Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Growth & Development

6 Growth and Development Caroline S. Awmack1 and Simon R. Leather2 1Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA; 2Division of Biology, Imperial College London, Silwood Park Campus, Ascot, Berks, SL5 7PY, UK Introduction The growth and developmental rates of individual aphids have been studied extensively since the early investigations of Davis (1915) because they can be reliable indicators of future population growth rates (Leather and Dixon, 1984; Acreman and Dixon, 1989). In this chapter, we discuss the methods used to measure aphid growth and development, the relationships between these measures of aphid performance, and the reliability of using the results of such experiments to fpredict the performance of field populations of pest aphids. Individual aphids frequently have extremely high growth and developmental rates, allowing aphid populations to rapidly reach levels that are damaging to crop plants. Under optimal growth conditions, an individual aphid typically commences reproduction 7–10 days after it is born (Dixon, 1998). Such short development times are possible because newborn aphids contain the embryos of their first grand-daughters. This ‘telescoping of generations’ means that an individual aphid has already completed two-thirds of its development before it is born (Dixon, 1998). Growth and developmental rates can be used to predict future fecundity because somatic growth and reproductive development occur simultaneously in the developing nymph, ©CAB International 2007. Aphids as Crop Pests (eds H. van Emden and R. Harrington) and are thus simultaneously affected by any change in the rearing environment. Aphid growth and developmental rates are frequently measured in small-scale trials using single individuals, or small groups of similarly aged nymphs. In the first section of this chapter, the most commonly used measurements of aphid performance are described, with the relevant experimental techniques needed to investigate them. Factors that may affect the reliability of this approach are then discussed, with a particular emphasis on studies that have investigated the relationships between the various measures of individual performance, and between individual and population growth rates. Definitions Aphid growth and developmental rates have been used extensively to predict the performance of aphid populations on crop plants because they correlate well with potential fecundity, achieved fecundity, and the intrinsic rate of increase, rm (Leather and Dixon, 1984; Dixon, 1990). Many aphid species show strong positive relationships between growth rates and potential fecundity (Lyth, 1985; Fereres et al., 1989). Similarly, adult size is frequently correlated with both 135 136 potential fecundity (Dixon and Dharma, 1980; Kempton et al., 1980; Bintcliffe and Wratten, 1982; Llewellyn and Brown, 1985) and achieved fecundity (Leather and Dixon, 1984; Dixon, 1990; 1998). ‘Growth’ is defined here as an increase in aphid size; ‘development’ is used to imply increasing reproductive maturity; ‘potential fecundity’ is a measure of the reproductive potential of an individual aphid – for example, the number of mature embryos contained in an adult; while ‘achieved fecundity’ is the total number of progeny produced by an adult. Potential fecundity may be a useful measure of aphid performance, as potential and achieved fecundity frequently are strongly positively correlated (Dixon and Wratten, 1971; Dixon and Dharma, 1980; Frazer and Gill, 1981; Leather and Dixon, 1984). Developmental and reproductive rates can be combined in the intrinsic rate of increase, rm (Birch, 1948; Wyatt and White, 1977), an estimate of future population growth rates based on the performance of individual aphids. Uses of aphid growth and developmental rates The use of aphid relative growth rates to measure performance was initially suggested by van Emden (1969) as a means of measuring the direct effects of plant nutrition on aphid performance, without the confounding effects of maternal experience. Dixon (1990) and Leather and Dixon (1984) later demonstrated that relative growth rates and the intrinsic rate of increase, rm, (Wyatt and White, 1977) were strongly positively correlated (Fig. 6.1). As a consequence, many authors have used mean relative growth rate (MRGR) or relative growth rate (RGR), defined below, when quick estimates of aphid performance are required; for example, to assess the resistance of plants to aphid attack (van Emden, 1969; Bintcliffe and Wratten, 1982; Givovich et al., 1988; Leszczynski et al., 1989; Wojciechowicz-Zytko and van Emden, 1995; Farid et al., 1998; Telang et al., 1999), the quality of different growth stages of the host plant (Leather and Dixon, 1981), the effects Intrinsic rate of increase (rm) C.S. Awmack and S.R. Leather Mean relative growth rate or relative growth rate Fig. 6.1. Hypothetical relationship between aphid growth rates and the intrinsic rate of increase (rm). of temperature (Berg, 1984; Lamb et al., 1987), the effects of air pollution (Dohmen, 1985; Holopainen et al., 1997; Wu et al., 1997), and the contribution of bacterial symbionts to aphid nutritional ecology (Adams and Douglas, 1997). Similarly, the intrinsic rate of increase has been used to investigate the responses of individual aphids to changes in plant quality (Bintcliffe and Wratten, 1982; Lykouressis, 1984; Zuniga et al., 1985; Leszczynski et al., 1989), temperature (Landin and Wennergren, 1987; Liu and Yue, 2000), drought stress (Sumner et al., 1986), atmospheric pollutants (Warrington et al., 1987; Awmack et al., 1997), host plant virus infection (Fereres et al., 1989), and the sub-lethal effects of insecticide residues (Kerns and Gaylor, 1992). Measurement of Aphid Growth and Developmental Rates Growth rates Most investigations of aphid growth rates have used living aphids to measure gain in fresh weight over a defined time period, weighing the same individuals at the beginning and the end of the experiment (e.g. Banks and Macaulay, 1964; Tsitsipis and Mittler, 1976; Frazer and Gill, 1981; Kindlmann et al., 1992; Sunnucks et al., 1998; Manninen et al., 2000; Edwards, 2001), although some authors, such as Lamb (1992) have used dry 137 Growth and Development weight and have therefore used different individuals for each measurement. Other investigations of aphid growth rates have taken advantage of the allometric relationships between aphid skeletal structure and size (Reddy and Alfred, 1981), using hind tibia length (Campbell, 1983) or antennal length (Varty, 1964; Murdie, 1969a,b). However, since the ratios of the sizes of some aphid body parts may change as the developing aphid grows (Varty, 1964; Dixon, 1987), such allometric relationships should be used with caution. Aphid growth rates are usually measured using individual aphids or small groups of aphids, often the progeny of a single female. Young (typically newborn) aphids are removed from their host plants, weighed on a microbalance and returned to the host plants for the desired time period, after which they are removed and re-weighed. Aphid growth rates are a function of birth weight (Dixon et al., 1982; Carroll and Hoyt, 1986), as is weight loss when aphids are starved (e.g. Brough and Dixon, 1990). Since large aphids grow faster than small aphids (Dixon, 1998), measurements of aphid growth rates must correct for differences in initial weight. Both MRGR and RGR compensate for the increasing mass of the insect as it grows, since they are based on the logarithmic weight gain of the aphid. The formula used to determine MRGR is based on an equation originally used by plant scientists (Radford, 1967): MRGR ( mg / mg /day) = (log W 2 − log W 1 ) / t 2 − t 1 (6.1) where W1 = weight at the first weighing, W2 = weight at the next weighing, t2 − t1 = the time (in days) between first (t1) and second (t2) weighing. RGR is measured over the development time (D) of the aphid (i.e. from birth to the final moult but before the onset of reproduction), and therefore takes the effects of host-plant quality and maternal effects (such as ovariole number) into consideration: RGR ( mg / mg /day) = (log W 2 − log W 1 ) / D (6.2) Two major experimental drawbacks are associated with using MRGR or RGR to measure aphid performance. First, it is usually difficult to manipulate young aphids in the field. Second, a very accurate microbalance is required. Newborn aphids can weigh as little as 30 µg (Dixon, 1998), and hence small inaccuracies in the measurement of initial weight can have large effects on the final value of MRGR or RGR because of the logarithmic nature of insect growth. A simple solution is to measure groups of aphids and use the average initial and final weights to determine growth rates. MRGR and RGR are, however, very simple ways to investigate treatment effects on aphid performance since they may be measured over as little as two days (van Emden and Bashford, 1969; Adams and van Emden, 1972). A second benefit of both MRGR and RGR is that they involve relatively little disturbance of the aphids (Adams and van Emden, 1972). The newly moulted adults produced after RGR is measured can be returned easily to the host plant to measure achieved fecundity and rm, or dissected to investigate treatment effects on potential fecundity. Developmental rates Developmental rates are determined by recording the time period between particular events (for example, from birth to adult) and reporting the results as the reciprocal of the data (Berg, 1984; Carroll and Hoyt, 1986; Lamb et al., 1987; Lamb, 1992; Cabrera et al., 1995). Most aphids pass through four nymphal instars (Dixon, 1973) before moulting to the adult stage (although some species, such as Rhopalosiphum nymphaeae, may have five instars, depending on rearing temperature (Rohita and Penman, 1983; Ballou et al., 1986). Instar duration may also be a useful measure of development, particularly in studies investigating treatment effects on the vulnerability of aphids to natural enemies that preferentially attack specific instars (Ives et al., 1999; Chau and Mackauer, 2001). Measurements of development are particularly useful in studies investigating 138 C.S. Awmack and S.R. Leather treatment effects on aphids reared in field situations, as the aphids do not need to be removed from the host plant to be weighed. Developmental times or rates are particularly useful when predictions about treatment effects on future population growth rates are required, since they are an integral component of the intrinsic rate of increase, rm. The intrinsic rate of increase, rm The intrinsic rate of increase, rm (Wyatt and White, 1977), relates the fecundity of an individual aphid to its development time: rm = (ln Md × c ) / D (6.3) where Md is the number of nymphs produced by the adult in the first D days of reproduction after the adult moult. The constant, c, has a value of 0.738 and is an approximation of the proportion of the total fecundity produced by a female in the first D days of reproduction. It is obvious from this equation that a small change in development time will have a greater effect on rm than an increase in fecundity of a similar magnitude. Although rm has limitations (Awmack et al., 1997), it is a favoured way of estimating population growth as it is much easier than counting the thousands of aphids that are likely to occur in a real population. Experimental Techniques Aphid cages Although the growth and development of individual aphids has been recorded under unrestricted field conditions (Cannon, 1984), most studies have used individual aphids reared in the laboratory or in controlled environments (van Emden, 1972; Dixon, 1998). Since newborn aphids are so small, it has become standard protocol to cage either an individual aphid or a group of aphids on the host plants. The most commonly used aphid cage is the clip cage, originally designed by MacGillivray and Anderson (1957). Clip cages may range in size from those that cover a few cm2 of the leaf to those that enclose whole leaves. As not all leaves used by aphids are flat, tubular cages based on gelatin capsules can also be used. These cages slip snugly over the entire leaf or stem, but can be opened easily without disturbing the occupants (Fisher, 1987). Alternatives to clip cages include gauze sleeves that can be used to confine aphids to specific parts of the plant (for example, stems). Whole plant cages, usually constructed of PVC tubes, open at the bottom and covered with gauze at the top, can be used to monitor colonies or aggregations of aphids that need free access to all or part of the plant (Markkula and Rautapaa, 1963). Two clip cages, suitable for use on many crop species, are shown in Fig. 6.2. The Type I cage is the typical clip cage (MacGillivray and Anderson, 1957). The second cage (Type II) uses soft foam (Plastozote®, Watkins and Doncaster, UK) to minimize damage to the leaf surface and can also be supported with a standard plant stake, reducing strain on the leaf petiole, and can be opened without disturbing the aphids inside (Awmack, 1997; D. Huggett, personal communication). Although some aphid species appear not to be adversely affected by regular removal from their host plants (Newton and Dixon, 1990b), disturbance should be kept to a minimum when measuring growth rates, because aphids may take several hours to locate a suitable phloem element and commence feeding (Tjallingii, 1995). Frequent disturbance may therefore lead to low estimates of aphid performance. The settling and feeding behaviour of aphids may also be affected by the treatment under investigation. Aphid settling and feeding behaviour may be affected by components of host-plant quality such as concentrations of plant defensive metabolites (Zehnder et al., 2001), nutrient availability, and water stress (Ponder et al., 2001), and by environmental factors such as elevated CO2 atmospheres (Awmack et al., 1996). Feeding and settling behaviour may also vary according to the prior experience of the aphids used (Ramirez and Niemeyer, 2000) and even between 139 Growth and Development Type 1 Type 2 Fig. 6.2. Clip cages suitable for measuring aphid growth and development. individuals within a species (Bernays and Funk, 2000). Disadvantages of aphid cages Many clip cage designs have been criticized because they interfere with leaf gas exchange and may damage the leaf surface, changing leaf quality in comparison with uncaged leaves (Crafts and Chu, 1999). The effects of larger cages on aphid performance have been documented from field experiments, as sunlight can be concentrated on to the plants leading to temperatures within the cage that are considerably higher than ambient external temperatures (Woodford, 1973). In this case, large, muslin-covered frames may be placed over the plants to minimize fluctuations in microclimate. An equally serious concern associated with the use of cages to measure aphid growth and development is that aphid performance within cages may not reflect the performance of uncaged aphids. Figure 6.3 shows the adult weight, development time, and 7-day fecundity of Rhopalosiphum padi (bird cherry–oat aphid) reared without cages (control), in clip cages, and in PVC tubes on oat seedlings (Avena sativa cv. ‘Aster’). The data clearly show that clip cages and PVC tubes had an adverse effect on the adult weight of the aphids, and a small but significant effect on development time. However, cages had no significant effects on 7-day fecundity (S.R. Leather, unpublished results). Adult weight and 7-day fecundity were positively correlated when the aphids were reared in clip cages (r2 = 0.218, P < 0.05) and PVC tubes (r2 = 0.417, P < 0.01), but not when they were reared on uncaged control plants (r2 = 0.005). Cages therefore affected not only the performance of R. padi, but also the relationships between adult weight and potential or achieved fecundity. This example demonstrates clearly the problems inherent in comparing data collected using insect cages to data collected when the aphids are reared in more natural environments and able to select feeding sites. 140 (a) C.S. Awmack and S.R. Leather 1.0 mg 0.8 0.6 0.4 0.2 0.0 Control (b) Cage PVC 8 Days 6 4 2 0 Control Cage PVC (c) 60 N 40 20 0 Control Cage PVC Fig. 6.3. Performance of the aphid Rhopalosiphum padi reared without cages, in clip cages, and in PVC tubes on oat seedlings (Avena sativa cv. ‘Aster’). (a) Adult weight (mg) (F = 8.36, df = 2/45, P < 0.001). (b) Development time (days) (F = 6.10, df = 2/45, P < 0.001). (c) 7-day fecundity (F = 0.86, df = 2/45, P > 0.05). All data are presented as the means of 16 replicates and are shown with ± the standard error of the mean. Factors Affecting Aphid Growth and Development Aphid growth and developmental rates are affected by a wide range of both intrinsic and extrinsic factors such as diet quality (e.g. Watt and Dixon, 1981; Gruber and Dixon, 1988; Tsai and Wang, 2001; Vacanneyt, 2001), plant growth stage (Zhou and Carter, 1992), the abiotic environment (Kenten, 1955; Dean, 1974; Walgenbach et al., 1988; McVean and Dixon, 2001), maternal experience (Johnson, 1965; Dixon and Glen, 1971; Chambers, 1982; Kidd and Tozer, 1984), and maternal morph (Leather, 1989). In this section, some of the factors affecting the reliability of aphid growth rates as predictors of the performance of aphid populations are outlined, and some of the most common factors affecting the differences between measures of aphid growth and developmental rates and the performance of natural aphid populations are discussed. A key consideration in these types of studies is that aphids used to measure growth and developmental rates in greenhouse-based investigations tend to have been raised at low densities at constant temperatures while natural aphid populations interact with a variable biotic and abiotic environment. Genetic variability may also contribute to the variability inherent in natural populations: in many studies, the aphids are derived from parthenogenetic lineages, produced by a single parthenogenetic female. Natural populations are rarely as uniform (except in the case of pests of greenhouse crops, which may have very low levels of genetic diversity (Rochat et al., 1999). When apterous Sitobion avenae (grain aphid) were reared on oats (A. sativa), pink individuals developed more quickly than green individuals, highlighting the need to use multiple aphid genotypes (Araya et al., 1996). Similarly, many aphid species such as Myzus persicae (peach–potato aphid), Aphis craccivora (cowpea aphid) (Edwards, 2001), Sitobion miscanthi and Sitobion near fragariae (Sunnucks et al., 1998), Acyrthosiphon pisum (pea aphid) (Sandström, 1994), and Phorodon humuli (damson–hop aphid) (Lorriman and Llewellyn, 1983) show genetic variation in their growth and developmental rates, even when reared on hosts of similar quality. Aphids used in laboratory-based studies frequently are confined to a specific part of the host plant (for example, in clip cages) 141 Growth and Development and reared at very low densities in the absence of other pests and diseases. Many aphid species prefer specific host-plant parts, and experiments that cage aphids on the ‘wrong’ part of a plant do not give an accurate representation of the performance of natural aphid populations. Hopkins et al. (1998) showed that even though M. persicae prefers senescing leaves at the base of its host plants (three Brassica cultivars, differing in their glucosinolate content) while Brevicoryne brassicae (cabbage aphid) prefers young leaves, regardless of the cultivar of the host plant, aphid performance was unaffected by plant defensive chemistry. Similarly, Williams (1995) investigated the impacts of host plants of different ages, with and without Beet yellows virus infection, on M. persicae, and showed that performance was better on younger leaves than on old leaves, and that virus infection increased aphid performance. Table 6.1 shows the fecundity and development time of S. avenae when reared on different parts of oat and wheat plants (from Watt, 1979). Factors Affecting the Reliability of Size ¥ Fecundity Relationships While aphid growth and developmental rates can often be used to predict future fecundity (and hence population growth rates), some treatments affect the reliability of these relationships (Leather, 1988; Awmack and Leather, 2002). Aphid size is determined predominantly by the quality of Table 6.1. Effects of rearing on different host plant parts of winter wheat (cv. ‘Maris Huntsman’) on the fecundity and development of the aphid Sitobion avenae. Ears Young leaves Lower leaves Flag leaves Senescent leaves 7-day fecundity Time to adult moult (days) 41.7 26.5 13.3 17.6 14.5 8.5 8.4 10.4 9.8 9.0 the larval host plant (Banks and Macaulay, 1964; van Emden and Bashford, 1969; Leather and Dixon, 1982; Acreman and Dixon, 1989; Gange and Pryse, 1990; Caillaud et al., 1994), although the quality of the adult’s host plant is also important (Markkula and Rouka, 1970; Watt, 1979; Leather and Dixon, 1981; McLeod et al., 1991) since aphids continue to mature offspring after the final adult moult. Some aphid species vary allocation of their resources between reproductive and somatic tissues, e.g. Myzocallis boerneri (Turkey oak aphid) (Sequeira and Dixon, 1996), Drepanosiphum platanoidis (sycamore aphid) (Douglas, 2000), Megoura viciae (vetch aphid) (Brough and Dixon, 1990), and S. avenae (Helden and Dixon, 1998). Thus, insect size may not necessarily be a reliable predictor of future fecundity (Leather, 1988). Maternal effects (i.e. the host plant on which the parent of the reproducing aphid was reared) may also affect aphid size × fecundity relationships (Leather, 1989; Messina, 1993). While generally there are strong and positive correlations between aphid growth and developmental rates and the intrinsic rate of increase, rm, it has been shown that this relationship varies with both the species of aphid under investigation and the growth stage of the host plant. Guldemond et al. (1998) demonstrated that the relationship between MRGR and rm varied with both the species of aphid investigated (Aphis gossypii – cotton or melon aphid, or M. persicae) and the growth stage of the host plant (chrysanthemum, Dendranthema x grandiflorum). If experimental treatments affect such relationships (e.g. Kerns and Gaylor, 1992; Sarao and Singh, 1998), individual growth rates need not reflect population growth rates. While individuals with high MRGRs also tend to have high RGRs, the two growth rates need not be the same for any individual aphid/treatment combination, and may not be the same throughout the entire nymphal development time. Some aphid species, such as S. avenae, have high nymphal growth rates during early instars (Newton and Dixon, 1990b), while growth rates often decrease in later instars as the 142 aphid switches resources to embryo maturation (Kindlmann and Dixon, 1989, 1992; Newton and Dixon, 1990b). Instar duration frequently varies, with the fourth instar being significantly longer than the first three (Kieckhefer et al., 1989; Araya et al., 1996; Dixon, 1998), particularly in the case of individuals destined to be alate (Newton and Dixon, 1990a). Treatments may therefore not affect all aphid instars equally, and early aphid instars may also be more sensitive to changes in the quality of their host plants than later instars. When Schizaphis graminum (greenbug) was reared on maize (Zea mays) or sorghum (Sorghum bicolor) cultivars, the host plant significantly affected the development time of the first and second aphid instars, but not the third or fourth (McCauley et al., 1990). Similarly, the development of first-instar A. pisum was slower on aphid-resistant red clover (Trifolium pratense) cultivars than on susceptible cultivars, but since later instars took less time to develop on resistant cultivars, the total developmental time was unaffected (Zeng et al., 1993). Not all aphids show this variation in larval growth rates between instars; growth rates of M. persicae remained constant throughout larval development (van Emden, 1969). Since many other insect groups show similar declines in growth rates as they develop (Scriber and Slansky, 1981), M. persicae may be an exception, rather than the rule. Changes in the reproductive rates of individual aphids may also affect the reliability of assumptions about the relationships between growth rates and adult size and fecundity, as not all aphids produce nymphs at a constant rate throughout their adult life. Zeng et al. (1993) showed that A. pisum produced more nymphs during the daytime than at night, demonstrating that measurements of fecundity must take place over at least 24 h. Many aphid species produce a rapid ‘burst’ of reproduction shortly after the final moult, and then show a reduced rate of reproduction for the remainder of their adult life (Dixon, 1998). Aphid reproductive strategies may also vary according to predictable changes in plant quality (Leather, 1987) or unpredictable C.S. Awmack and S.R. Leather environmental conditions such as starvation (Leather et al., 1983; Ward et al., 1983; Brough and Dixon, 1990; Kouame and Mackauer, 1992; Gruber and Dixon, 1988). The first-born nymphs may not be representative of the entire progeny (Dixon et al., 1993) because birth order may affect subsequent performance. The first-born nymphs of A. pisum are smaller than those born on subsequent days (Murdie, 1969b), but after about 7 days of reproduction, nymphal weight begins to fall and by 14 days the nymphs born are smaller than those born in the first 2 days. Similarly, first-born M. persicae nymphs show greater cold hardiness than later born nymphs (Clough et al., 1990). While rm includes both developmental and reproductive rates, and is often a more reliable measure of aphid performance than MRGR or RGR, it has several disadvantages. Measurements of rm are very labour intensive, and the risk of losing replicates (and hence statistical power) increases with the duration of the experiment. rm is also a less sensitive measure of small, but biologically significant, changes in aphid performance (Lykouressis, 1984). A further disadvantage of rm is apparent when treatments affect adult longevity since it is inaccurate when a treatment affects longevity but not development time (Sumner et al., 1986). The fundamental assumption underlying the rm equation is that a reproducing female will produce 95% of her progeny in the first D days of reproduction (Wojciechowicz-Zytko and van Emden, 1995). If this assumption is not met (for example, if a female dies after only a few days of reproduction), values of rm overestimate the contribution of individual aphids to the growth of the population. Population growth rates of the pea aphid A. pisum reared on Vicia faba (broad bean) and exposed to a neem-based insecticide depended on the age at which the aphids were exposed to the insecticide. When individual A. pisum were exposed to this insecticide from birth, the population growth rates were negative. However, when A. pisum were exposed as adults, there was no effect of this insecticide on rm, highlighting the need to determine treatment effects on all 143 Growth and Development aphid life stages (Stark and Wennergren, 1995). Difference between Nymphs Destined to be Apterous and Alate Measurements of aphid growth and developmental rates should also take into account differences between nymphs destined to be apterous adults and nymphs destined to be alate adults. Although alate aphids have a longer development time than apterae (Tsumuki et al., 1990; Araya et al., 1996), in some species (e.g. R. padi), alatae have greater longevity than apterae (Foster et al., 1988) and may therefore make a greater contribution to population growth rates. However, nymphs that develop into alate adults allocate a smaller proportion of their resources to reproduction (Newton and Dixon, 1990b) since they must produce wings and the flight muscles needed to power them (Dixon, 1998). As a result, alate aphids typically have lower fecundity than apterae (Elliott et al., 1988; Newton and Dixon, 1990b; Collins and Leather, 2001). Alate aphids may also have a lower ovariole number (Dixon and Dharma, 1980; Leather, 1987) than apterae, differ in their amino acid and carbohydrate metabolism (Tsumuki et al., 1990), and have greater lipid reserves (Febvay et al., 1992). These differences may therefore mean that alatae respond differently to experimental treatments such as starvation or environmental factors; e.g. Garsed et al. (1987) showed that the fecundity of alate Aphis fabae (black bean aphid) reared on V. faba increased as light levels increased, while that of apterae did not. Alata production is stimulated by crowding (Watt and Dixon, 1981; Bergeson and Messina, 1997; Dixon, 1998; Williams and Dixon, Chapter 3 this volume), although the proportion of the population developing into alatae may vary among populations of the same aphid species on different host plant species (Bommarco and Ekbom, 1996). Alata production may also be stimulated on virus-infected host plants (Blua and Perring, 1992), and may either be stimulated (Liu and Wu, 1994) or suppressed (Parish and Bale, 1990) by low temperatures, depending on the species of aphid involved. As apterous progeny of alatae may also have lower ovariole numbers than the progeny of apterae (Leather, 1987), the effects of experimental treatments on population growth rates may persist for more than one generation. Treatments that affect reproductive rates but not development times or growth rates also affect the reliability of rm. S. avenae reared on winter wheat (Triticum aestivum) at double-ambient CO2 had greater fecundity than at ambient CO2, but their development times were unaffected (Awmack et al., 1996). In a similar experiment, when Aulacorthum solani (glasshouse and potato aphid) was reared on either broad bean or tansy (Tanacetum vulgare) at elevated CO2, development time decreased and rm increased on tansy but not on bean, while fecundity increased on bean but not tansy (Awmack et al., 1997). In these examples, rm is unlikely to be a reliable predictor of aphid population growth rates as aphid fitness parameters appear to become uncoupled on exposure to this novel environment. The relationships between adult size and rm may also become uncoupled if the aphid is exposed to starvation and resorbs embryos to release essential nutrients (Ward and Dixon, 1982; Brough and Dixon, 1990). Thus, a fundamental assumption underlying the rm equation is that experimental conditions remain constant throughout the life of the aphid. Temperature Aphid responses to temperature are similar to those of other insects. Most aphid species show a strong linear relationship between temperature and growth or development within a range of approximately 7 and 25°C (Campbell et al., 1974; Frazer and Gill, 1981), followed by a decline at increasing temperatures. The exact shape and range of the curve depends on both the aphid species and the geographic origin of genotypes within the species (Auclair and Aroga, 1987; Lamb and Mackay, 1988; Akey and 144 C.S. Awmack and S.R. Leather Butler, 1989), and may also be genotypespecific within a population (Lamb et al., 1987). Aphids reared at high temperature may also grow into small adults containing fewer embryos (Leather and Dixon, 1982; Collins and Leather, 2001), or have a poor ability to maintain embryo maturation after the adult moult (Carroll and Hoyt, 1986). High temperatures may also affect the slope of the relationship between adult weight and embryo number, making predictions of fecundity from adult size unreliable (Carroll and Hoyt, 1986). Plant quality may also modify the impacts of temperature on aphid growth and development (Leather and Dixon, 1982; Acreman and Dixon, 1989), as may abiotic factors such as wind (Walters and Dixon, 1984). Other authors (Liu and Perng, 1987; Kieckhefer et al., 1989; Xia et al., 1999) have also demonstrated that aphid performance decreases when aphids are reared at fluctuating temperatures rather than the equivalent constant temperature. In contrast, Zhang et al. (1991) showed that the population growth rate of R. padi was greater at fluctuating temperatures than at constant temperatures. Hodgson and Godfray, 1999; Awmack and Harrington, 2000; Bosque and Schtozko, 2000; Awmack et al., 2004), although in some cases, aphid density has no effect on population growth rates (e.g. Messina, 1993). Some plant species may also exhibit a hypersensitive response, which is only apparent above threshold aphid densities (Lyth, 1985; Belefant-Miller et al., 1994). In contrast, many aphid species show enhanced performance when they are reared in groups, rather than singly (Way and Cammell, 1970; Dixon and Wratten, 1971) because they are able to divert nutrients from other plant tissues more effectively (Sandström et al., 2000). Interspecific competition between aphid species exploiting the same host plant may also reduce population growth rates (Fisher, 1987; Moran and Whitham, 1990; Thirakhupt and Araya, 1992; Gianoli, 2000), as may the presence of other herbivores, either directly (Masters, 1995) or via apparent competition involving shared natural enemies (Muller and Godfray, 1997) and plant diseases (Coleman and Jones, 1988; Blua and Perring, 1992; Castle and Berger, 1993). Population-scale factors Conclusions Although a detailed discussion of population-scale effects on aphid performance is beyond the scope of this chapter, population density also has significant effects on aphid performance. At high population densities, aphids frequently produce alatae and leave the host plant (e.g. Watt and Dixon, 1981). Crowding (and intraspecific competition) may also reduce the per capita rate of reproduction: as host-plant resources become limiting, the population growth rate decreases (e.g. Farid et al., 1998; Although it is tempting, and perhaps technically easier, to use the performance of individual aphids as an indicator of aphid performance, perhaps the most reliable way to predict aphid performance is to investigate population size. Comparisons of rm with population size (a much simpler and more reliable measure of aphid population growth rates) also take crowding and sink induction into account (Larson and Whitham, 1991; Sandström et al., 2000) and are much easier to use (Lykouressis, 1984). References Acreman, S.J. and Dixon, A.F.G. (1989) The effects of temperature and host quality on the rate of increase of the grain aphid (Sitobion avenae) on wheat. Annals of Applied Biology 115, 3–9. Adams, D. and Douglas, A.E. (1997) How symbiotic bacteria influence plant utilisation by the polyphagous aphid, Aphis fabae. Oecologia 110, 528–532. Growth and Development 145 Adams, J.B. and van Emden, H.F. (1972) The biological properties of aphids and their host plant relationships. In: van Emden, H.F. (ed.) Aphid Technology. Academic Press, London, pp. 47–104. Akey, D. and Butler, G. (1989) Developmental rates and fecundity of apterous Aphis gossypii (Homoptera, Aphididae) on seedlings of Gossypium hirsutum. Southwestern Entomologist 14, 295–301. Araya, J., Cambron, S. and Ratcliffe, R. (1996) Development and reproduction of two color forms of English grain aphid (Homoptera: Aphididae). Environmental Entomology 25, 366–369. Auclair, J. and Aroga, R. (1987) Influence de la temperature sur la croissance et la reproduction de quatre biotypes du puceron du pois, Acyrthosiphon pisum (Homoptera). Annals de la Societé Entomologique de France (N.S.) 23, 279–286. Awmack, C.S. (1997) Aphid–plant interactions at ambient and elevated CO2. PhD thesis, Imperial College, University of London, London, UK. Awmack, C.S. and Harrington, R. (2000) Elevated CO2 affects the interactions between aphid pests and host plant flowering. Agricultural and Forest Entomology 2, 57–61. Awmack, C.S. and Leather, S.R. (2002) Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology 47, 817–844. Awmack, C.S., Harrington, R., Leather, S.R. and Lawton, J.H. (1996) The impacts of elevated CO2 on aphid–plant interactions. In: Froud-Williams, R.J., Harrington, R., Hocking, T.J., Smith, H.G. and Thomas, J.H. (eds) Implications of ‘Global Environmental Change’ for Crops in Europe. Aspects of Applied Biology, No. 45, pp. 317–322. Awmack, C.S., Harrington, R. and Leather, S.R. (1997) Host plant effects on the performance of the aphid Aulacorthum solani (Homoptera: Aphididae) at ambient and elevated CO2. Global Change Biology 3, 545–549. Awmack, C.S., Harrington, R. and Lindroth, R.L. (2004) Aphid individual performance may not predict population responses to elevated CO2 or O3. Global Change Biology 10, 1414–1423. Ballou, J., Tsai, J. and Center, T. (1986) Effects of temperature on the development, natality, and longevity of Rhopalosiphum nymphaeae L. (Homoptera: Aphididae). Environmental Entomology 15, 1096–1099. Banks, C.J. and Macaulay, E.D.M. (1964) The feeding growth and reproduction of Aphis fabae Scop. on Vicia fabae under experimental conditions. Annals of Applied Biology 53, 229–242. Belefant-Miller, H., Porter, D., Pierce, M. and Mort, A. (1994) An early indicator of resistance in barley to Russian wheat aphid. Plant Physiology Rockville 105, 1289–1294. Berg, G. (1984) The effect of temperature and host species on the population growth potential of the cowpea aphid, Aphis craccivora Koch (Homoptera: Aphididae). Australian Journal of Zoology 32, 345–352. Bergeson, E. and Messina, F.J. (1997) Resource- versus enemy-mediated interactions between cereal aphids (Homoptera: Aphididae) on a common host plant. Annals of the Entomological Society of America 90, 425–432. Bernays, E. and Funk, D. (2000) Electrical penetration graph analysis reveals population differentiation of host-plant probing behaviors within the aphid species Uroleucon ambrosiae. Entomologia Experimentalis et Applicata 97, 183–191. Bintcliffe, E. and Wratten, S. (1982) Antibiotic resistance in potato cultures to the aphid Myzus persicae. Annals of Applied Biology 100, 383–392. Birch, L.C. (1948) The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology 17, 15–26. Blua, M. and Perring, T. (1992) Alate production and population increase of aphid vectors on virus-infected host plants. Oecologia 92, 65–70. Bommarco, R. and Ekbom, B. (1996) Variation in pea aphid population development in three different habitats. Ecological Entomology 21, 235–240. Bosque, P.N.A. and Schtozko, D.J. (2000) Wheat genotype, early plant growth stage and infestation density effects on Russian wheat aphid (Homoptera: Aphididae) population increase and plant damage. Journal of Entomological Science 35, 22–38. Brough, C.N. and Dixon, A.F.G. (1990) The effects of starvation on the development and reproductive potential of apterous virginoparae of vetch aphid Megoura viciae. Entomologia Experimentalis et Applicata 55, 41–46. Cabrera, H.M., Argandona, V.H., Zuniga, G.E. and Corcuera, L.J. (1995) Effect of infestation by aphids on the water status of barley and insect development. Phytochemistry 40, 1083–1088. Caillaud, C.M., Dedryver, C.A. and Simon, J.-C. (1994) Development and reproductive potential of the cereal aphid Sitobion avenae on resistant wheat lines (Triticum monococcum). Annals of Applied Biology 125, 219–232. 146 C.S. Awmack and S.R. Leather Campbell, A., Frazer, B., Gilbert, N., Gutierrez, A. and Mackauer, M. (1974) Temperature requirements of some aphids and their parasites. Journal of Applied Ecology 11, 431–438. Campbell, C. (1983) Antibiosis in hop (Humulus lupulus) to the damson–hop aphid, Phorodon humuli. Entomologia Experimentalis et Applicata 33, 57–62. Cannon, R.J.C. (1984) The development rate of Metopolophium dirhodum (Walker) (Hemiptera: Aphididae) on winter wheat. Bulletin of Entomological Research 74, 33–46. Carroll, D. and Hoyt, S. (1986) Some effects of parental rearing conditions and age on progeny birth weight, growth, development, and reproduction in the apple aphid, Aphis pomi (Homoptera: Aphididae). Environmental Entomology 15, 614–619. Castle, S.J. and Berger, P.H. (1993) Rates of growth and increase of Myzus persicae on virus-infested potatoes according to types of virus-vector relationship. Entomologia Experimentalis et Applicata 69, 51–60. Chambers, R. (1982) Maternal experience of crowding and duration of aestivation in the sycamore aphid. Oikos 39, 100–102. Chau, A. and Mackauer, M. (2001) Host-instar selection in the aphid parasitoid Monoctonus paulensis (Hymenoptera : Braconidae, Aphidiinae): assessing costs and benefits. Canadian Entomologist 133, 549–564. Clough, M.S., Bale, J.S. and Harrington, R. (1990) Differential cold hardiness in adults and nymphs of the peach–potato aphid Myzus persicae. Annals of Applied Biology 116, 1–9. Coleman, J.S. and Jones, C.G. (1988) Acute ozone stress on eastern cottonwood (Populus deltoides Bartr.) and the pest potential of the aphid, Chaitophorus populicola Thomas (Homoptera: Aphididae). Environmental Entomology 17, 207–212. Collins, C.M. and Leather, S.R. (2001) Effect of temperature on fecundity and development of the giant willow aphid, Tuberolachnus salignus (Sternorrhyncha : Aphididae). European Journal of Entomology 98, 177–182. Crafts, B.S. and Chu, C. (1999) Insect clip cages rapidly alter photosynthetic traits of leaves. Crop Science 39, 1896–1899. Davis, J. (1915) The pea aphis in relation to forage crops. US Department of Agriculture Bulletin No. 276, 1–67. Dean, G.J.W. (1974) Effect of temperature on the cereal aphids Metopolophium dirhodum (Wlk.), Rhopalosiphum padi and Macrosiphum avenue (F.) (Hem., Aphididae). Bulletin of Entomological Research 63, 401–409. Dixon, A.F.G. (1973) Biology of Aphids. Edward Arnold, London, 58 pp. Dixon, A.F.G. (1987) Seasonal development in aphids. In: Minks, A.K. and Harrewijn, P. (eds) Aphids. Their Biology, Natural Enemies and Control, Volume 2A. Elsevier, Amsterdam, pp. 315–320. Dixon, A.F.G. (1990) Ecological interactions of aphids and their host plants. In: Campbell, R.K. and Eikenbary, R.D. (eds) Aphid–Plant Genotype Interactions. Elsevier, Amsterdam, pp. 7–19. Dixon, A.F.G. (1998) Aphid Ecology, 2nd edn. Chapman and Hall, London, 300pp. Dixon, A.F.G. and Dharma, T.R. (1980) Number of ovarioles and fecundity in the black bean aphid, Aphis fabae. Entomologia Experimentalis et Applicata 28, 1–14. Dixon, A.F.G. and Glen, D.M. (1971) Morph determination in the bird cherry–oat aphid, Rhopalosiphum padi (L). Annals of Applied Biology 68, 11–21. Dixon, A.F.G. and Wratten, S.D. (1971) Laboratory studies on aggregation, size and fecundity in the black bean aphid, Aphis fabae Scop. Bulletin of Entomological Research 61, 97–111. Dixon, A.F.G., Chambers, R.J. and Dharma, T.R. (1982) Factors affecting size in aphids with particular reference to the black bean aphid, Aphis fabae. Entomologia Experimentalis et Applicata 32, 123–128. Dixon, A.F.G., Kundu, R. and Kindlmann, P. (1993) Reproductive effort and maternal age in iteroparous insects using aphids as a model group. Functional Ecology 7, 267–272. Dohmen, G. (1985) Secondary effects of air pollution: enhanced aphid growth. Environmental Pollution 39, 227–234. Douglas, A.E. (2000) Reproductive diapause and the bacterial symbiosis in the sycamore aphid. Ecological Entomology 25, 256–261. Edwards, O.R. (2001) Interspecific and intraspecific variation in the performance of three pest aphid species on five grain legume hosts. Entomologia Experimentalis et Applicata 100, 21–30. Elliott, N., Kieckhefer, R. and Walgenbach, D. (1988) Effects of constant and fluctuating temperatures on developmental rates and demographic statistics for the corn leaf aphid (Homoptera: Aphididae). Journal of Economic Entomology 81, 1383–1389. Growth and Development 147 van Emden, H.F. (1969) Plant resistance to Myzus persicae induced by a plant regulator and measured by aphid relative growth rate. Entomologia Experimentalis et Applicata 12, 125–131. van Emden, H.F. (ed.) (1972) Aphid Technology. Academic Press, London, 300 pp. van Emden, H.F. and Bashford, M.A. (1969) A comparison of the reproduction of Brevicoryne brassicae and Myzus persicae in relation to soluble nitrogen concentration and leaf age (leaf position) in the Brussels sprout plant. Entomologia Experimentalis et Applicata 12, 351–364. Farid, A., Quisenberry, S.S., Johnson, J.B. and Shafi, B. (1998) Impact of wheat resistance on Russian wheat aphid and a parasitoid. Journal of Economic Entomology 91, 334–339. Febvay, G., Pageaux, J.F. and Bonnot, G. (1992) Lipid composition of the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae), reared on host plant and on artificial media. Archives of Insect Biochemistry and Physiology 21, 103–118. Fereres, A., Lister, R.M., Araya, J.E. and Foster, J.E. (1989) Development and reproduction of the English grain aphid (Homoptera: Aphididae) on wheat cultivars infected with barley yellow dwarf virus. Environmental Entomology 18, 288–293. Fisher, M. (1987) The effect of previously infested spruce needles on the growth of the green spruce aphid, Elatobium abietinum, and the effect of the aphid on the amino acid balance of the host plant. Annals of Applied Biology 111, 33–41. Foster, J., Stamenkovic, S. and Araya, J. (1988) Life cycle and reproduction of Rhopalosiphum padi (L.) (Homoptera: Aphididae) on wheat in the laboratory. Journal of Entomological Science 23, 216–222. Frazer, B. and Gill, B. (1981) Age, fecundity, weight, and the intrinsic rate of increase of the lupine aphid, Macrosiphum albifrons (Homoptera: Aphididae). Canadian Entomologist 113, 739–745. Gange, A. and Pryse, J. (1990) The roles of temperature and food quality in affecting the performance of the alder aphid, Pterocallis alni. Entomologia Experimentalis et Applicata 57, 9–16. Garsed, S., Davey, H. and Galley, D. (1987) The effects of light and temperature on the growth of and balances of carbon, nitrogen and potassium between Vicia faba L. and Aphis fabae Scop. New Phytologist 107, 77–102. Gianoli, E. (2000) Competition in cereal aphids (Homoptera: Aphididae) on wheat plants. Environmental Entomology 29, 213–219. Givovich, A., Weibull, J. and Pettersson, J. (1988) Cowpea aphid performance and behaviour on two resistant cowpea lines. Entomologia Experimentalis et Applicata 49, 259–264. Gruber, K. and Dixon, A.F.G. (1988) The effect of nutrient stress on development and reproduction in an aphid. Entomologia Experimentalis et Applicata 47, 23–30. Guldemond, J.A., van den Brink, W.J. and den Belder, E. (1998) Methods of assessing population increase in aphids and the effect of growth stage of the host plant on population growth rates. Entomologia Experimentalis et Applicata 86, 163–173. Helden, A.J. and Dixon, A.F.G. (1998) Generation specific life history traits of winged Sitobion avenae. Entomologia Experimentalis et Applicata 88, 163–167. Hodgson, D.J. and Godfray, H.C.J. (1999) The consequences of clustering by Aphis fabae foundresses on spring migrant production. Oecologia 118, 446–452. Holopainen, J.Q., Kainulainen, P. and Oksanen, J. (1997) Growth and reproduction of aphids and levels of free amino acids in Scots pine and Norway spruce in an open-air fumigation with ozone. Global Change Biology 3, 139–147. Hopkins, R.J., Ekbom, B. and Henkow, L. (1998) Glucosinolate content and susceptibility for insect attack of three populations of Sinapis alba. Journal of Chemical Ecology 24, 1203–1216. Ives, A.R., Schooler, S.S., Jagar, V.J., Knutson, S.E., Grbic, M. and Settle, W.H. (1999) Variability and parasitoid foraging efficiency: a case study of pea aphids and Aphidius ervi. American Naturalist 154, 652–673. Johnson, B. (1965) Wing polymorphism in aphids II. Interaction between aphids. Entomologia Experimentalis et Applicata 8, 49–64. Kempton, R., Lowe, H. and Bintcliffe, E. (1980) The relationship between fecundity and adult weight in Myzus persicae. Journal of Animal Ecology 49, 917–926. Kenten, J. (1955) The effect of photoperiod and temperature on reproduction in Acyrthosiphon pisum (Harris) and on the forms produced. Bulletin of Entomological Research 46, 599–624. Kerns, D. and Gaylor, M. (1992) Sublethal effects of insecticides on cotton aphid reproduction and color morph development. Southwestern Entomologist 17, 245–250. Kidd, N. and Tozer, D. (1984) Host plant and crowding effects in the induction of alatae in the large pine aphid, Cinara pinea. Entomologia Experimentalis et Applicata 35, 37–42. 148 C.S. Awmack and S.R. Leather Kieckhefer, R., Elliott, N. and Walgenbach, D. (1989) Effects of constant and fluctuating temperatures on developmental rates and demographic statistics of the English grain aphid (Homoptera: Aphididae). Annals of the Entomological Society of America 82, 701–706. Kindlmann, P. and Dixon, A.F.G. (1989) Developmental constraints in the evolution of reproductive strategies: telescoping of generations in parthenogenetic aphids. Functional Ecology 3, 531–538. Kindlmann, P. and Dixon, A.F.G. (1992) Optimum body size: effects of food quality and temperature, when reproductive growth rate is restricted, with examples from aphids. Journal of Evolutionary Biology 5, 677–690. Kindlmann, P., Dixon, A.F.G. and Gross, L. (1992) The relationship between individual and population growth rates in multicellular organisms. Journal of Theoretical Biology 57, 535–542. Kouame, K.L. and Mackauer, M. (1992) Influence of starvation on development and reproduction in apterous virginoparae of the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae). Canadian Entomologist 124, 87–95. Lamb, R.J. (1992) Developmental rate of Acyrthosiphon pisum (Homoptera: Aphididae) at low temperatures: implications for estimating rate parameters for insects. Environmental Entomology 21, 10–19. Lamb, R. and Mackay, P. (1988) Effects of temperature on developmental rate and adult weight of Australian populations of Acyrthosiphon pisum (Harris) (Homoptera: Aphididae). Memoirs of the Entomological Society of Canada 146, 49–56. Lamb, R.J., Mackay, P.A. and Gerber, G.H. (1987) Are development and growth of pea aphids, Acyrthosiphon pisum, in North America adapted to local temperatures? Oecologia 72, 170–177. Landin, J. and Wennergren, U. (1987) Temperature effects on population growth of mustard aphids. Swedish Journal of Agricultural Research 17, 13–18. Larson, K.C. and Whitham, T.G. (1991) Manipulation of food resources by a gall-forming aphid: the physiology of sink–source interactions. Oecologia 88, 15–21. Leather, S.R. (1987) Generation specific trends in aphid life history parameters. Journal of Applied Entomology 104, 278–284. Leather, S.R. (1988) Size, reproductive potential and fecundity in insects: things aren’t as simple as they seem. Oikos 51, 386–389. Leather, S.R. (1989) Do alate aphids produce fitter offspring? The influence of maternal rearing history and morph on life-history parameters of Rhopalosiphum padi (L.). Functional Ecology 3, 237–244. Leather, S.R. and Dixon, A.F.G. (1981) The effect of cereal growth stage and feeding site on the reproductive activity of the bird-cherry aphid, Rhopalosiphum padi. Annals of Applied Biology 97, 135–142. Leather, S.R. and Dixon, A.F.G. (1982) Secondary host preferences and reproductive activity of the bird cherry–oat aphid, Rhopalosiphum padi. Annals of Applied Biology 101, 219–228. Leather, S.R. and Dixon, A.F.G. (1984) Aphid growth and reproductive rates. Entomologia Experimentalis et Applicata 35, 137–140. Leather, S.R., Ward, S.A. and Dixon, A.F.G. (1983) The effect of nutrient stress on life history parameters of the black bean aphid Aphis fabae Scop. Oecologia 57, 156–157. Leszczynski, B., Wright, L. and Bakowski, T. (1989) Effect of secondary plant substances on winter wheat resistance to grain aphid. Entomologia Experimentalis et Applicata 52, 135–140. Liu, S. and Wu, X. (1994) The influence of temperature on wing dimorphism in Myzus persicae and Lipaphis erysimi. Acta Entomologica Sinica 37, 292–297. Liu, T. and Yue, B. (2000) Effects of constant temperatures on development, survival and reproduction of apterous Lipaphis erysimi (Homoptera: Aphididae) on cabbage. Southwestern Entomologist 25, 91–99. Liu, Y. and Perng, J. (1987) Population growth and temperature-dependent effect of cotton aphid, Aphis gossypii Glover. Chinese Journal of Entomology 7, 95–112. Llewellyn, M. and Brown, V. (1985) A general relationship between adult weight and the reproductive potential of aphids. Journal of Animal Ecology 54, 663–673. Lorriman, F. and Llewellyn, M. (1983) The growth and reproduction of hop aphid (Phorodon humuli) biotypes resistant and susceptible to insecticides. Acta Entomologica Bohemoslovaca 80, 87–95. Lykouressis, D. (1984) A comparative study of different aphid population parameters in assessing resistance in cereals. Zeitschrift für Angewandte Entomologie 97, 77–84. Lyth, M. (1985) Hypersensitivity in apple to feeding by Dysaphis plantaginea: effects on aphid biology. Annals of Applied Biology 107, 155–162. MacGillivray, M.E. and Anderson, G.B. (1957) Three useful insect cages. Canadian Entomologist 89, 43–46. Growth and Development 149 Manninen, A.M., Holopainen, T., Lyytikäinen-Saarenmaa, P. and Holopainen, J.K. (2000) The role of low-level ozone exposure and mycorrhizas in chemical quality and insect herbivore performance on scots pine seedlings. Global Change Biology 6, 111–121. Markkula, M. and Rautapaa, J. (1963) PVC rearing cages for aphid investigation. Annales Agriculturae Fenniae 2, 208–211. Markkula, M. and Roukka, K. (1970) Resistance of plants to the pea aphid Acyrthosiphon pisum Harris (Hom., Aphididae) II. Fecundity on different red clover varieties. Annales Agriculturae Fenniae 9, 304–308. Masters, G. (1995) The impact of root herbivory on aphid performance: field and laboratory evidence. Acta Oecologica 16, 135–142. McCauley, G., Margolies, D., Collins, R. and Reese, J. (1990) Rearing history affects demography of greenbugs (Homoptera: Aphididae) on corn and grain sorghum. Environmental Entomology 19, 948–954. McLeod, P., Morelock, T. and Goude, M. (1991) Preference, developmental time, adult longevity and fecundity of green peach aphid (Homoptera: Aphididae) on spinach. Journal of Entomological Science 26, 95–98. McVean, R. and Dixon, A.F.G. (2001) The effect of plant drought-stress on populations of the pea aphid Acyrthosiphon pisum. Ecological Entomology 26, 440–443. Messina, F. (1993) Effect of initial colony size on the per capita growth rate and alate production of the Russian wheat aphid (Homoptera: Aphididae). Journal of the Kansas Entomological Society 66, 365–371. Moran, N.A. and Whitham, T.G. (1990) Interspecific competition between root-feeding and leaf-galling aphids mediated by host-plant resistance. Ecology 71, 1050–1058. Muller, C.B. and Godfray, H.C.J. (1997) Apparent competition between two aphid species. Journal of Animal Ecology 66, 57–64. Murdie, G. (1969a) The biological consequences of decreased size caused by crowding or rearing temperatures in apterae of the pea aphid, Acyrthosiphon pisum Harris. Transactions of the Royal Entomological Society of London 121, 443–455. Murdie, G. (1969b) Some causes of size variation in the pea aphid, Acyrthosiphon pisum Harris. Transactions of the Royal Entomological Society of London 121, 423–442. Newton, C. and Dixon, A. (1990a) Embryonic growth rate and birth weight of the offspring of apterous and alate aphids: a cost of dispersal. Entomologia Experimentalis et Applicata 55, 223–230. Newton, C. and Dixon, A.F.G. (1990b) Pattern of growth in weight of alate and apterous nymphs of the English grain aphid, Sitobion avenae. Entomologia Experimentalis et Applicata 55, 231–238. Parish, W. and Bale, J. (1990) Effects of short-term exposure to low temperature on wing development in the grain aphid Sitobion avenae (F.) (Hemiptera, Aphididae). Journal of Applied Entomology 109, 175–181. Ponder, K., Pritchard, J., Harrington, R. and Bale, J. (2001) Feeding behaviour of the aphid Rhopalosiphum padi (Hemiptera: Aphididae) on nitrogen- and water-stressed barley (Hordeum vulgare) seedlings. Bulletin of Entomological Research 91, 125–130. Radford, P.J. (1967) Growth analysis formulae – their use and abuse. Crop Science 7, 171–175. Ramirez, C. and Niemeyer, H. (2000) The influence of previous experience and starvation on aphid feeding behavior. Journal of Insect Behavior 13, 699–709. Reddy, M. and Alfred, J. (1981) Observations on the relationships between body length, breadth and weight of two pine aphids. Entomon 6, 307–309. Rochat, J., Vanlerberghe, M.F., Chavigny, P., Boll, R. and Lapchin, L. (1999) Inter-strain competition and dispersal in aphids: evidence from a greenhouse study. Ecological Entomology 24, 450–464. Rohita, B.H. and Penman, D.R. (1983) Effect of rearing temperature on the biology of bluegreen lucerne aphid, Acyrthosiphon kondoi. New Zealand Journal of Zoology 10, 299–308. Sandström, J. (1994) High variation in host adaptation among clones of the pea aphid, Acyrthosiphon pisum on peas, Pisum sativum. Entomologia Experimentalis et Applicata 71, 245–256. Sandström, J., Telang, A. and Moran, N. (2000) Nutritional enhancement of host plants by aphids: a comparison of three aphid species on grasses. Journal of Insect Physiology 46, 33–40. Sarao, P. and Singh, G. (1998) Sublethal influence of insecticides on reproduction of mustard aphid, Lipaphis erysimi (Kaltenbach). Journal of Insect Science 11, 5–8. Scriber, J.M. and Slansky, F. (1981) The nutritional ecology of immature insects. Annual Review of Entomology 26, 183–211. Sequeira, R. and Dixon, A.F.G. (1996) Life history responses to host quality changes and competition in the Turkey-oak aphid, Myzocallis boerneri (Hemiptera: Sternorrhyncha: Callaphididae). European Journal of Entomology 93, 53–58. 150 C.S. Awmack and S.R. Leather Stark, J. and Wennergren, U. (1995) Can population effects of pesticides be predicted from demographic toxicological studies? Journal of Economic Entomology 88, 1089–1096. Sumner, L., Dorschner, K., Ryan, J., Eikenbary, R., Johnson, R. and McNew, R. (1986) Reproduction of Schizaphis graminum (Homoptera: Aphididae) on resistant and susceptible wheat genotypes during simulated drought stress induced with polyethylene glycol. Environmental Entomology 15, 756–762. Sunnucks, P., Chisholm, D., Turak, E. and Hales, D. (1998) Evolution of an ecological trait in parthenogenetic Sitobion aphids. Heredity 81, 638–647. Telang, A., Sandström, J., Dyreson, E. and Moran, N.A. (1999) Feeding damage by Diuraphis noxia results in a nutritionally enhanced phloem diet. Entomologia Experimentalis et Applicata 91, 406–412. Thirakhupt, V. and Araya, J. (1992) Interactions between bird cherry–oat aphid (Rhopalosiphum padi) and English grain aphid (Macrosiphum avenae) (Homoptera: Aphididae) on Abe wheat. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz 99, 201–208. Tjallingii, W.F. (1995) Regulation of phloem sap feeding by aphids. In: Chapman, R.F. and de Boer, G. (eds) Regulatory Mechanisms in Insect Feeding. Chapman and Hall, New York, pp. 190–209. Tsai, J. and Wang, J. (2001) Effects of host plants on biology and life table parameters of Aphis spiraecola (Homoptera : Aphididae). Environmental Entomology 30, 44–50. Tsitsipis, J.A. and. Mittler, T.E. (1976) Development, growth, reproduction and survival of apterous virginoparae of Aphis fabae at different temperatures. Entomologia Experimentalis et Applicata 19, 1–10. Tsumuki, H., Nagatsuka, H., Kawada, K. and Kanehisa, K. (1990) Comparison of nutrient reservation in apterous and alate pea aphids, Acyrthosiphon pisum (Harris): 1. Developmental time and sugar content. Applied Entomology and Zoology 25, 215–222. Vancanneyt, G., Sanz, C., Farmaki, T., Paneque, M., Ortego, F., Castanera, P. and Sanchez-Serrano, J.J. (2001) Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proceedings of the National Academy of Sciences of the United States of America 98, 8139–8144. Varty, I. (1964) The morphology, life history and habits of Betulaphis quadrituberculata (Kalt.) on birch in New Brunswick (Homoptera: Callaphididae). Canadian Entomologist 96, 1172–1184. Walgenbach, D., Elliott, N. and Kieckhefer, R. (1988) Constant and fluctuating temperature effects on developmental rates and life table statistics of the greenbug (Homoptera: Aphididae). Journal of Economic Entomology 81, 501–507. Walters, K.F.A. and Dixon, A.F.G. (1984) The effect of temperature and wind on the flight activity of cereal aphids. Annals of Applied Biology 104, 17–26. Ward, S.A. and Dixon, A.F.G. (1982) Selective resorption of aphid embryos and habitat changes relative to lifespan. Journal of Animal Ecology 51, 859–864. Ward, S.A., Wellings, P.W. and Dixon, A.F.G. (1983) The effect of reproductive investment on pre-reproductive mortality in aphids. Journal of Animal Ecology 52, 305–314. Warrington, S., Mansfield, T. and Whittaker, J. (1987) Effect of sulfur dioxide on the reproduction of pea aphids, Acyrthosiphon pisum, and the impact of sulfur dioxide and aphids on the growth and yield of peas. Environmental Pollution 48, 285–294. Watt, A. D. (1979) The effect of cereal growth stages on the reproductive activity of Sitobion avenae and Metopolophium dirhodum. Annals of Applied Biology 91, 147–157. Watt, A.D. and Dixon, A.F.G. (1981) The role of cereal growth stages and crowding in the induction of alatae in Sitobion avenae and its consequences for population growth. Ecological Entomology 6, 441–447. Way, M.J. and Cammell, M. (1970) Aggregation behaviour in relation to food utilization by aphids. In: Watson, A. (ed.) Animal Populations in Relation to their Food Source. Proceedings of the British Ecological Society Symposium No. 10. Blackwell, Oxford, pp. 229–247. Williams, C.T. (1995) Effects of plant age, leaf age and virus yellows infection on the population dynamics of Myzus persicae (Homoptera: Aphididae) on sugarbeet in field plots. Bulletin of Entomological Research 85, 557–567. Wojciechowicz-Zytko, E. and van Emden, H.F. (1995) Are aphid mean relative growth rate and intrinsic rate of increase likely to show a correlation in plant resistance studies? Journal of Applied Entomology 119, 405–409. Woodford, J.A.T. (1973) The climate within a large aphid-proof field cage. Entomologia Experimentalis et Applicata 16, 321. Wu, K., Gong, P., Li, X., Wu, K.J., Gong, P. and Li, X. (1997) Effects of rape grown in SO2-enriched atmospheres on performance of the aphid, Myzus persicae (Sulzer). Entomologia Sinica 4, 82–89. Wyatt, I.J. and White, P.F. (1977) Simple estimation of intrinsic increase rates for aphids and tetranychid mites. Journal of Applied Ecology 14, 757–766. Growth and Development 151 Xia, J., van der Werf, W. and Rabbinge, R. (1999) Influence of temperature on bionomics of cotton aphid, Aphis gossypii, on cotton. Entomologia Experimentalis et Applicata 90, 25–35. Zehnder, G., Nichols, A., Edwards, O. and Ridsdill-Smith, T. (2001) Electronically monitored cowpea aphid feeding behavior on resistant and susceptible lupins. Entomologia Experimentalis et Applicata 98, 259–269. Zeng, F., Pederson, G., Ellsbury, M. and Davis, F. (1993) Demographic statistics for the pea aphid (Homoptera: Aphididae) on resistant and susceptible red clovers. Journal of Economic Entomology 86, 1852–1856. Zhang, J., Zhang, G., He, F., Qu, G. and Yan, F. (1991) Studies on the experimental population dynamics of bird cherry–oat aphid, Rhopalosiphum padi (L.). Sinzoologia 8, 83–94. Zhou, X. and Carter, N. (1992) Effects of temperature, feeding position and crop growth stage on the population dynamics of the rose grain aphid, Metopolophium dirhodum (Hemiptera: Aphididae). Annals of Applied Biology 121, 27–37. Zuniga, G., Salgado, M. and Corcuera, L. (1985) Role of an indole alkaloid in the resistance of barley (Hordeum vulgare). Phytochemistry (Oxford) 24, 945–948.