the Roboscope project.

mation is limited to a few samples at given time-points as
the user interaction is required at least to define the land-
marks.

Up to our knowledge, only [8] deals with an automatic
non-rigid MR/US registration: the idea is to register a sur-
face extracted from the MR image to the 3D US image using
a combination of the US intensity and the norm of its gradi-
ent in a Bayesian framework. The registration is quite fast
(about 5mn), even if the compounding of the 3D US and the
computation of its gradient takes about one hour.

Since non-rigid MR/US registration is a difficult prob-
lem, we chose to split it into two subproblems: first a
rigid MR/US registration is performed with dura matter still
closed (there is no brain shift yet), then we look for the non-
rigid motion within the US time-sequence.

Tracking methods in sequences of US imagesThere are
few articles on the registration of 3D US images. [19] use a
maximum-likelihood approach to deduce a similarity mea-
sure for ultrasound images corrupted by a Rayleigh noise
and a block-matching strategy to recover the rigid motion.
In [17], the correlation of the norm of the image gradient is
used as the similarity measure to rigidly register two US im-
ages in replacement of the landmark-based RANSAC regis-
tration of [16]. However, these methods only deal with rigid
motion and consider only two images, eluding the tracking
problem. One has to move to cardiac application to find find
some real tracking of the shape of the cardiac ventricle in
sequences of 3D US images using dedicated surface mod-
els. However, if these models could be adapted to the brain
ventricles, it seems difficult to extend them to the tracking
of the volumetric deformations of the whole brain.

Since feature or surface extraction is especially difficult
in US images, we believe that an intensity-based method

can more easily yield an automatic algorithm. Over recent
years, several non-rigid registration techniques have been
proposed [9]. We chose to focus in [11] on gradient descent
techniques. Differentiating the sum of square intensity dif-
ferences criterion (SSD), we showed that the demons forces
proposed by Thirion in [20] were an approximation of a sec-
ond order gradient descent on this criterion. The same gra-
dient descent techniques were applied to a more complex
similarity measure in [2]: the sum of Gaussian-windowed
local correlation coefficients (LCC).

Overview of the article organisation The first part
of this article expands on the correlation ratio (CR)
method [14]. It is an intensity-based approach as it does not
rely on explicit feature extraction. We have improved the
method in [15] following three distinct axes: using the gra-
dient information from the MR image, reducing the number
of intensity parameters to be estimated, and using a robust
intensity distance.

The second part of the article develops an automatic
intensity-based non-rigid tracking algorithm suited for real-
time US images sequences, based on encouraging prelimi-
nary results reported in [11, 12]. We first present the reg-
istration method for two US images and how the method is
turned into a tracking algorithm.

In section 4, we present some results of the rigid MR/US
registration on clinical data (a baby and a surgical case),
along with the results of an original evaluation of the regis-
tration accuracy. Then, we present qualitative results of the
tracking algorithm on a sequence of 3D US animal images
and a qualitative evaluation of the complete tracking sys-
tem on a sequence of images of an MR and US compatible
phantom.



2 Rigid MR/US Registration

2.1 Correlation ratio

Given two imagesI andJ , the basic principle of the CR
method is to search for a spatial transformationT and an in-
tensity mappingf such that, by displacingJ and remapping
its intensities, the resulting imagef(J ◦ T ) be as similar as
possible toI. In a first approach, this could be achieved by
minimising the following cost function:

C(T, f) = ‖I − J ◦ T‖2 =
∫

x

[I(x)− f(J(T (x)))]2 (1)

This formulation is asymmetric in the sense that the cost
function changes when permuting the roles ofI and J .
Since the positions and intensities ofJ actually serve to pre-
dict those ofI, we will call J the “template image”. In the
context of US/MR registration, we always choose the MR
as the template.

One problem is that we can compute this criterion only
on the overlapping part of the transformed images. In order
to avoid a minimum when the image overlap is small, we
need to renormalise the criterion: a good choice, justified in
[13], is to look for a large variance ofI in the overlapping
region (we are trying to register informative parts), so that
the criterion becomes:

C(T, f) = ‖I − f(J ◦ T )‖2/Var(I) (2)

where the integrals are computed overI ∩ J ◦ T . Another
important point is the discretisation scheme used to com-
pute the criterion, leading to the choice of an interpolation
scheme [13]. In this paper, we use Partial Volume.

If no constraint is imposed to the intensity mappingf , an
important result is that the optimalf at fixedT enjoys an ex-
plicit form that is very fast to compute [14]. The minimiza-
tion of eq (2) may then be performed by travelling through
the minima ofC(T, f) at fixedT . This yields the corre-
lation ratio,η2

I|J(T ) = 1 − minf C(T, f), a measure that
reaches its maximum whenC(T, f) is minimal. In practice,
the maximisation ofη2 is performed using Powell’s method.

2.2 Bivariate correlation ratio

Ultrasound images are commonly said to be “gradient
images” as they enhance the interfaces between anatomi-
cal structures. The physical reason is that the amplitudes
of the US echos are proportional to the squareddifference
of acoustical impedance caused by successive tissue layers.
Ideally, the US signal should be high at the interfaces, and
low within homogeneous tissues.

Thus, assuming that the MR intensities describe homo-
geneous classes of tissues amounts to consider the acoustic

impedanceZ as an unknown function of the MR intensi-
ties: Z(x) = g(J(x)). Now, when the ultrasound sig-
nal emitted from the probe encounters an interface (i.e.
a high gradient ofZ), the proportion of the reflected en-
ergy is R = ‖∇Z‖2/Z2. Adding a very simple model
of the log-compression scheme used to visualise the US
images, we obtain the following US image acquisition
model: I(x) = a. log

(
‖∇Z‖2/Z2

)
+ b + ε(x). Using

Z(x) = g(J(x)) finally gives an unknown bivariate func-
tion: I(x) = f (J(x), ‖∇J(x)‖) + ε(x). Our new correla-
tion ratio criterion is then:

C(T, f) = ‖I − f(J ◦ T, ‖∇J ◦ T‖)‖2/Var(I) (3)

The MR gradient is practically computed by convolution
with a Gaussian kernel.

2.3 Parametric intensity fit

Since we are now looking for a bivariate intensity map-
pingf with floating values for the MR gradient component,
one has to regularize it. We will therefore restrict our search
to a polynomial functionf of degreed. The number of pa-
rameters describingf then reduces to(d + 1)(d + 2)/2. In
this paper, the degree was set tod = 3, implying that10
coefficients were estimated. Finding the coefficient of the
polynomial minimising eq (3) amounts to solve a weighted
least square linear regression problem.

However, this polynomial fitting procedure adds a sig-
nificant extra computational cost with respect to the uncon-
strained fitting and cannot be done for each transformation
trial. Instead, the minimization of the criterion may be per-
formed alternatively alongT and f : (1) given a current
transformation estimateT , find the best polynomialf and
remapJ and‖∇J‖ accordingly; (2) given a remapped im-
agef(J, ‖∇J‖), minimiseC(T, f) with respect toT using
Powell’s method; (3), return to (1) ifT or f has evolved.

2.4 Robust intensity distance

Our method is based on the assumption that the inten-
sities of the US may be well predicted from the informa-
tion available in the MR. Due to several ultrasound arte-
facts, we do not expect this assumption to be perfectly
true. Shadowing, duplication or interference artefacts may
cause large variations of the US intensity from its pre-
dicted value, even when the images are perfectly regis-
tered. To reduce the sensitivity of the registration criterion
to these outliers, we propose to use a robust estimation of
the intensities differences using a one-stepS-estimator [18]:∫

x
[I(x)− f(J(T (x)))]2 is then replaced with

S2(T, f) = S2
0/K.

∫
x

ρ ([I(x)− f(J(T (x)))]/S0) ,



whereK is a normalisation constant that ensures consis-
tency with the normal distribution, andS0 is some initial
guess of the scale. In our implementation, we have opted for
the Geman-McClureρ-function,ρ(x) = 1

2x2/(1 + x2/c2),
for its computational efficiency and good robustness prop-
erties, to which we always set a cut-off distancec = 3.648
corresponding to 95% Gaussian efficiency.

Initially, the intensity mappingf is estimated in a non-
robust fashion. The starting valueS0 is then computed as
the median of absolute intensities deviations. Due to the ini-
tial misalignment, it tends to be overestimated and may not
efficiently reject outliers. For that reason, it is re-estimated
after each alternated minimisation step.

3 The Tracking algorithm

The goal of this section is to estimate the brain defor-
mations from US images time-sequences. We first detail
the similarity and regularization energies minimised to find
a deformation field between consecutive images of the se-
quence, and then how we turn this registration algorithm
into a tracking tool [12].

3.1 Registering two US images

Similarity energy Even if there is a poor signal to noise
ratio in US images, the speckle is usually persistent in
time and may produce reliable landmarks within the time-
sequence. Hence, it is desirable to use a similarity measure
which favours the correspondence of similar high intensi-
ties for the registration of successive images in the time-
sequence. First experiments presented in [11] indicated that
the simplest one, the sum of square differences (SSD(T ) =∫

(I − J ◦ T )2), could be adapted. In [2], we developed
a more complex similarity measure: the sum of Gaussian-
windowed local correlation coefficients (LCC). LetG ? f
be the convolution off by the Gaussian,̄I = (G ? I) be
the local mean,σ2

I = G ? (I − Ī)2 the local variance and
LC(T ) = G ?

[
(I − Ī)(J ◦ T − J ◦ T )

]
the local correla-

tion between imageI and imageJ ◦ T . Then, the global
criterion to maximise is the sum of the local correlation co-
efficients:LCC(T ) =

∫
(LC(T )/σI .σJ◦T ).

We have shown in [11] and [2] how these criteria can
be optimised using first and second order gradient descent
techniques with a general free-form deformation field by
computing the gradient and the Hessian of the criteria.

Regularization energy There is a trade-off to find be-
tween the similarity energy, reflected by the visual quality
of the registration, and the smoothing energy, reflected by
the regularity of the transformation. In view of a real-time
system, the stretch energyEreg =

∫
‖∇T‖ (or membrane

model) is particularly well suited as it is very efficiently

solved by a Gaussian filtering of the transformation. Thus,
the algorithm will alternatively optimize the similarity en-
ergy and smooth the transformation by Gaussian filtering.

3.2 From registration to tracking

To estimate the deformation of the brain from the first
image to the current image of the sequence, one could think
of registering directlyUS1 (taken at timet1) andUSn (at
time tn) but the deformations could be quite large and the
intensity changes important. To constrain the problem, we
need to exploit the temporal continuity of the deformation.

Assuming that we already have the deformationTUS(n)
from imageUS1 to USn, we registerUSn with the current
imageUSn+1, obtaining the transformationdTUS(n). If
the time step between two images is short with respect to
the deformation rate, there should be small deformations
and small intensity changes. For this step, we believe that
the SSD criterion is well adapted.

Then, composing with the previous deformation, we ob-
tain a first estimation ofTUS(n + 1) ' dTUS(n) ◦TUS(n).
However, the composition of deformation fields involves
interpolations and just keeping this estimation would fi-
nally lead to a disastrous cumulation of interpolation errors.
Moreover, a small systematic error in the computation of
dTUS(n) leads to a huge drift inTUS(n) as we go along the
sequence.

Thus, we only usedTUS(n) ◦ TUS(n) as an initialisa-
tion for the registration ofUS1 to USn. Starting from this
position, the residual deformation should be small (it cor-
responds to the correction of interpolation and systematic
error effects) but the difference between homologous point
intensities might remain important. In this case, the LCC
criterion might be better than the SSD one despite its worse
computational efficiency.

4 Experiments

In this section, we present quantitative results of the rigid
MR/US registration algorithm on real brain images, and
qualitative results of the tracking algorithm and its combi-
nation with the MR/US registration on animal and phantom
sequences. The location of the US probe being linked to the
pathology and its orientation being arbitrary (the rotation
may be superior to90 degrees), it was necessary to pro-
vide a rough initial estimate of the MR/US transformation.
This was done using an interactive interface that allows to
draw lines in the images and match them. This procedure
was carried out by a non-expert, generally taking less than
2 minutes. However this user interaction could be allevi-
ated using a calibration system such as the one described
in [10]. After initialisation, we observed that the algorithm
found residual displacements up to10 mm and10 degrees.



Figure 2. Example registration of MR and US images of the baby. From left to right: original MR T1
image, closeup on the ventricle area, and registered US image with MR contours superimposed.

Figure 3. Example registration of MR and US images of the patient. From left to right: MR T1 image
with a contrast agent, manual initialisation of the US image registration, and result of the automatic
registration of the US image with the MR contours superimposed.

4.1 Images of a Baby

This dataset was acquired to simulate the degradation of
the US images quality with respect to the number of con-
verters used in the probe. Here, we have one MR T1 image
of a baby’s head and 5 transfontanel US images with differ-
ent percentages of converters used. As we have no or very
few deformations within the images, we can rigidly register
all the US images onto our single MR.

An example result is presented in Fig.2. The visual qual-
ity of the registration is very good. In order to quantify
more precisely the registration accuracy, we set up in [15]
a validation scheme that usesregistration loops. For these
data, it shows that the registration accuracy is about 0.4 mm
at the center of the image and 0.9 mm at the corners of the
presented US image.

4.2 Patient images during tumour resection

This is an actual surgical case: two MR T1 images with
and without a contrast agent were acquired before surgery.
After craniotomy (dura mater still closed), a set of 3D US

images was acquired to precisely locate the tumour to re-
sect. In this experiment, we use the three US images that
are large enough to contain the ventricles. Unfortunately,
we could only test for the rigid MR/US registration as we
have no US images during surgery.

An example of the registration results is presented in
Fig.3. In this case, our validation scheme exhibit a regis-
tration accuracy of 0.6 mm at the center and 1.6 mm in the
whole brain area [15]. However, when we look more care-
fully at the results, we find that the loop involving the small-
est US image (real size150×85×100 mm, voxel size0.633

mm3) is responsible for a corner error of2.6 mm (0.85 mm
at the center) while the loops involving the two larger US
images (real size170× 130× 180, voxels size0.953 mm3)
do have a much smaller corner error of about0.84 mm (0.4
mm at the center). We suspect that a non-rigidity in the
smallest US could account for the registration inaccuracy.
Another explanation could be a misestimation of the sound
speed for this small US acquisition leading to a false voxel
size and once again the violation of the rigidity assumption.



Original seg. (volume: 1.25 cm3) Virtual seg. 2 (volume: 1.00 cm3) Virtual seg. 3 (volume: 0.75 cm3)

Original grid Deformed grid 2 Deformed grid 3

Figure 4. Top: The 3 original images of the pig brain. The segmentation of the balloon, done on
the first image, is deformed according to the transformation found by the tracking algorithm and
superimposed to the original US image. Bottom: deformation of a grid to visualise more precisely
the location of the deformations found.

4.3 US images of an animal brain

This dataset was obtained by Dr. Ing. V. Paul at IBMT,
Fraunhofer Institute (Germany) from a pig brain at a post-
lethal status. A cyst drainage has been simulated by deflat-
ing a balloon catheter with a complete volume scan at three
steps. We present in figure 4 the results of the tracking.
Since we have no corresponding MR image, we present on
the two last lines the deformation of a grid (a virtual syn-
thetic image...), to emphasise the regularity of the estimated
deformation, and the deformation of a segmentation of the
balloon.

The correspondence between the original and the virtual
(i.e. deformed US 1) images is qualitatively good. In fact,
if the edges are less salient than in the phantom images (see
next section), we have globally a better distribution of in-
tensity features over the field ov view due to the speckle
in these real brain images. One should also note on the
deformed grid images that the deformation found is very
smooth.

Reducing the smoothing of the transformation could al-
low the algorithm to find a closer fit. However, this could
allow some unwanted high frequency deformations due to
the noise in the US images. We believe that it is better
to recover the most important deformations and miss some
smaller parts than trying to match exactly the images and
have the possibility to “invent” some possibly large defor-
mations.

4.4 A Phantom study

Within the ROBOSCOPE project, an MR and US com-
patible phantom was developed by Prof. Auer and his col-
leagues at ISM (Austria) to simulate brain deformations. It
is made of two balloons, one ellipsoid and one ellipsoid with
a ”nose”, that can be inflated with known volumes. Each ac-
quisition consists in one 3D MR and one 3D US image.

The first MR image is rigidly registered to the first US
image. We determined that the accuracy of this registration
was about 1 mm at the center of the image and 1.4 mm at



US 1 US 2 US 3 US 4 US 5

Virtual US 2 Virtual US 3 Virtual US 4 Virtual US 5

virtual MR 2 virtual MR 3 virtual MR 4 virtual MR 5

Figure 5. Beginning of the sequence of 10 images of the phantom. On top: the original US images.
Middle: the “virtual” US images (US 1 deformed to match the current US image) resulting from the
tracking. Bottom: the virtual MR images synthetized using the deformation field computed on the US
images with the contours of the “original” MR images superimposed. The volume of the balloons
ranges from 60 to 90 ml for the ellipsoid one and 40 to 60 ml for the more complex one.

the corners of the US image [15]. Then, deformations are
estimated using the tracking algorithm on the US sequence,
and the corresponding virtual MR image is computed. The
remaining MR images can be used to assess the quality of
the tracking [12].

Results are presented in Fig.5. Even if there are very
few salient landmarks (all the information is located in the
thick and smooth balloons boundaries, and thus the tracking
problem is loosely constrained), results are globally good
all along the sequence. This shows that the SSD criterion
correctly captures the information at edges and that our
parameterised deformation interpolates reasonably well in
uniform areas.

When looking at the virtual MR in more details, one can
however find some places where the motion is less accu-
rately recovered: the contact between the balloons and bor-
ders of the US images. Indeed, the parameterisation of the
transformation and especially its smoothing are designed to
approximate the behaviour of a uniform elastic like body. If

this assumption can be justified for the shift of brain tissues,
it is less obvious for our phantom where balloons are placed
into a viscous fluid. In particular, the fluid motions between
the two balloons cannot be recovered. On the borders of
the US images, there is often a lack of intensity information
(due to the inadequate conversion from polar to Cartesian
coordinates by the US machine) and the deformation can
only be extrapolated from the smoothing of neighbouring
displacements. Since we are not using a precise geometrical
and physical model of the observed structures, one cannot
expect this extrapolation to be very accurate.

5 Conclusion

We presented in the first part a new automated method
to rigidly register 3D US with MR images. It is based on a
multivariate and robust generalisation of the correlation ra-
tio (CR) measure that allows to better take into account the
nature of US images. Incidentally, we believe that the gen-



eralised CR could be considered in other registration prob-
lems where conventional similarity measures fail. Testings
were performed on phantom and clinical data, and showd
that the worst registration errors (errors at the Cartesian US
corners) is of the order of 1.5 mm.

In the second part, we developed a tracking algorithm
adapted to time sequences of US images and not only to the
registration of two images. The algorithm is able to recover
an important part of the deformations and issues a smooth
deformation, despite the noisy nature of the US images. Ex-
periments on animal and phantom data show that this allows
to simulate virtual MR images qualitatively close to the real
ones. The computation time is still far from real time but
a parallelisation of the algorithms is straightforward for the
computation of the image and the regularization energies.

The type of transformation is also a very sensitive choice
for such a tracking algorithm. We made the assumption of a
“uniform elastic” like material. This may be adequate for
the brain tissues, but probably not for the ventricles and
for the tracking of the surgical tools themselves. A spe-
cific adaptation of the algorithm around the tools will likely
be necessary. Another possibility for errors is the occlusion
of a part of a structure visible in the US, for instance the
shadowing by the endoscope.
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