organic compounds
Acta Crystallographica Section E
Experimental
Structure Reports
Online
Crystal data
V = 650.10 (13) Å3
Z=4
Mo K radiation
= 0.10 mm1
T = 293 (2) K
0.46 0.30 0.20 mm
C6H7N3O
Mr = 137.15
Orthorhombic, P21 21 21
a = 3.8855 (7) Å
b = 10.5191 (5) Å
c = 15.9058 (9) Å
ISSN 1600-5368
Nicotinohydrazide
Jacks P. Priebe, Renata S. Mello, Faruk Nome and
Adailton J. Bortoluzzi*
Data collection
Depto. de Quı́mica, Universidade Federal de Santa Catarina, 88040-900
Florianópolis, Santa Catarina, Brazil
Correspondence e-mail: adajb@qmc.ufsc.br
Enraf–Nonius CAD-4
diffractometer
Absorption correction: none
1534 measured reflections
1051 independent reflections
Received 25 October 2007; accepted 11 December 2007
Refinement
Key indicators: single-crystal X-ray study; T = 293 K; mean (C–C) = 0.002 Å;
R factor = 0.031; wR factor = 0.087; data-to-parameter ratio = 11.4.
R[F 2 > 2(F 2)] = 0.031
wR(F 2) = 0.087
S = 1.09
1051 reflections
The title molecule (alternative name: pyridine-3-carbohydrazide; C6H7N3O) was obtained from the reaction of ethyl
nicotinate with hydrazine hydrate in methanol. In the amide
group, the C—N bond is relatively short, suggesting some
degree of electronic delocalization in the molecule. The
stabilized conformation may be compared with those of
isomeric compounds picolinohydrazide (pyridine-2-carbohydrazide) and isonicotinohydrazide (pyridine-4-carbohydrazide). In the title isomer, the pyridine ring forms an angle of
33.79 (9) with the plane of the non-H atoms of the hydrazide
group. This lack of coplanarity between the hydrazide
functionality and the pyridine ring is considerably greater
than that observed in isonicotinohydrazide (dihedral angle =
17.14 ), while picolinohydrazide is almost fully planar. The
title isomer forms intermolecular N—H O and N—H N
hydrogen bonds, which stabilize the crystal structure.
866 reflections with I > 2(I)
Rint = 0.015
3 standard reflections
every 200 reflections
intensity decay: <1%
92 parameters
H-atom parameters constrained
max = 0.18 e Å3
min = 0.15 e Å3
Table 1
Hydrogen-bond geometry (Å, ).
D—H
H A
D A
D—H A
N2—H2N N1
N3—H3NA O1ii
N3—H3NB O1iii
0.88
0.87
0.85
2.11
2.22
2.55
2.975 (2)
3.045 (2)
3.155 (2)
166
157
130
Symmetry codes: (i)
x 12; y þ 32; z þ 1.
x þ 1; y 12; z þ 12;
D—H A
i
(ii)
x þ 12; y þ 32; z þ 1;
(iii)
Table 2
Selected bond lengths (Å) of nicotinohydrazide (I), picolinic acid
hydrazide (II) and isonicotinohydrazide (III).
(I)
(II)
(III)
1.418 (2)
1.335 (2)
1.231 (2)
1.503 (2)
1.422
1.334
1.235
1.507
1.429
1.346
1.235
1.513
Related literature
N2—N3
C6—N2
C6—O1
C6—C2
The structure of the same compound has been determined
independently and is reported in the following paper (Portalone & Colapietro, 2008). The structures of picolinohydrazide
(Zareef et al., 2006) and isonicotinohydrazide (Jensen, 1954;
Bhat et al., 1974) have been published. For related literature
on the biological activity of these molecules, see: Ouelleta et
al. (2004); Zhao et al. (2007). For related literature, see: Bhat et
al. (1974); Zareef et al. (2006).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
refinement: CAD-4 EXPRESS; data reduction: HELENA (Spek,
1996); program(s) used to solve structure: SIR97 (Altomare et al.,
1999); program(s) used to refine structure: SHELXL97 (Sheldrick,
1997); molecular graphics: PLATON (Spek, 2003) and Mercury
(Macrae et al., 2006); software used to prepare material for publication: SHELXL97.
The authors thank the Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq), Fundação de Apoio à
Pesquisa Cientı́fica e Tecnológica do Estado de Santa Catarina
(FAPESC), Financiadora de Estudos e Projetos (FINEP) and
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior (CAPES).
Supplementary data and figures for this paper are available from the
IUCr electronic archives (Reference: BH2145).
o302
# 2008 International Union of Crystallography
doi:10.1107/S160053680706655X
Acta Cryst. (2008). E64, o302–o303
organic compounds
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C.,
Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J.
Appl. Cryst. 32, 115–119.
Bhat, T. N., Singh, T. P. & Vijayan, M. (1974). Acta Cryst. B30, 2921–2922.
Enraf–Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf–Nonius,
Delft, The Netherlands.
Jensen, L. H. (1954). J. Am. Chem. Soc. 76, 4663–4667.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor,
R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
Acta Cryst. (2008). E64, o302–o303
Ouelleta, M., Aitkenb, S. M., Englishc, A. M. & Percivala, M. D. (2004). Arch.
Biochem. Biophys. 431, 107–118.
Portalone, G. & Colapietro, M. (2008). Acta Cryst. E64, o304.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
Zareef, M., Iqbla, R., Zaidi, J. H., Qadeer, G., Wong, W. Y. & Akhtar, H.
(2006). Z. Kristallogr. New Cryst. Struct. 221, 307–308.
Zhao, X., Yu, S. & Magliozzo, R. S. (2007). Biochemistry, 46, 3161–3170.
Priebe et al.
C6H7N3O
o303
supplementary materials
supplementary materials
Acta Cryst. (2008). E64, o302-o303
[ doi:10.1107/S160053680706655X ]
Nicotinohydrazide
J. P. Priebe, R. S. Mello, F. Nome and A. J. Bortoluzzi
Comment
The importance of aromatic hydrazides is closely related to their biological activity and to the fact that they can be used
for the syntheses of several other biologically active compounds. Nicotinohydrazide, (I), for example, is an efficient peroxidase-activated inhibitor of the POX activity of PGHS-2 (Ouelleta et al., 2004). On the other hand, the isomer isonicotinohydrazide, (III, scheme 2), is not a potent inhibitor, with an IC50 of 129 mM against 15 mM for (I).
Structure also plays a major role in the activity of the anti-tuberculosis drug isonicotinohydrazide, which requires Mycobacterium tuberculosis catalase-peroxidase (KatG) activation to produce an acyl-NAD adduct (Zhao et al., 2007). This
adduct is of extreme importance since it is an inhibitor of the enoyl reductase (Mtb InhA), essential for the biosynthesis of
acids present in mycobacterial cell walls. Picolinohydrazide, (II), and isonicotinohydrazide, (III), generate the hydrazideNAD adduct in this system, while nicotinohydrazide, (I), does not. However, the yield of the (II)-NAD adduct is around
35% of that of the (III)-NAD adduct. As a result, (III) is a potent antituberculosis drug, while (I) and (II) are not.
In this context, studies of structural analogues of these biologically active compounds become fundamental and will be
useful in elucidating the mechanism of action, which strongly depends on substrate selection and binding stoichiometry to
the (III) binding site in KatG, which still has not been completely elucidated.
The crystal structures of picolinohydrazide, (II) (Zareef et al., 2006), and isonicotinohydrazide, (III) (Jensen, 1954; Bhat
et al., 1974), have been previously reported and the structure of nicotinohydrazide (I) is here described. The three isomeric
hydrazides are distinguished by just the position of the N atom in the pyridine ring with respect to hydrazide group (scheme
2). A selection of their structural parameters is shown in Table 2.
When the structural parameters of isomeric hydrazides are compared, some interesting aspects can be observed, which
depend on the structural relation between the N atom in the ring and the hydrazide group. Indeed, while (II) crystallizes
in the monoclinic system, isomers (I) and (III) crystallize in the orthorhombic system. The C6═O1 bond length in (I) and
also in (II) and (III) are smaller than those usually observed in carboxylic acids (1.365 Å, Zareef et al., 2006). Similarly, the
C6—N2 bond distance observed in (I) is consistent with those reported for (II) and (III) hydrazides, suggesting a significant
partial double-bond character; the bond lengths are consistent with resonance hybrids between a polar and a neutral form
(Bhat et al., 1974). Similar to the results reported (Bhat et al., 1974) for isonicotinohydrazide, the N2—N3 and C2—C6
bonds of (II) have distances similar to their corresponding single bonds. In (I), the pyridine ring bond lengths are very similar
to those obtained in related compounds and the ring lies in a plane which forms an angle of 33.79 (9)° with that of the
non-H atoms in the hydrazide group. This lack of coplanarity between the hydrazide functionality and the pyridine ring is
considerably greater than that observed in isonicotinohydrazide (−17.14°), while picolinohydrazide is almost fully planar,
probably because in (II) N2 is in the same side and therefore closer to N1, favoring intramolecular N2—H···N1 hydrogen
bond. Conversely, in the crystal structure of (I) N2 and N1 are on opposite sides of the molecule, and in this case only
intermolecular hydrogen bonding takes place. The intermolecular hydrogen bonds N3—H···O1 and N2—H···N1 (Table 1),
which form a three-dimensional polymeric structure (Fig. 2) are fundamental for the stability of the crystal structure of (I).
sup-1
supplementary materials
Experimental
Nicotinic acid hydrazine was synthesized by the reaction of ethyl nicotinate (43.9 mmol) and hydrazine hydrate 99% (27.5
mmol) in methanol. The reaction mixture was refluxed for 24 h., yielding a yellow solution. Upon cooling to 298 K, the
product precipitated and it was washed with methanol and filtered. Colorless needle shaped crystals of (I) suitable for
X-ray analysis were grown by recrystallization from a chloroform-methanol (9:1) solution by slow evaporation at room
temperature.
Refinement
All non-H atoms were refined with anisotropic displacement parameters. H atoms attached to C atoms were added at their
calculated positions, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(carrier C). H atoms of the hydrazide group were found
in a difference map and treated with a riding model and with Uiso(H) = 1.2Ueq(carrier N). In the absence of significant
anomalous scattering effects, no Friedel pairs were collected.
Figures
Fig. 1. The molecular structure of (I) with labeling scheme. Displacement ellipsoids are
shown at the 40% probability level.
Fig. 2. Packing of (I) showing the molecules connected through hydrogen bonds and stacked
along [100].
Fig. 3. The structures of (I)–(III).
Pyridine-3-carbohydrazide
Crystal data
C6H7N3O
F000 = 288
Mr = 137.15
Dx = 1.401 Mg m−3
Orthorhombic, P212121
Hall symbol: P 2ac 2ab
a = 3.8855 (7) Å
b = 10.5191 (5) Å
c = 15.9058 (9) Å
sup-2
Mo Kα radiation
λ = 0.71073 Å
Cell parameters from 25 reflections
θ = 5.5–18.7º
µ = 0.10 mm−1
T = 293 (2) K
supplementary materials
V = 650.10 (13) Å3
Z=4
Prismatic, colourless
0.46 × 0.30 × 0.20 mm
Data collection
Enraf–Nonius CAD-4
diffractometer
Rint = 0.015
Radiation source: fine-focus sealed tube
θmax = 29.0º
Monochromator: graphite
θmin = 2.3º
T = 293(2) K
ω–2θ scans
Absorption correction: none
1534 measured reflections
1051 independent reflections
866 reflections with I > 2σ(I)
h = −5→2
k = −14→0
l = −21→0
3 standard reflections
every 200 reflections
intensity decay: <1%
Refinement
Refinement on F2
H-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0344P)2 + 0.1144P]
Least-squares matrix: full
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.031
(Δ/σ)max < 0.001
wR(F2) = 0.087
Δρmax = 0.18 e Å−3
S = 1.09
Δρmin = −0.15 e Å−3
1051 reflections
92 parameters
Primary atom site location: structure-invariant direct
methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring
sites
Extinction correction: SHELXL97 (Sheldrick, 1997),
Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Extinction coefficient: 0.040 (6)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
C1
H1
C2
C3
H3
C4
H4
C5
H5
C6
N1
N2
x
y
z
Uiso*/Ueq
0.3825 (5)
0.4007
0.2298 (5)
0.2025 (5)
0.1029
0.3262 (6)
0.3114
0.4720 (7)
0.5524
0.0965 (5)
0.5043 (5)
0.1167 (5)
0.84759 (16)
0.9092
0.73203 (14)
0.64013 (16)
0.5617
0.66735 (19)
0.6076
0.78517 (19)
0.8032
0.71648 (17)
0.87491 (14)
0.59906 (15)
0.25136 (11)
0.2930
0.27215 (10)
0.20969 (10)
0.2212
0.12995 (11)
0.0870
0.11576 (11)
0.0620
0.36028 (10)
0.17489 (10)
0.39179 (9)
0.0373 (4)
0.045*
0.0319 (4)
0.0382 (4)
0.046*
0.0455 (5)
0.055*
0.0472 (5)
0.057*
0.0344 (4)
0.0440 (4)
0.0405 (4)
sup-3
supplementary materials
H2N
N3
H3NA
H3NB
O1
0.2155
−0.0001 (5)
0.0877
−0.2101
−0.0227 (5)
0.5365
0.56759 (16)
0.6189
0.5876
0.80795 (12)
0.3637
0.47365 (9)
0.5112
0.4784
0.39876 (8)
0.049*
0.0472 (4)
0.057*
0.057*
0.0487 (4)
Atomic displacement parameters (Å2)
C1
C2
C3
C4
C5
C6
N1
N2
N3
O1
U11
0.0405 (9)
0.0312 (8)
0.0445 (11)
0.0594 (14)
0.0550 (13)
0.0324 (9)
0.0481 (10)
0.0505 (10)
0.0557 (11)
0.0604 (10)
U22
0.0307 (7)
0.0314 (7)
0.0316 (8)
0.0442 (9)
0.0522 (10)
0.0367 (8)
0.0388 (7)
0.0373 (7)
0.0519 (9)
0.0447 (7)
U33
0.0405 (9)
0.0330 (7)
0.0384 (8)
0.0328 (8)
0.0345 (8)
0.0339 (7)
0.0451 (8)
0.0337 (7)
0.0338 (7)
0.0409 (6)
U12
0.0021 (8)
0.0041 (8)
0.0007 (8)
0.0060 (11)
0.0062 (11)
0.0012 (8)
0.0002 (8)
0.0027 (7)
−0.0021 (10)
0.0120 (7)
U13
−0.0023 (8)
−0.0025 (7)
−0.0049 (8)
−0.0039 (9)
0.0050 (9)
−0.0035 (7)
0.0019 (8)
0.0057 (7)
0.0028 (8)
0.0060 (7)
U23
−0.0007 (6)
−0.0001 (6)
−0.0009 (7)
−0.0057 (7)
0.0069 (8)
−0.0040 (7)
0.0078 (6)
0.0007 (6)
0.0045 (6)
−0.0060 (5)
Geometric parameters (Å, °)
C1—N1
C1—C2
C1—H1
C2—C3
C2—C6
C3—C4
C3—H3
C4—C5
C4—H4
1.336 (2)
1.392 (2)
0.9300
1.390 (2)
1.503 (2)
1.386 (2)
0.9300
1.381 (3)
0.9300
C5—N1
C5—H5
C6—O1
C6—N2
N2—N3
N2—H2N
N3—H3NA
N3—H3NB
1.338 (2)
0.9300
1.231 (2)
1.335 (2)
1.418 (2)
0.8830
0.8746
0.8461
N1—C1—C2
N1—C1—H1
C2—C1—H1
C3—C2—C1
C3—C2—C6
C1—C2—C6
C4—C3—C2
C4—C3—H3
C2—C3—H3
C5—C4—C3
C5—C4—H4
C3—C4—H4
N1—C5—C4
123.70 (16)
118.2
118.2
118.02 (16)
124.35 (16)
117.60 (15)
118.93 (17)
120.5
120.5
118.49 (17)
120.8
120.8
123.81 (17)
N1—C5—H5
C4—C5—H5
O1—C6—N2
O1—C6—C2
N2—C6—C2
C1—N1—C5
C6—N2—N3
C6—N2—H2N
N3—N2—H2N
N2—N3—H3NA
N2—N3—H3NB
H3NA—N3—H3NB
118.1
118.1
123.96 (16)
120.55 (16)
115.49 (15)
117.04 (16)
122.80 (15)
121.7
115.4
111.0
109.4
99.3
Hydrogen-bond geometry (Å, °)
D—H···A
sup-4
D—H
H···A
D···A
D—H···A
supplementary materials
N2—H2N···N1i
0.88
2.11
2.975 (2)
166
0.87
2.22
3.045 (2)
157
0.85
2.55
3.155 (2)
N3—H3NB···O1
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x+1/2, −y+3/2, −z+1; (iii) x−1/2, −y+3/2, −z+1.
130
ii
N3—H3NA···O1
iii
Bond lengths and angles (Å, °) of nicotinohydrazide (I), picolinic acid hydrazide (II) and isonicotinohydrazide (III)
N2—N3
C6—N2
C6—O1
C6—C2
(I)
1.418 (2)
1.335 (2)
1.231 (2)
1.503 (2)
(II)
1.422
1.334
1.235
1.507
(III)
1.429
1.346
1.235
1.513
N3—N2—C6
N2—C6—O1
N2—C6—C2
O1—C6—C2
122.80 (15)
123.96 (16)
115.49 (15)
120.55 (16)
121.45
123.04
116.08
120.87
121.06
122.07
115.90
122.00
N3—N2—C6—O1
C2—N2—C6—N3
N2—C6—C2—C3
0.17 (32)
179.56 (19)
34.62 (27)
177.39
177.72
177.06
175.13
173.03
162.86
sup-5
supplementary materials
Fig. 1
sup-6
supplementary materials
Fig. 2
sup-7
supplementary materials
Fig. 3
sup-8