Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
paper cover icon
Climate extremes in multi-model simulations of stratospheric aerosol and marine cloud brightening climate engineering

Climate extremes in multi-model simulations of stratospheric aerosol and marine cloud brightening climate engineering

Helene Muri
Abstract
Simulations from a multi-model ensemble for the RCP4.5 climate change scenario for the 21st century, and for two solar radiation management schemes (stratospheric sulfate injection, G3, and marine cloud brightening, G3SSCE) have been analyzed in terms of changes in the mean and extremes for surface air temperature and precipitation. The climate engineered (SRM 2060s – RCP4.5 2010s) and termination (2080s – 2060s) periods are investigated. During the climate engineering period, both schemes, as intended, offset temperature increases by about 60% globally, but are more effective in the low latitudes and exhibit some residual warming in the Arctic (especially in the case of marine cloud brightening that is only applied in the low latitudes). In both climate engineering scenarios, extreme temperatures changes are similar to the mean temperature changes over much of the globe. The exception is in Northern Hemisphere high latitudes, where high temperatures (90th percentile of the distribution) of climate engineering relative to RCP4.5 rise less than the mean and cold temperatures (10th percentile) much more than the mean. When defining temperature extremes by fixed thresholds, namely number of frost days and summer days, it is found that both climate engineering experiments are not completely alleviating the changes relative to RCP 4.5. The reduction in 2060s dry spell occurrence over land region in G3-SSCE is is more pronounced than over oceans. Experiment G3 exhibits same pattern as G3-SSCE albeit, stronger in magnitude. A strong termination effect is found for the two climate engineering schemes, with large temperature increases especially in the Arctic. Mean temperatures rise faster than the extremes, especially over oceans, with the exception of the Tropics. Conversely precipitation extremes rise much more than the mean, even more so over the ocean, and especially in the Tropics.

Helene Muri hasn't uploaded this paper.

Let Helene know you want this paper to be uploaded.

Ask for this paper to be uploaded.