This paper introduces multispectral rotationally in-variant textural features of the Markovian type applied for the effective coniferous tree needles categorization. Presented texture features are inferred from the descriptive multispectral spiral wide-sense Markov model. Unlike the alternative texture recognition methods based on various gray-scale discriminative textural descriptions, we take advantage of the needles texture representation, which is fully descriptive multispectral and rotationally invariant.The presented method achieves high accuracy for needles recognition. Thus it can be used for reliable coniferous tree taxon classification. Our classifier is tested on the open source needles database Aff, which contains 716 high-resolution images from 11 diverse coniferous tree species.
Michal Haindl hasn't uploaded this paper.
Let Michal know you want this paper to be uploaded.