MATLAB Programs
Chapter 16
16.1
INTRODUCTION
MATLAB stands for MATrix LABoratory. It is a technical computing environment
for high performance numeric computation and visualisation. It integrates numerical
analysis, matrix computation, signal processing and graphics in an easy-to-use
environment, where problems and solutions are expressed just as they are written
mathematically, without traditional programming. MATLAB allows us to express
the entire algorithm in a few dozen lines, to compute the solution with great accuracy
in a few minutes on a computer, and to readily manipulate a three-dimensional
display of the result in colour.
MATLAB is an interactive system whose basic data element is a matrix that
does not require dimensioning. It enables us to solve many numerical problems in a
fraction of the time that it would take to write a program and execute in a language
such as FORTRAN, BASIC, or C. It also features a family of application specific
solutions, called toolboxes. Areas in which toolboxes are available include signal
processing, image processing, control systems design, dynamic systems simulation,
systems identification, neural networks, wavelength communication and others.
It can handle linear, non-linear, continuous-time, discrete-time, multivariable and
multirate systems. This chapter gives simple programs to solve specific problems
that are included in the previous chapters. All these MATLAB programs have been
tested under version 7.1 of MATLAB and version 6.12 of the signal processing
toolbox.
16.2
REPRESENTATION OF BASIC SIGNALS
MATLAB programs for the generation of unit impulse, unit step, ramp, exponential,
sinusoidal and cosine sequences are as follows.
% Program for the generation of unit impulse signal
clc;clear all;close all;
t522:1:2;
y5[zeros(1,2),ones(1,1),zeros(1,2)];subplot(2,2,1);stem(t,y);
816
Digital Signal Processing
ylabel(‘Amplitude --.’);
xlabel(‘(a) n --.’);
% Program for the generation of unit step sequence [u(n)2 u(n 2 N]
n5input(‘enter the N value’);
t50:1:n21;
y15ones(1,n);subplot(2,2,2);
stem(t,y1);ylabel(‘Amplitude --.’);
xlabel(‘(b) n --.’);
% Program for the generation of ramp sequence
n15input(‘enter the length of ramp sequence’);
t50:n1;
subplot(2,2,3);stem(t,t);ylabel(‘Amplitude --.’);
xlabel(‘(c) n --.’);
% Program for the generation of exponential sequence
n25input(‘enter the length of exponential sequence’);
t50:n2;
a5input(‘Enter the ‘a’ value’);
y25exp(a*t);subplot(2,2,4);
stem(t,y2);ylabel(‘Amplitude --.’);
xlabel(‘(d) n --.’);
% Program for the generation of sine sequence
t50:.01:pi;
y5sin(2*pi*t);figure(2);
subplot(2,1,1);plot(t,y);ylabel(‘Amplitude --.’);
xlabel(‘(a) n --.’);
% Program for the generation of cosine sequence
t50:.01:pi;
y5cos(2*pi*t);
subplot(2,1,2);plot(t,y);ylabel(‘Amplitude --.’);
xlabel(‘(b) n --.’);
As an example,
enter the N value 7
enter the length of ramp sequence 7
enter the length of exponential sequence 7
enter the a value 1
Using the above MATLAB programs, we can obtain the waveforms of the unit
impulse signal, unit step signal, ramp signal, exponential signal, sine wave signal and
cosine wave signal as shown in Fig. 16.1.
817
1
1
0.8
0.8
0.6
0.6
Amplitude
Amplitude
MATLAB Programs
0.4
0.2
0.4
0.2
0
0
−2
0
−1
1
2
0
2
4
n
n
(a)
6
(b)
1
7
6
0.8
4
Amplitude
Amplitude
5
3
2
1
0
0.6
0.4
0.2
0
0
2
4
6
8
0
2
4
6
8
n
n
(c)
(d)
1
0.5
Amplitude
0
−0.5
−1
0
0.5
1
1.5
2
2.5
3
3.5
2.5
3
3.5
n
(e)
1
Amplitude
0.5
0
−0.5
−1
0
0.5
1
1.5
(f)
2
n
Fig. 16.1 Representation of Basic Signals (a) Unit Impulse Signal (b) Unit-step
Signal (c) Ramp Signal (d) Exponential Signal (e) Sinewave Signal ( f )Cosine Wave Signal
818
Digital Signal Processing
DISCRETE CONVOLUTION
16.3
16.3.1
Linear Convolution
Algorithm
1. Get two signals x(m)and h(p)in matrix form
2. The convolved signal is denoted as y(n)
3. y(n)is given by the formula
∞
y(n) 5
∑ [x(k ) h(n − k )]
where n50 to m 1 p 2 1
k =−∞
4. Stop
% Program for linear convolution of the sequence x5[1, 2] and h5[1, 2, 4]
clc;
clear all;
close all;
x5input(‘enter the 1st sequence’);
h5input(‘enter the 2nd sequence’);
y5conv(x,h);
figure;subplot(3,1,1);
stem(x);ylabel(‘Amplitude --.’);
xlabel(‘(a) n --.’);
subplot(3,1,2);
stem(h);ylabel(‘Amplitude --.’);
xlabel(‘(b) n --.’);
subplot(3,1,3);
stem(y);ylabel(‘Amplitude --.’);
xlabel(‘(c) n --.’);
disp(‘The resultant signal is’);y
As an example,
enter the 1st sequence [1 2]
enter the 2nd sequence [1 2 4]
The resultant signal is
y51 4 8 8
Figure 16.2 shows the discrete input signals x(n)and h(n)and the convolved output
signal y(n).
2
Amplitude
1.5
1
0.5
0
1
1.1
1.2
1.3
1.4
1.5
1.6
(a)
Fig. 16.2 (Contd.)
1.7
1.8
n
1.9
2
819
MATLAB Programs
4
Amplitude
3
2
1
0
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
n
(b)
8
Amplitude
6
4
2
0
1
1.5
2
2.5
3
(c)
3.5
n
Fig. 16.2 Discrete Linear Convolution
16.3.2
Circular Convolution
% Program for Computing Circular Convolution
clc;
clear;
a = input(‘enter the sequence x(n) = ’);
b = input(‘enter the sequence h(n) = ’);
n1=length(a);
n2=length(b);
N=max(n1,n2);
x = [a zeros(1,(N-n1))];
for i = 1:N
k = i;
for j = 1:n2
H(i,j)=x(k)* b(j);
k = k-1;
if (k == 0)
k = N;
end
end
end
y=zeros(1,N);
M=H’;
for j = 1:N
for i = 1:n2
y(j)=M(i,j)+y(j);
end
end
disp(‘The output sequence is y(n)= ‘);
disp(y);
4
820
Digital Signal Processing
stem(y);
title(‘Circular Convolution’);
xlabel(‘n’);
ylabel(‚y(n)‘);
As an Example,
enter the sequence x(n) = [1 2 4]
enter the sequence h(n) = [1 2]
The output sequence is y(n)= 9 4 8
% Program for Computing Circular Convolution with zero padding
clc;
close all;
clear all;
g5input(‘enter the first sequence’);
h5input(‘enter the 2nd sequence’);
N15length(g);
N25length(h);
N5max(N1,N2);
N35N12N2;
%Loop for getting equal length sequence
if(N350)
h5[h,zeros(1,N3)];
else
g5[g,zeros(1,2N3)];
end
%computation of circular convolved sequence
for n51:N,
y(n)50;
for i51:N,
j5n2i11;
if(j550)
j5N1j;
end
y(n)5y(n)1g(i)*h(j);
end
end
disp(‘The resultant signal is’);y
As an example,
enter the first sequence [1 2 4]
enter the 2nd sequence [1 2]
The resultant signal is y51 4 8 8
16.3.3
Overlap Save Method and Overlap Add method
% Program for computing Block Convolution using Overlap Save
Method
Overlap Save Method
x=input(‘Enter the sequence x(n) = ’);
MATLAB Programs
821
h=input(‘Enter the sequence h(n) = ’);
n1=length(x);
n2=length(h);
N=n1+n2-1;
h1=[h zeros(1,N-n1)];
n3=length(h1);
y=zeros(1,N);
x1=[zeros(1,n3-n2) x zeros(1,n3)];
H=fft(h1);
for i=1:n2:N
y1=x1(i:i+(2*(n3-n2)));
y2=fft(y1);
y3=y2.*H;
y4=round(ifft(y3));
y(i:(i+n3-n2))=y4(n2:n3);
end
disp(‘The output sequence y(n)=’);
disp(y(1:N));
stem(y(1:N));
title(‘Overlap Save Method’);
xlabel(‘n’);
ylabel(‘y(n)’);
Enter the sequence x(n) = [1 2 -1 2 3 -2 -3 -1 1 1 2 -1]
Enter the sequence h(n) = [1 2 3 -1]
The output sequence y(n) = 1 4 6 5 2 11 0 -16 -8 3 8 5 3 -5 1
%Program for computing Block Convolution using Overlap Add
Method
x=input(‘Enter the sequence x(n) = ’);
h=input(‘Enter the sequence h(n) = ’);
n1=length(x);
n2=length(h);
N=n1+n2-1;
y=zeros(1,N);
h1=[h zeros(1,n2-1)];
n3=length(h1);
y=zeros(1,N+n3-n2);
H=fft(h1);
for i=1:n2:n1
if i<=(n1+n2-1)
x1=[x(i:i+n3-n2) zeros(1,n3-n2)];
else
x1=[x(i:n1) zeros(1,n3-n2)];
end
x2=fft(x1);
x3=x2.*H;
x4=round(ifft(x3));
if (i==1)
822
Digital Signal Processing
y(1:n3)=x4(1:n3);
else
y(i:i+n3-1)=y(i:i+n3-1)+x4(1:n3);
end
end
disp(‘The output sequence y(n)=’);
disp(y(1:N));
stem((y(1:N));
title(‘Overlap Add Method’);
xlabel(‘n’);
ylabel(‘y(n)’);
As an Example,
Enter the sequence x(n) = [1 2 -1 2 3 -2 -3 -1 1 1 2 -1]
Enter the sequence h(n) = [1 2 3 -1]
The output sequence
y(n) = 1 4 6 5 2 11 0 -16 -8 3 8 5 3 -5 1
DISCRETE CORRELATION
16.4
16.4.1
Crosscorrelation
Algorithm
1. Get two signals x(m)and h(p)in matrix form
2. The correlated signal is denoted as y(n)
3. y(n)is given by the formula
∞
y(n) 5
∑ [x(k ) h(k − n)]
k =−∞
where n52 [max (m, p)2 1] to [max (m, p)2 1]
4. Stop
% Program for computing cross-correlation of the sequences
x5[1, 2, 3, 4] and h5[4, 3, 2, 1]
clc;
clear all;
close all;
x5input(‘enter the 1st sequence’);
h5input(‘enter the 2nd sequence’);
y5xcorr(x,h);
figure;subplot(3,1,1);
stem(x);ylabel(‘Amplitude --.’);
xlabel(‘(a) n --.’);
subplot(3,1,2);
stem(h);ylabel(‘Amplitude --.’);
xlabel(‘(b) n --.’);
subplot(3,1,3);
stem(fliplr(y));ylabel(‘Amplitude --.’);
823
MATLAB Programs
xlabel(‘(c) n --.’);
disp(‘The resultant signal is’);fliplr(y)
As an example,
enter the 1st sequence [1 2 3 4]
enter the 2nd sequence [4 3 2 1]
The resultant signal is
y51.0000 4.0000 10.0000 20.0000 25.0000 24.0000 16.0000
↑
Figure 16.3 shows the discrete input signals x(n)and h(n)and the cross-correlated
output signal y(n).
4
Amplitude
3
2
1
0
1
1.5
2
2.5
3
3.5
4
3.5
4
6
7
n
(a)
4
Amplitude
3
2
1
0
1.5
1
2
2.5
3
n
(b)
Amplitude
30
20
10
0
1
2
3
4
5
(c)
Fig. 16.3 Discrete Cross-correlation
16.4.2
Autocorrelation
Algorithm
1. Get the signal x(n)of length N in matrix form
2. The correlated signal is denoted as y(n)
3. y(n)is given by the formula
∞
y(n) 5
∑ [x(k ) x(k − n)]
k =−∞
where n52(N 2 1) to (N 2 1)
n
824
Digital Signal Processing
% Program for computing autocorrelation function
x5input(‘enter the sequence’);
y5xcorr(x,x);
figure;subplot(2,1,1);
stem(x);ylabel(‘Amplitude --.’);
xlabel(‘(a) n --.’);
subplot(2,1,2);
stem(fliplr(y));ylabel(‘Amplitude --.’);
xlabel(‘(a) n --.’);
disp(‘The resultant signal is’);fliplr(y)
As an example,
enter the sequence [1 2 3 4]
The resultant signal is
y54 11 20 30 20 11 4
↑
Figure 16.4 shows the discrete input signal x(n)and its auto-correlated output
signal y(n).
4
Amplitude
3
2
1
0
1
1.5
2.5
2
1
2
3
Amplitude
3.5
( )
(a)
30
25
20
15
10
5
0
3
4
4
n
5
(b) y (n)
7
6
n
Fig. 16.4 Discrete Auto-correlation
16.5
STABILITY TEST
% Program for stability test
clc;clear all;close all;
b5input(‘enter the denominator coefficients of the
filter’);
k5poly2rc(b);
knew5fliplr(k);
s5all(abs(knew)1);
if(s55 1)
disp(‘“Stable system”’);
MATLAB Programs
825
else
disp(‘“Non-stable system”’);
end
As an example,
enter the denominator coefficients of the filter [1 21 .5]
“Stable system”
16.6
SAMPLING THEOREM
The sampling theorem can be understood well with the following example.
Example 16.1 Frequency analysis of the amplitude modulated discrete-time
signal
x(n)5cos 2 pf1n 1 cos 2pf2n
5
1
where f1 =
and f 2 =
modulates the amplitude-modulated signal is
128
128
xc(n)5cos 2p fc n
where fc550/128. The resulting amplitude-modulated signal is
xam(n)5x(n) cos 2p fc n
Using MATLAB program,
(a) sketch the signals x(n), xc(n) and xam(n), 0 # n # 255
(b) compute and sketch the 128-point DFT of the signal xam(n), 0 # n # 127
(c) compute and sketch the 128-point DFT of the signal xam(n), 0 # n # 99
Solution
% Program
Solution for Section (a)
clc;close all;clear all;
f151/128;f255/128;n50:255;fc550/128;
x5cos(2*pi*f1*n)1cos(2*pi*f2*n);
xa5cos(2*pi*fc*n);
xamp5x.*xa;
subplot(2,2,1);plot(n,x);title(‘x(n)’);
xlabel(‘n --.’);ylabel(‘amplitude’);
subplot(2,2,2);plot(n,xc);title(‘xa(n)’);
xlabel(‘n --.’);ylabel(‘amplitude’);
subplot(2,2,3);plot(n,xamp);
xlabel(‘n --.’);ylabel(‘amplitude’);
%128 point DFT computation2solution for Section (b)
n50:127;figure;n15128;
f151/128;f255/128;fc550/128;
x5cos(2*pi*f1*n)1cos(2*pi*f2*n);
xc5cos(2*pi*fc*n);
xa5cos(2*pi*fc*n);
(Contd.)
Digital Signal Processing
2
Amplitude
1
0
−1
−2
0
100
(i)
200
300
n
Fig. 16.5(a) (i) Modulating Signal x (n)
1
Amplitude
0.5
0
−0.5
−1
0
100
200
300
n
(ii)
Fig. 16.5(a) (ii) Carrier Signal and
2
1
Amplitude
826
0
−1
−2
0
100
200
(iii)
300
n
Fig. 16.5(a) (iii) Amplitude Modulated Signal
(Contd.)
MATLAB Programs
827
25
20
15
Amplitude
10
5
0
−5
−10
0
20
40
60
80
100
120
140
n
Fig. 16.5(b) 128-point DFT of the Signal xam (n), 0 # n # 127
35
30
25
Amplitude
20
15
10
5
0
−5
0
20
40
60
80
100
120
n
Fig. 16.5(c) 128-point DFT of the Signal xam (n), 0 # n # 99
140
828
Digital Signal Processing
xamp5x.*xa;xam5fft(xamp,n1);
stem(n,xam);title(‘xamp(n)’);xlabel(‘n --.’);
ylabel(‘amplitude’);
%128 point DFT computation2solution for Section (c)
n50:99;figure;n250:n121;
f151/128;f255/128;fc550/128;
x5cos(2*pi*f1*n)1cos(2*pi*f2*n);
xc5cos(2*pi*fc*n);
xa5cos(2*pi*fc*n);
xamp5x.*xa;
for i51:100,
xamp1(i)5xamp(i);
end
xam5fft(xamp1,n1);
stem(n2,xam);title(‘xamp(n)’);xlabel(‘n
--.’);ylabel(‘amplitude’);
(a)Modulated signal x(n), carrier signal xa(n) and amplitude modulated signal
xam(n) are shown in Fig. 16.5(a). Fig. 16.5 (b) shows the 128-point DFT of the
signal xam(n) for 0 # n # 127 and Fig. 16.5 (c) shows the 128-point DFT of the
signal xam(n), 0 # n # 99.
16.7
FAST FOURIER TRANSFORM
Algorithm
1. Get the signal x(n)of length N in matrix form
2. Get the N value
3. The transformed signal is denoted as
N −1
−j
x( k ) = ∑ x( n )e
2p
nk
N
for 0 ≤ k ≤ N −1
n=0
\\\% Program for computing discrete Fourier transform
clc;close all;clear all;
x5input(‘enter the sequence’);
n5input(‘enter the length of fft’);
X(k)5fft(x,n);
stem(y);ylabel(‘Imaginary axis --.’);
xlabel(‘Real axis --.’);
X(k)
As an example,
enter the sequence [0 1 2 3 4 5 6 7]
enter the length of fft 8
X(k)5
Columns 1 through 4
28.0000 24.000019.6569i 24.0000 14.0000i 24.0000
1 1.6569i
Columns 5 through 8
24.0000 24.0000 21.6569i 24.0000 24.0000i 24.0000
29.6569i
MATLAB Programs
829
The eight-point decimation-in-time fast Fourier transform of the sequence x(n)is
computed using MATLAB program and the resultant output is plotted in Fig. 16.6.
10
8
6
4
Imaginary axis
2
0
−2
−4
−6
−8
−10
−5
0
5
10
15
20
25
Real axis
Fig. 16.6 Fast Fourier Transform
BUTTERWORTH ANALOG FILTERS
16.8
16.8.1
Low-pass Filter
Algorithm
1.
2.
3.
4.
5.
6.
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter using Eq. 8.46
Find the filter coefficients
Draw the magnitude and phase responses.
% Program for the design of Butterworth analog low pass filter
clc;
close all;clear
format long
rp5input(‘enter
rs5input(‘enter
wp5input(‘enter
ws5input(‘enter
fs5input(‘enter
all;
the
the
the
the
the
passband
stopband
passband
stopband
sampling
ripple’);
ripple’);
freq’);
freq’);
freq’);
30
830
Digital Signal Processing
w152*wp/fs;w252*ws/fs;
[n,wn]5buttord(w1,w2,rp,rs,’s’);
[z,p,k]5butter(n,wn);
[b,a]5zp2tf(z,p,k);
[b,a]5butter(n,wn,’s’);
w50:.01:pi;
[h,om]5freqs(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised
frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
As an example,
enter the passband ripple
0.15
enter the stopband ripple
60
enter the passband freq
1500
enter the stopband freq
3000
enter the stopband freq
7000
The amplitude and phase responses of the Butterworth low-pass analog filter are
shown in Fig. 16.7.
50
0
Gain in dB
− 50
−100
−150
−200
−250
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.9
1
Normalised frequency
(a)
4
Phase in radians
2
0
−2
−4
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Normalised frequency
(b)
Fig. 16.7 Butterworth Low-pass Analog Filter
(a) Amplitude Response and (b) Phase Response
MATLAB Programs
16.8.2
831
High-pass Filter
Algorithm
1.
2.
3.
4.
5.
6.
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter using Eq. 8.46
Find the filter coefficients
Draw the magnitude and phase responses.
% Program for the design of Butterworth analog high—pass filter
clc;
close all;clear all;
format long
rp5input(‘enter the passband ripple’);
rs5input(‘enter the stopband ripple’);
wp5input(‘enter the passband freq’);
ws5input(‘enter the stopband freq’);
fs5input(‘enter the sampling freq’);
w152*wp/fs;w252*ws/fs;
[n,wn]5buttord(w1,w2,rp,rs,’s’);
[b,a]5butter(n,wn,’high’,’s’);
w50:.01:pi;
[h,om]5freqs(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised
frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
As an example,
enter the passband
enter the stopband
enter the passband
enter the stopband
enter the sampling
ripple
ripple
freq
freq
freq
0.2
40
2000
3500
8000
The amplitude and phase responses of Butterworth high-pass analog filter are
shown in Fig. 16.8.
832
Digital Signal Processing
100
Gain in dB
0
−100
−200
−300
−400
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.9
1
Normalised frequency
(a)
4
Phase in radians
2
0
−2
−4
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Normalised frequency
(b)
Fig. 16.8 Butterworth High-pass Analog Filter (a) Amplitude Response and
(b) Phase Response
16.8.3
Bandpass Filter
Algorithm
1.
2.
3.
4.
5.
6.
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter using Eq. 8.46
Find the filter coefficients
Draw the magnitude and phase responses.
% Program for the design of Butterworth analog Bandpass filter
clc;
close all;clear all;
format long
rp5input(‘enter the passband
rs5input(‘enter the stopband
wp5input(‘enter the passband
ws5input(‘enter the stopband
fs5input(‘enter the sampling
w152*wp/fs;w252*ws/fs;
ripple...’);
ripple...’);
freq...’);
freq...’);
freq...’);
MATLAB Programs
833
[n]5buttord(w1,w2,rp,rs);
wn5[w1 w2];
[b,a]5butter(n,wn,’bandpass’,’s’);
w50:.01:pi;
[h,om]5freqs(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised
frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
As an example,
enter the passband ripple... 0.36
enter the stopband ripple... 36
enter the passband freq...
1500
enter the stopband freq...
2000
enter the sampling freq...
6000
The amplitude and phase responses of Butterworth bandpass analog filter are
shown in Fig. 16.9.
200
Gain in dB
0
− 200
− 400
− 600
− 800
− 1000
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.9
1
Normalised frequency
(a)
4
Phase in radians
2
0
−2
−4
0
0.1
0.2
0.3
0.4
0.5
(b)
0.6
0.7
0.8
Normalised frequency
Fig. 16.9 Butterworth Bandpass Analog Filter (a) Amplitude Response and
(b) Phase Response
834
Digital Signal Processing
16.8.4
Bandstop Filter
Algorithm
1.
2.
3.
4.
5.
6.
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter using Eq. 8.46
Find the filter coefficients
Draw the magnitude and phase responses.
% Program for the design of Butterworth analog Bandstop filter
clc;
close all;clear all;
format long
rp5input(‘enter the passband ripple...’);
rs5input(‘enter the stopband ripple...’);
wp5input(‘enter the passband freq...’);
ws5input(‘enter the stopband freq...’);
fs5input(‘enter the sampling freq...’);
w152*wp/fs;w252*ws/fs;
[n]5buttord(w1,w2,rp,rs,’s’);
wn5[w1 w2];
[b,a]5butter(n,wn,’stop’,’s’);
w50:.01:pi;
[h,om]5freqs(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised
frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
As an example,
enter the passband
enter the stopband
enter the passband
enter the stopband
enter the sampling
ripple...
ripple...
freq...
freq...
freq...
0.28
28
1000
1400
5000
The amplitude and phase responses of Butterworth bandstop analog filter are
shown in Fig. 16.10.
835
MATLAB Programs
50
Gain in dB
0
−50
−100
−150
−200
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.9
1
Normalised frequency
(a)
4
Phase in radians
2
0
−2
−4
0
0.1
0.2
0.3
0.4
0.5
(b)
0.6
0.7
0.8
Normalised frequency
Fig. 16.10 Butterworth Bandstop Analog Filter (a) Amplitude Response and
(b) Phase Response
16.9
16.9.1
CHEBYSHEV TYPE-1 ANALOG FILTERS
Low-pass Filter
Algorithm
1.
2.
3.
4.
5.
6.
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter using Eq. 8.57
Find the filter coefficients
Draw the magnitude and phase responses.
% Program for the design of Chebyshev Type-1 low-pass filter
clc;
close all;clear
format long
rp5input(‘enter
rs5input(‘enter
wp5input(‘enter
ws5input(‘enter
fs5input(‘enter
all;
the
the
the
the
the
passband
stopband
passband
stopband
sampling
ripple...’);
ripple...’);
freq...’);
freq...’);
freq...’);
836
Digital Signal Processing
w152*wp/fs;w252*ws/fs;
[n,wn]5cheb1ord(w1,w2,rp,rs,’s’);
[b,a]5cheby1(n,rp,wn,’s’);
w50:.01:pi;
[h,om]5freqs(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised
frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
As an example,
enter the passband ripple... 0.23
enter the stopband ripple... 47
enter the passband freq...
1300
enter the stopband freq...
1550
enter the sampling freq...
7800
The amplitude and phase responses of Chebyshev type - 1 low-pass analog filter
are shown in Fig. 16.11.
0
Gain in dB
−20
−40
−60
−80
−100
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.9
1
Normalised frequency
(a)
4
Phase in radians
2
0
−2
−4
0
0.1
0.2
0.3
0.4
0.5
(b)
0.6
0.7
0.8
Normalised frequency
Fig. 16.11 Chebyshev Type-I Low-pass Analog Filter (a) Amplitude Response
and (b) Phase Response
MATLAB Programs
837
16.9.2 High-pass Filter
Algorithm
1. Get the passband and stopband ripples
2. Get the passband and stopband edge frequencies
3. Get the sampling frequency
4. Calculate the order of the filter using Eq. 8.57
5. Find the filter coefficients
6. Draw the magnitude and phase responses.
%Program for the design of Chebyshev Type-1 high-pass filter
clc;
close all;clear all;
format long
rp5input(‘enter the passband ripple...’);
rs5input(‘enter the stopband ripple...’);
wp5input(‘enter the passband freq...’);
ws5input(‘enter the stopband freq...’);
fs5input(‘enter the sampling freq...’);
w152*wp/fs;w252*ws/fs;
[n,wn]5cheb1ord(w1,w2,rp,rs,’s’);
[b,a]5cheby1(n,rp,wn,’high’,’s’);
w50:.01:pi;
[h,om]5freqs(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
0
Gain in dB
−50
−100
−150
−200
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.9
1
Normalised frequency
(a)
4
Phase in radians
2
0
−2
−4
0
0.1
0.2
0.3
0.4
0.5
(b)
0.6
0.7
0.8
Normalised frequency
Fig. 16.12 Chebyshev Type - 1 High-pass Analog Filter (a) Amplitude Response
and (b) Phase Response
838
Digital Signal Processing
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised
frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
As an example,
enter the passband ripple... 0.29
enter the stopband ripple... 29
enter the passband freq...
900
enter the stopband freq...
1300
enter the sampling freq...
7500
The amplitude and phase responses of Chebyshev type - 1 high-pass analog filter
are shown in Fig. 16.12.
16.9.3 Bandpass Filter
Algorithm
1. Get the passband and stopband ripples
2. Get the passband and stopband edge frequencies
3. Get the sampling frequency
4. Calculate the order of the filter using Eq. 8.57
5. Find the filter coefficients
6. Draw the magnitude and phase responses.
% Program for the design of Chebyshev Type-1 Bandpass filter
clc;
close all;clear all;
format long
rp5input(‘enter the passband ripple...’);
rs5input(‘enter the stopband ripple...’);
wp5input(‘enter the passband freq...’);
ws5input(‘enter the stopband freq...’);
fs5input(‘enter the sampling freq...’);
w152*wp/fs;w252*ws/fs;
[n]5cheb1ord(w1,w2,rp,rs,’s’);
wn5[w1 w2];
[b,a]5cheby1(n,rp,wn,’bandpass’,’s’);
w50:.01:pi;
[h,om]5freqs(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised
frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
As an example,
enter the passband ripple... 0.3
enter the stopband ripple... 40
enter the passband freq...
1400
MATLAB Programs
enter the stopband freq...
enter the sampling freq...
839
2000
5000
The amplitude and phase responses of Chebyshev type - 1 bandpass analog filter
are shown in Fig. 16.13.
0
Gain in dB
−100
−200
−300
−400
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Normalised frequency
(a)
3
2
Phase in radians
1
0
−1
−2
−3
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
Normalised frequency
(b)
Fig. 16.13 Chebyshev Type-1 Bandpass Analog Filter
(a) Amplitude Response and (b) Phase Response
16.9.4
Bandstop Filter
Algorithm
1.
2.
3.
4.
5.
6.
Get the passband and stopband ripples
Get the passband and stopband edge frequency
Get the sampling frequency
Calculate the order of the filter using Eq. 8.57
Find the filter coefficients
Draw the magnitude and phase responses.
% Program for the design of Chebyshev Type-1 Bandstop filter
clc;
close all;clear
format long
rp5input(‘enter
rs5input(‘enter
wp5input(‘enter
ws5input(‘enter
all;
the
the
the
the
passband
stopband
passband
stopband
ripple...’);
ripple...’);
freq...’);
freq...’);
1
840
Digital Signal Processing
fs5input(‘enter the sampling freq...’);
w152*wp/fs;w252*ws/fs;
[n]5cheb1ord(w1,w2,rp,rs,’s’);
wn5[w1 w2];
[b,a]5cheby1(n,rp,wn,’stop’,’s’);
w50:.01:pi;
[h,om]5freqs(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised
frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
As an example,
enter the passband ripple... 0.15
enter the stopband ripple... 30
enter the passband freq...
2000
enter the stopband freq...
2400
enter the sampling freq...
7000
The amplitude and phase responses of Chebyshev type - 1 bandstop analog filter
are shown in Fig. 16.14.
0
Gain in dB
−50
−100
−150
−200
−250
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.9
1
Normalised frequency
(a)
4
Phase in radians
2
0
−2
−4
0
0.1
0.2
0.3
0.4
0.5
(b)
0.6
0.7
0.8
Normalised frequency
Fig. 16.14 Chebyshev Type - 1 Bandstop Analog Filter
(a) Amplitude Response and (b) Phase Response
MATLAB Programs
16.10
16.10.1
841
CHEBYSHEV TYPE-2 ANALOG FILTERS
Low-pass Filter
Algorithm
1.
2.
3.
4.
5.
6.
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter using Eq. 8.67
Find the filter coefficients
Draw the magnitude and phase responses.
% Program for the design of Chebyshev Type-2 low pass analog filter
clc;
close all;clear all;
format long
rp5input(‘enter the passband ripple...’);
rs5input(‘enter the stopband ripple...’);
wp5input(‘enter the passband freq...’);
ws5input(‘enter the stopband freq...’);
fs5input(‘enter the sampling freq...’);
w152*wp/fs;w252*ws/fs;
[n,wn]5cheb2ord(w1,w2,rp,rs,’s’);
[b,a]5cheby2(n,rs,wn,’s’);
w50:.01:pi;
[h,om]5freqs(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised
frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
As an example,
enter the passband ripple... 0.4
enter the stopband ripple... 50
enter the passband freq...
2000
enter the stopband freq...
2400
enter the sampling freq...
10000
The amplitude and phase responses of Chebyshev type - 2 low-pass analog filter
are shown in Fig. 16.15.
842
Digital Signal Processing
0
Gain in dB
− 20
− 40
− 60
− 80
− 100
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.9
1
Normalised frequency
(a)
4
Phase in radians
2
0
−2
−4
0
0.1
0.2
0.3
0.4
0.5
(b)
0.6
0.7
0.8
Normalised frequency
Fig. 16.15 Chebyshev Type - 2 Low-pass Analog Filter (a) Amplitude Response
and (b) Phase Response
16.10.2 High-pass Filter
Algorithm
1. Get the passband and stopband ripples
2. Get the passband and stopband edge frequencies
3. Get the sampling frequency
4. Calculate the order of the filter using Eq. 8.67
5. Find the filter coefficients
6. Draw the magnitude and phase responses.
% Program for the design of Chebyshev Type-2 High pass analog filter
clc;
close all;clear all;
format long
rp5input(‘enter the passband ripple...’);
rs5input(‘enter the stopband ripple...’);
wp5input(‘enter the passband freq...’);
ws5input(‘enter the stopband freq...’);
fs5input(‘enter the sampling freq...’);
w152*wp/fs;w252*ws/fs;
[n,wn]5cheb2ord(w1,w2,rp,rs,’s’);
[b,a]5cheby2(n,rs,wn,’high’,’s’);
w50:.01:pi;
MATLAB Programs
843
[h,om]5freqs(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
As an example,
enter the passband ripple... 0.34
enter the stopband ripple... 34
enter the passband freq...
1400
enter the stopband freq...
1600
enter the sampling freq...
10000
The amplitude and phase responses of Chebyshev type - 2 high-pass analog filter
are shown in Fig. 16.16.
0
Gain in dB
− 20
− 40
− 60
− 80
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.9
1
Normalised frequency
(a)
4
Phase in radians
2
0
−2
−4
0
0.1
0.2
0.3
0.4
0.5
(b)
0.6
0.7
0.8
Normalised frequency
Fig. 16.16 Chebyshev Type - 2 High-pass Analog Filter
(a) Amplitude Response and (b) Phase Response
16.10.3
Bandpass Filter
Algorithm
1. Get the passband and stopband ripples
2. Get the passband and stopband edge frequencies
844
3.
4.
5.
6.
Digital Signal Processing
Get the sampling frequency
Calculate the order of the filter using Eq. 8.67
Find the filter coefficients
Draw the magnitude and phase responses.
% Program for the design of Chebyshev Type-2 Bandpass analog filter
clc;
close all;clear all;
format long
rp5input(‘enter the passband ripple...’);
rs5input(‘enter the stopband ripple...’);
wp5input(‘enter the passband freq...’);
ws5input(‘enter the stopband freq...’);
fs5input(‘enter the sampling freq...’);
w152*wp/fs;w252*ws/fs;
[n]5cheb2ord(w1,w2,rp,rs,’s’);
wn5[w1 w2];
[b,a]5cheby2(n,rs,wn,’bandpass’,’s’);
w50:.01:pi;
[h,om]5freqs(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised
frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
As an example,
enter the passband ripple...
0.37
enter the stopband ripple... 37
enter the passband freq...
3000
enter the stopband freq...
4000
enter the sampling freq...
9000
The amplitude and phase responses of Chebyshev type - 2 bandpass analog filter
are shown in Fig. 16.17.
20
0
Gain in dB
−20
−40
−60
−80
−100
0
0.1
0.2
0.3
0.4
0.5
(a)
0.6
0.7
0.8
Normalised frequency
Fig. 16.17 (Contd.)
0.9
1
MATLAB Programs
845
4
Phase in radians
2
0
2
−
4
−
0
0.1
0.2
0.3
0.4
0.5
(b)
0.6
0.7
0.8
0.9
1
Normalised frequency
Fig. 16.17 Chebyshev Type - 2 Bandstop Analog Filter (a) Amplitude Response
and (b) Phase Response
16.10.4
Bandstop Filter
Algorithm
1.
2.
3.
4.
5.
6.
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter using Eq. 8.67
Find the filter coefficients
Draw the magnitude and phase responses.
% Program for the design of Chebyshev Type-2 Bandstop analog filter
clc;
close all;clear all;
format long
rp5input(‘enter the passband ripple...’);
rs5input(‘enter the stopband ripple...’);
wp5input(‘enter the passband freq...’);
ws5input(‘enter the stopband freq...’);
fs5input(‘enter the sampling freq...’);
w152*wp/fs;w252*ws/fs;
[n]5cheb2ord(w1,w2,rp,rs,’s’);
wn5[w1 w2];
[b,a]5cheby2(n,rs,wn,’stop’,’s’);
w50:.01:pi;
[h,om]5freqs(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised
frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
846
Digital Signal Processing
As an example,
enter the passband
enter the stopband
enter the passband
enter the stopband
enter the sampling
ripple...
ripple...
freq...
freq...
freq...
0.25
30
1300
2000
8000
The amplitude and phase responses of Chebyshev type - 2 bandstop analog filter
are shown in Fig. 16.18.
40
Gain in dB
20
0
− 20
− 40
− 60
− 80
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.9
1
Normalised frequency
(a)
4
Phase in radians
2
0
−2
−4
0
0.1
0.2
0.3
0.4
0.5
0.6
(b)
0.7
0.8
Normalised frequency
Fig. 16.18 Chebyshev Type - 2 Bandstop Analog Filter
(a) Amplitude Response and (b) Phase Response
16.11
BUTTERWORTH DIGITAL IIR FILTERS
16.11.1 Low-pass Filter
Algorithm
1.
2.
3.
4.
5.
6.
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter using Eq. 8.46
Find the filter coefficients
Draw the magnitude and phase responses.
MATLAB Programs
847
% Program for the design of Butterworth low pass digital filter
clc;
close all;clear all;
format long
rp5input(‘enter the passband ripple’);
rs5input(‘enter the stopband ripple’);
wp5input(‘enter the passband freq’);
ws5input(‘enter the stopband freq’);
fs5input(‘enter the sampling freq’);
w152*wp/fs;w252*ws/fs;
[n,wn]5buttord(w1,w2,rp,rs);
[b,a]5butter(n,wn);
w50:.01:pi;
[h,om]5freqz(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised
frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
As an example,
enter the passband ripple
0.5
enter the stopband ripple
50
enter the passband freq
1200
enter the stopband freq
2400
enter the sampling freq
10000
The amplitude and phase responses of Butterworth low-pass digital filter are
shown in Fig. 16.19.
100
Gain in dB
0
− 100
− 200
− 300
− 400
0
0.1
0.2
0.3
0.4
0.5
0.6
(a)
Fig. 16.19 (Contd.)
0.7
0.8
Normalised frequency
0.9
1
848
Digital Signal Processing
4
Phase in radians
2
0
−2
−4
0
0.1
0.2
0.3
0.4
0.5
0.6
(b)
0.7
0.8
0.9
Normalised frequency
Fig. 16.19 Butterworth Low-pass Digital Filter (a) Amplitude Response and
(b) Phase Response
16.11.2
High-pass Filter
Algorithm
1.
2.
3.
4.
5.
6.
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter using Eq. 8.46
Find the filter coefficients
Draw the magnitude and phase responses.
% Program for the design of Butterworth highpass digital filter
clc;
close all;clear all;
format long
rp5input(‘enter the passband ripple’);
rs5input(‘enter the stopband ripple’);
wp5input(‘enter the passband freq’);
ws5input(‘enter the stopband freq’);
fs5input(‘enter the sampling freq’);
w152*wp/fs;w252*ws/fs;
[n,wn]5buttord(w1,w2,rp,rs);
[b,a]5butter(n,wn,’high’);
w50:.01:pi;
[h,om]5freqz(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised
frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
As an example,
enter the passband ripple
0.5
enter the stopband ripple
50
enter the passband freq
1200
1
MATLAB Programs
enter the stopband freq
enter the sampling freq
849
2400
10000
The amplitude and phase responses of Butterworth high-pass digital filter are
shown in Fig. 16.20.
50
0
Gain in dB
−50
−100
−150
−200
−250
−300
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.9
1
Normalised frequency
(a)
4
Phase in radians
2
0
−2
−4
0
0.1
0.2
0.3
0.4
0.5
0.6
(b)
0.7
0.8
Normalised frequency
Fig. 16.20 Butterworth High-pass Digital Filter
(a) Amplitude Response and (b) Phase Response
16.11.3 Band-pass Filter
Algorithm
1.
2.
3.
4.
5.
6.
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter using Eq. 8.46
Find the filter coefficients
Draw the magnitude and phase responses.
% Program for the design of Butterworth Bandpass digital filter
clc;
close all;clear
format long
rp5input(‘enter
rs5input(‘enter
wp5input(‘enter
all;
the passband ripple’);
the stopband ripple’);
the passband freq’);
850
Digital Signal Processing
ws5input(‘enter the stopband freq’);
fs5input(‘enter the sampling freq’);
w152*wp/fs;w252*ws/fs;
[n]5buttord(w1,w2,rp,rs);
wn5[w1 w2];
[b,a]5butter(n,wn,’bandpass’);
w50:.01:pi;
[h,om]5freqz(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised
frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
As an example,
enter the passband ripple
0.3
enter the stopband ripple
40
enter the passband freq
1500
enter the stopband freq
2000
enter the sampling freq
9000
The amplitude and phase responses of Butterworth band-pass digital filter are
shown in Fig. 16.21.
0
− 100
Gain in dB
− 200
− 300
− 400
− 500
− 600
− 700
0
0.1
0.2
0.3
0.4
0.5
(a)
0.6
0.7
0.8
0.9
1
0.9
1
Normalised frequency
4
Phase in radians
2
0
−2
−4
0
0.1
0.2
0.3
0.4
(b)
0.5
0.6
0.7
0.8
Normalised frequency
Fig. 16.21 Butterworth Bandstop Digital Filter (a) Amplitude Response and
(b) Phase Response
MATLAB Programs
16.11.4
851
Bandstop Filter
Algorithm
1.
2.
3.
4.
5.
6.
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter using Eq. 8.46
Find the filter coefficients
Draw the magnitude and phase responses.
% Program for the design of Butterworth Band stop digital filter
clc;
close all;clear all;
format long
rp5input(‘enter the passband ripple’);
rs5input(‘enter the stopband ripple’);
wp5input(‘enter the passband freq’);
ws5input(‘enter the stopband freq’);
fs5input(‘enter the sampling freq’);
w152*wp/fs;w252*ws/fs;
[n]5buttord(w1,w2,rp,rs);
wn5[w1 w2];
[b,a]5butter(n,wn,’stop’);
w50:.01:pi;
[h,om]5freqz(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised
frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
As an example,
enter the passband ripple
0.4
enter the stopband ripple
46
enter the passband freq
1100
enter the stopband freq
2200
enter the sampling freq
6000
The amplitude and phase responses of the Butterworth bandstop digital filter are
shown in Fig. 16.22.
852
Digital Signal Processing
100
0
Gain in dB
−100
−200
−300
−400
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.9
1
Normalised frequency
(a)
4
Phase in radians
2
0
−2
−4
0
0.1
0.2
0.3
0.4
0.5
(b)
0.6
0.7
0.8
Normalised frequency
Fig. 16.22 Butterworth Bandstop Digital Filter
(a) Amplitude Response and (b) Phase Response
16.12
16.12.1
CHEBYSHEV TYPE-1 DIGITAL FILTERS
Low-pass Filter
Algorithm
1.
2.
3.
4.
5.
6.
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter using Eq. 8.57
Find the filter coefficients
Draw the magnitude and phase responses.
% Program for the design of Chebyshev Type-1 lowpass digital filter
clc;
close all;clear all;
format long
rp5input(‘enter the passband ripple...’);
rs5input(‘enter the stopband ripple...’);
wp5input(‘enter the passband freq...’);
ws5input(‘enter the stopband freq...’);
fs5input(‘enter the sampling freq...’);
MATLAB Programs
853
w152*wp/fs;w252*ws/fs;
[n,wn]5cheb1ord(w1,w2,rp,rs);
[b,a]5cheby1(n,rp,wn);
w50:.01:pi;
[h,om]5freqz(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised
frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
As an example,
enter the passband ripple... 0.2
enter the stopband ripple... 45
enter the passband freq...
1300
enter the stopband freq...
1500
enter the sampling freq...
10000
The amplitude and phase responses of Chebyshev type - 1 low-pass digital filter
are shown in Fig. 16.23.
0
−100
Gain in dB
−200
−300
−400
−500
0
0.1
0.2
0.3
0.5
0.4
0.6
0.7
0.8
0.9
1
0.9
1
Normalised frequency
(a)
4
Phase in radians
2
0
−2
−4
0
0.1
0.2
0.3
0.5
0.4
(b)
0.6
0.7
0.8
Normalised frequency
Fig. 16.23 Chebyshev Type - 1 Low-pass Digital Filter (a) Amplitude Response
and (b) Phase Response
854
Digital Signal Processing
16.12.2
High-pass Filter
Algorithm
1.
2.
3.
4.
5.
6.
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter using Eq. 8.57
Find the filter coefficients
Draw the magnitude and phase responses.
% Program for the design of Chebyshev Type-1 highpass digital
filter
clc;
close all;clear all;
format long
rp5input(‘enter the passband ripple...’);
rs5input(‘enter the stopband ripple...’);
wp5input(‘enter the passband freq...’);
ws5input(‘enter the stopband freq...’);
fs5input(‘enter the sampling freq...’);
w152*wp/fs;w252*ws/fs;
[n,wn]5cheb1ord(w1,w2,rp,rs);
[b,a]5cheby1(n,rp,wn,’high’);
w50:.01/pi:pi;
[h,om]5freqz(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised frequency
--.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
As an example,
enter the passband
enter the stopband
enter the passband
enter the stopband
enter the sampling
ripple...
ripple...
freq...
freq...
freq...
0.3
60
1500
2000
9000
The amplitude and phase responses of Chebyshev type - 1 high-pass digital filter
are shown in Fig. 16.24.
MATLAB Programs
855
0
−50
Gain in dB
−100
−150
−200
−250
−300
−350
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.9
1
Normalised frequency
(a)
4
Phase in radians
2
0
−2
−4
0
0.1
0.2
0.3
0.4
0.5
(b)
0.6
0.7
0.8
Normalised frequency
Fig. 16.24 Chebyshev Type - 1 High-pass Digital Filter
(a) Amplitude Response and (b) Phase Response
16.12.3
Bandpass Filter
Algorithm
1.
2.
3.
4.
5.
6.
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter using Eq. 8.57
Find the filter coefficients
Draw the magnitude and phase responses.
% Program for the design of Chebyshev Type-1 Bandpass digital filter
clc;
close all;clear all;
format long
rp5input(‘enter the passband
rs5input(‘enter the stopband
wp5input(‘enter the passband
ws5input(‘enter the stopband
fs5input(‘enter the sampling
w152*wp/fs;w252*ws/fs;
ripple...’);
ripple...’);
freq...’);
freq...’);
freq...’);
856
Digital Signal Processing
[n]5cheb1ord(w1,w2,rp,rs);
wn5[w1 w2];
[b,a]5cheby1(n,rp,wn,’bandpass’);
w50:.01:pi;
[h,om]5freqz(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised
frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
As an example,
enter the passband ripple... 0.4
enter the stopband ripple... 35
enter the passband freq...
2000
enter the stopband freq...
2500
enter the sampling freq...
10000
The amplitude and phase responses of Chebyshev type - 1 bandpass digital filter
are shown in Fig. 16.25.
0
−200
−300
−400
−500
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.9
1
Normalised frequency
(a)
4
2
Phase in radians
Gain in dB
−100
0
−2
−4
0
0.1
0.2
0.3
0.4
0.5
(b)
0.6
0.7
0.8
Normalised frequency
Fig. 16.25 Chebyshev Type - 1 Bandpass Digital Filter (a) Amplitude
Response and (b) Phase Response
MATLAB Programs
16.12.4
857
Bandstop Filter
Algorithm
1.
2.
3.
4.
5.
6.
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter using Eq. 8.57
Find the filter coefficients
Draw the magnitude and phase responses.
% Program for the design of Chebyshev Type-1 Bandstop digital filter
clc;
close all;clear all;
format long
rp5input(‘enter the passband ripple...’);
rs5input(‘enter the stopband ripple...’);
wp5input(‘enter the passband freq...’);
ws5input(‘enter the stopband freq...’);
fs5input(‘enter the sampling freq...’);
w152*wp/fs;w252*ws/fs;
[n]5cheb1ord(w1,w2,rp,rs);
wn5[w1 w2];
[b,a]5cheby1(n,rp,wn,’stop’);
w50:.1/pi:pi;
[h,om]5freqz(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised
frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
As an example,
enter the passband ripple... 0.25
enter the stopband ripple... 40
enter the passband freq...
2500
enter the stopband freq...
2750
enter the sampling freq...
7000
The amplitude and phase responses of Chebyshev type - 1 bandstop digital filter
are shown in Fig. 16.26.
858
Digital Signal Processing
0
Gain in dB
− 50
− 100
− 150
− 200
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.9
1
Normalised frequency
(a)
4
3
Phase in radians
2
1
0
−1
−2
−3
0
0.1
0.2
0.3
0.4
0.5
(b)
0.6
0.7
0.8
Normalised frequency
Fig. 16.26 Chebyshev Type - 1 Bandstop Digital Filter
(a) Amplitude Response and (b) Phase Response
16.13
CHEBYSHEV TYPE-2 DIGITAL FILTERS
16.13.1 Low-pass Filter
Algorithm
1. Get the passband and stopband ripples
2. Get the passband and stopband edge frequencies
3. Get the sampling frequency
4. Calculate the order of the filter using Eq. 8.67
5. Find the filter coefficients
6. Draw the magnitude and phase responses.
% Program for the design of Chebyshev Type-2 lowpass digital filter
clc;
close all;clear all;
format long
rp5input(‘enter the passband ripple...’);
rs5input(‘enter the stopband ripple...’);
wp5input(‘enter the passband freq...’);
ws5input(‘enter the stopband freq...’);
fs5input(‘enter the sampling freq...’);
w152*wp/fs;w252*ws/fs;
[n,wn]5cheb2ord(w1,w2,rp,rs);
[b,a]5cheby2(n,rs,wn);
MATLAB Programs
859
w50:.01:pi;
[h,om]5freqz(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised
frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
As an example,
enter the passband ripple... 0.35
enter the stopband ripple... 35
enter the passband freq...
1500
enter the stopband freq...
2000
enter the sampling freq...
8000
The amplitude and phase responses of Chebyshev type - 2 low-pass digital filter
are shown in Fig. 16.27.
20
0
Gain in dB
−20
−40
−60
−80
−100
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0.9
1
Normalised frequency
(a)
4
Phase in radians
2
0
−2
−4
0
0.1
0.2
0.3
0.4
0.5
(b)
0.6
0.7
0.8
Normalised frequency
Fig. 16.27 Chebyshev Type - 2 Low-pass Digital Filter (a) Amplitude Response
and (b) Phase Response
16.13.2 High-pass Filter
Algorithm
1. Get the passband and stopband ripples
2. Get the passband and stopband edge frequencies
860
3.
4.
5.
6.
Digital Signal Processing
Get the sampling frequency
Calculate the order of the filter using Eq. 8.67
Find the filter coefficients
Draw the magnitude and phase responses.
% Program for the design of Chebyshev Type-2 high pass digital filter
clc;
close all;clear all;
format long
rp5input(‘enter the passband ripple...’);
rs5input(‘enter the stopband ripple...’);
wp5input(‘enter the passband freq...’);
ws5input(‘enter the stopband freq...’);
fs5input(‘enter the sampling freq...’);
w152*wp/fs;w252*ws/fs;
[n,wn]5cheb2ord(w1,w2,rp,rs);
[b,a]5cheby2(n,rs,wn,’high’);
w50:.01/pi:pi;
[h,om]5freqz(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised
frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
As an example,
enter the passband ripple... 0.25
enter the stopband ripple... 40
enter the passband freq...
1400
enter the stopband freq...
1800
enter the sampling freq...
7000
The amplitude and phase responses of Chebyshev type - 2 high-pass digital filter
are shown in Fig. 16.28.
0
−20
Gain in dB
−40
− 60
− 80
−100
−120
0
0.1
0.2
0.3
0.4
0.5
0.6
(a)
Fig. 16.28 (Contd.)
0.7
0.8
Normalised frequency
0.9
1
MATLAB Programs
861
4
Phase in radians
2
0
−2
−4
0
0.1
0.2
0.3
0.4
0.5
(b)
0.6
0.7
0.8
0.9
1
Normalised frequency
Fig. 16.28 Chebyshev Type - 2 High-pass Digital Filter (a) Amplitude Response
and (b) Phase Response
16.13.3
Bandpass Filter
Algorithm
1.
2.
3.
4.
5.
6.
Get the passband and stopband ripples
Get the passband and stopband edge frequency
Get the sampling frequency
Calculate the order of the filter using Eq. 8.67
Find the filter coefficients
Draw the magnitude and phase responses.
% Program for the design of Chebyshev Type-2 Bandpass digital filter
clc;
close all;clear all;
format long
rp5input(‘enter the passband ripple...’);
rs5input(‘enter the stopband ripple...’);
wp5input(‘enter the passband freq...’);
ws5input(‘enter the stopband freq...’);
fs5input(‘enter the sampling freq...’);
w152*wp/fs;w252*ws/fs;
[n]5cheb2ord(w1,w2,rp,rs);
wn5[w1 w2];
[b,a]5cheby2(n,rs,wn,’bandpass’);
w50:.01/pi:pi;
[h,om]5freqz(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised
frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
862
Digital Signal Processing
As an example,
enter the passband
enter the stopband
enter the passband
enter the stopband
enter the sampling
ripple...
ripple...
freq...
freq...
freq...
0.4
40
1400
2000
9000
The amplitude and phase responses of Chebyshev type - 2 bandpass digital filter
are shown in Fig. 16.29.
100
Gain in dB
0
−100
−200
−300
−400
0.1
0
0.2
0.3
0.5
0.4
0.6
0.7
0.8
0.9
1
0.9
1
Normalised frequency
(a)
4
Phase in radians
2
0
−2
−4
0.1
0
0.2
0.3
0.5
0.4
0.6
(b)
0.7
0.8
Normalised frequency
Fig. 16.29 Chebyshev Type - 2 Bandpass Digital Filter (a) Amplitude Response
and (b) Phase Response
16.13.4
Bandstop Filter
Algorithm
1.
2.
3.
4.
5.
6.
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter using Eq. 8.67
Find the filter coefficients
Draw the magnitude and phase responses.
MATLAB Programs
863
% Program for the design of Chebyshev Type-2 Bandstop digital filter
clc;
close all;clear all;
format long
rp5input(‘enter the passband ripple...’);
rs5input(‘enter the stopband ripple...’);
wp5input(‘enter the passband freq...’);
ws5input(‘enter the stopband freq...’);
fs5input(‘enter the sampling freq...’);
w152*wp/fs;w252*ws/fs;
[n]5cheb2ord(w1,w2,rp,rs);
wn5[w1 w2];
[b,a]5cheby2(n,rs,wn,’stop’);
w50:.1/pi:pi;
[h,om]5freqz(b,a,w);
m520*log10(abs(h));
an5angle(h);
subplot(2,1,1);plot(om/pi,m);
ylabel(‘Gain in dB --.’);xlabel(‘(a) Normalised
frequency --.’);
subplot(2,1,2);plot(om/pi,an);
xlabel(‘(b) Normalised frequency --.’);
ylabel(‘Phase in radians --.’);
As an example,
enter
enter
enter
enter
enter
the
the
the
the
the
passband
stopband
passband
stopband
sampling
ripple...
ripple...
freq...
freq...
freq...
0.3
46
1400
2000
8000
The amplitude and phase responses of Chebyshev type - 2 bandstop digital filter
are shown in Fig. 16.30.
20
Gain in dB
0
− 20
− 40
− 60
− 80
0
0.1
0.2
0.3
0.4
0.5
(a)
0.6
0.7
0.8
Normalised frequency
Fig. 16.30 (Contd.)
0.9
1
864
Digital Signal Processing
3
2
Phase in radians
1
0
-1
-2
-3
-4
0
0.1
0.2
0.3
0.4
0.5
0.6
(b)
0.7
0.8
0.9
1
Normalised frequency
Fig. 16.30 Chebyshev Type - 2 Bandstop Digital Filter (a) Amplitude Response
and (b) Phase Response
FIR FILTER DESIGN USING WINDOW
TECHNIQUES
16.14
In the design of FIR filters using any window technique, the order can be calculated
using the formula given by
N=
−20 log( d pd s ) −13
14.6( f s − f p ) / Fs
where dp is the passband ripple, ds is the stopband ripple, fp is the passband frequency,
fs is the stopband frequency and Fs is the sampling frequency.
16.14.1
Rectangular Window
Algorithm
1.
2.
3.
4.
5.
6.
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter
Find the window coefficients using Eq. 7.37
Draw the magnitude and phase responses.
% Program for the design of FIR Low pass, High pass, Band pass
and Bandstop filters using rectangular window
clc;clear all;close all;
rp5input(‘enter the passband ripple’);
rs5input(‘enter the stopband ripple’);
fp5input(‘enter the passband freq’);
fs5input(‘enter the stopband freq’);
f5input(‘enter the sampling freq’);
wp52*fp/f;ws52*fs/f;
num5220*log10(sqrt(rp*rs))213;
MATLAB Programs
865
dem514.6*(fs2fp)/f;
n5ceil(num/dem);
n15n11;
if (rem(n,2)˜50)
n15n;
n5n21;
end
y5boxcar(n1);
% LOW-PASS FILTER
b5fir1(n,wp,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,1);plot(o/pi,m);ylabel(‘Gain in dB --.’);
xlabel(‘(a) Normalised frequency --.’);
% HIGH-PASS FILTER
b5fir1(n,wp,’high’,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,2);plot(o/pi,m);ylabel(‘Gain in dB --.’);
xlabel(‘(b) Normalised frequency --.’);
% BAND PASS FILTER
wn5[wp ws];
b5fir1(n,wn,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,3);plot(o/pi,m);ylabel(‘Gain in dB -->’);
xlabel(‘(c) Normalised frequency -->’);
% BAND STOP FILTER
b5fir1(n,wn,’stop’,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,4);plot(o/pi,m);ylabel(‘Gain in dB -->’);
xlabel(‘(d) Normalised frequency -->’);
As an example,
enter the passband ripple
0.05
enter the stopband ripple
0.04
enter the passband freq
1500
enter the stopband freq
2000
enter the sampling freq
9000
The gain responses of low-pass, high-pass, bandpass and bandstop filters using
rectangular window are shown in Fig. 16.31.
Digital Signal Processing
20
20
0
0
− 20
− 20
Gain in dB
Gain in dB
866
− 40
− 60
− 80
0
0.2
0.4
0.6
0.8
Normalised frequency
− 40
− 60
− 80
1
0
0.2
0.4
0.6
0.8
Normalised frequency
(b)
20
5
0
0
− 20
Gain in dB
Gain in dB
(a)
− 40
− 60
− 80
0
0.2
0.4
0.6
0.8
Normalised frequency
1
−5
−10
−15
−20
0
0.2
0.4
0.6
0.8
Normalised frequency
(c)
(d)
Fig. 16.31 Filters Using Rectangular Window (a) Low-pass (b) High-pass
(c) Bandpass and (d) Bandstop
16.14.2
Bartlett Window
Algorithm
1.
2.
3.
4.
5.
6.
1
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter
Find the filter coefficients
Draw the magnitude and phase responses.
% Program for the design of FIR Low pass, High pass, Band pass
and Bandstop filters using Bartlett window
clc;clear all;close all;
rp5input(‘enter the passband ripple’);
rs5input(‘enter the stopband ripple’);
fp5input(‘enter the passband freq’);
fs5input(‘enter the stopband freq’);
f5input(‘enter the sampling freq’);
1
MATLAB Programs
867
wp52*fp/f;ws52*fs/f;
num5220*log10(sqrt(rp*rs))213;
dem514.6*(fs2fp)/f;
n5ceil(num/dem);
n15n11;
if (rem(n,2)˜50)
n15n;
n5n21;
end
y5bartlett(n1);
% LOW-PASS FILTER
b5fir1(n,wp,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,1);plot(o/pi,m);ylabel(‘Gain in dB --.’);
xlabel(‘(a) Normalised frequency --.’);
% HIGH-PASS FILTER
b5fir1(n,wp,’high’,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,2);plot(o/pi,m);ylabel(‘Gain in dB --.’);
xlabel(‘(b) Normalised frequency --.’);
% BAND PASS FILTER
wn5[wp ws];
b5fir1(n,wn,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,3);plot(o/pi,m);ylabel(‘Gain in dB --.’);
xlabel(‘(c) Normalised frequency --.’);
% BAND STOP FILTER
b5fir1(n,wn,’stop’,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,4);plot(o/pi,m);ylabel(‘Gain in dB --.’);
xlabel(‘(d) Normalised frequency --.’);
As an example,
enter the passband ripple
0.04
enter the stopband ripple
0.02
enter the passband freq
1500
enter the stopband freq
2000
enter the sampling freq
8000
The gain responses of low-pass, high-pass, bandpass and bandstop filters using
Bartlett window are shown in Fig. 16.32.
868
Digital Signal Processing
5
−5
0
−10
−5
Gain in dB
Gain in dB
0
−15
−20
−25
− 10
− 15
− 20
− 30
− 35
0
−25
0.6
0.8
0.2
0.4
Normalised frequency
1
− 30
0
0.6
0.8
0.2
0.4
Normalised frequency
(b)
0
2
− 10
−0
Gain in dB
Gain in dB
(a)
− 20
− 30
− 40
0
−2
−4
−6
0.6
0.8
0.2
0.4
Normalised frequency
1
−8
0
0.6
0.8
0.2
0.4
Normalised frequency
(c)
(d)
Fig. 16.32 Filters using Bartlett Window (a) Low-pass (b) High-pass
(c) Bandpass and (d) Bandstop
16.14.3
Blackman window
Algorithm
1.
2.
3.
4.
5.
6.
1
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter
Find the window coefficients using Eq. 7.45
Draw the magnitude and phase responses.
% Program for the design of FIR Low pass, High pass, Band pass
and Band stop digital filters using Blackman window
clc;clear all;close all;
rp5input(‘enter the passband ripple’);
rs5input(‘enter the stopband ripple’);
fp5input(‘enter the passband freq’);
fs5input(‘enter the stopband freq’);
f5input(‘enter the sampling freq’);
1
MATLAB Programs
869
wp52*fp/f;ws52*fs/f;
num5220*log10(sqrt(rp*rs))213;
dem514.6*(fs2fp)/f;
n5ceil(num/dem);
n15n11;
if (rem(n,2)˜50)
n15n;
n5n21;
end
y5blackman(n1);
% LOW-PASS FILTER
b5fir1(n,wp,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,1);plot(o/pi,m);ylabel(‘Gain in dB --.’);
xlabel(‘(a) Normalised frequency --.’);
% HIGH-PASS FILTER
b5fir1(n,wp,’high’,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,2);plot(o/pi,m);ylabel(‘Gain in dB --.’);
xlabel(‘(b) Normalised frequency --.’);
% BAND PASS FILTER
wn5[wp ws];
b5fir1(n,wn,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,3);plot(o/pi,m);ylabel(‘Gain in dB --.’);
xlabel(‘(c) Normalised frequency --.’);
% BAND STOP FILTER
b5fir1(n,wn,’stop’,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,4);plot(o/pi,m);;ylabel(‘Gain in dB --.’);
xlabel(‘(d) Normalised frequency --.’);
As an example,
enter the passband ripple
0.03
enter the stopband ripple
0.01
enter the passband freq
2000
enter the stopband freq
2500
enter the sampling freq
7000
The gain responses of low-pass, high-pass, bandpass and bandstop filters using
Blackman window are shown in Fig. 16.33.
870
Digital Signal Processing
20
50
0
0
Gain in dB
Gain in dB
−20
−40
−60
−80
−50
− 100
− 100
− 120
0
0.6
0.8
0.2
0.4
Normalised frequency
1
− 150
0
0.6
0.8
0.2
0.4
Normalised frequency
(b)
0
2
− 20
0
− 40
Gain in dB
Gain in dB
(a)
− 60
− 80
−2
−4
−6
−100
−120
0
0.6
0.8
0.2
0.4
Normalised frequency
1
−8
0
0.6
0.8
0.2
0.4
Normalised frequency
(c)
(d)
Fig. 16.33 Filters using Blackman Window (a) Low-pass (b) High-pass
(c) Bandpass and (d) Bandstop
16.14.4
Chebyshev Window
Algorithm
1.
2.
3.
4.
5.
6.
1
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter
Find the filter coefficients
Draw the magnitude and phase responses.
% Program for the design of FIR Lowpass, High pass, Band pass
and Bandstop filters using Chebyshev window
clc;clear all;close all;
rp5input(‘enter the passband ripple’);
rs5input(‘enter the stopband ripple’);
fp5input(‘enter the passband freq’);
fs5input(‘enter the stopband freq’);
f5input(‘enter the sampling freq’);
1
MATLAB Programs
871
r5input(‘enter the ripple value(in dBs)’);
wp52*fp/f;ws52*fs/f;
num5220*log10(sqrt(rp*rs))213;
dem514.6*(fs2fp)/f;
n5ceil(num/dem);
if(rem(n,2)˜50)
n5n11;
end
y5chebwin(n,r);
% LOW-PASS FILTER
b5fir1(n-1,wp,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,1);plot(o/pi,m);ylabel(‘Gain in dB --.’);
xlabel(‘(a) Normalised frequency --.’);
% HIGH-PASS FILTER
b5fir1(n21,wp,’high’,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,2);plot(o/pi,m);ylabel(‘Gain in dB --.’);
xlabel(‘(b) Normalised frequency --.’);
% BAND-PASS FILTER
wn5[wp ws];
b5fir1(n21,wn,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,3);plot(o/pi,m);ylabel(‘Gain in dB --.’);
xlabel(‘(c) Normalised frequency --.’);
% BAND-STOP FILTER
b5fir1(n21,wn,’stop’,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,4);plot(o/pi,m);ylabel(‘Gain in dB --.’);
xlabel(‘(d) Normalised frequency --.’);
As an example,
enter the passband ripple
0.03
enter the stopband ripple
0.02
enter the passband freq
1800
enter the stopband freq
2400
enter the sampling freq
10000
enter the ripple value(in dBs)40
The gain responses of low-pass, high-pass, bandpass and bandstop filters using
Chebyshev window are shown in Fig. 16.34.
872
20
20
0
0
− 20
−20
Gain in dB
Gain in dB
Digital Signal Processing
− 40
−60
− 80
−100
−40
−60
−80
0
0.6
0.8
0.2
0.4
Normalised frequency
1
− 100
0
0.6
0.8
0.2
0.4
Normalised frequency
(b)
0
2
− 20
0
−2
− 40
Gain in dB
Gain in dB
(a)
− 60
− 80
−4
−6
−8
−100
−10
−120
0
−12
0.6
0.8
0.2
0.4
Normalised frequency
1
0
0.6
0.8
0.2
0.4
Normalised frequency
(c)
(d)
Fig. 16.34 Filters using Chebyshev Window (a) Low-pass (b) High-pass
(c) Bandpass and (d) Bandstop
16.14.5
Hamming Window
Algorithm
1.
2.
3.
4.
5.
6.
1
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter
Find the window coefficients using Eq. 7.40
Draw the magnitude and phase responses.
% Program for the design of FIR Low pass, High pass, Band pass
and Bandstop filters using Hamming window
clc;clear all;close all;
rp5input(‘enter the passband ripple’);
rs5input(‘enter the stopband ripple’);
fp5input(‘enter the passband freq’);
fs5input(‘enter the stopband freq’);
f5input(‘enter the sampling freq’);
1
MATLAB Programs
873
wp52*fp/f;ws52*fs/f;
num5220*log10(sqrt(rp*rs))213;
dem514.6*(fs2fp)/f;
n5ceil(num/dem);
n15n11;
if (rem(n,2)˜50)
n15n;
n5n21;
end
y5hamming(n1);
% LOW-PASS FILTER
b5fir1(n,wp,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,1);plot(o/pi,m);ylabel(‘Gain in dB --.’);
xlabel(‘(a) Normalised frequency --.’);
% HIGH-PASS FILTER
b5fir1(n,wp,’high’,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,2);plot(o/pi,m);ylabel(‘Gain in dB --.’);
xlabel(‘(b) Normalised frequency --.’);
% BAND PASS FILTER
wn5[wp ws];
b5fir1(n,wn,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,3);plot(o/pi,m);ylabel(‘Gain in dB --.’);
xlabel(‘(c) Normalised frequency --.’);
% BAND STOP FILTER
b5fir1(n,wn,’stop’,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,4);plot(o/pi,m);ylabel(‘Gain in dB --.’);
xlabel(‘(d) Normalised frequency --.’);
As an example,
enter the passband ripple
0.02
enter the stopband ripple
0.01
enter the passband freq
1200
enter the stopband freq
1700
enter the sampling freq
9000
The gain responses of low-pass, high-pass, bandpass and bandstop filters using
Hamming window are shown in Fig. 16.35.
874
Digital Signal Processing
20
20
0
0
Gain in dB
Gain in dB
− 20
− 40
− 60
−80
−40
−60
−80
−100
−120
−20
0
0.2
0.4
0.6
0.8
Normalised frequency
− 100
1
0
0.2
0.4
0.6
0.8
Normalised frequency
(a)
(b)
0
2
− 20
0
− 40
Gain in dB
Gain in dB
1
− 60
− 80
−5
− 10
−100
−120
0
0.2
0.4
0.6
0.8
Normalised frequency
1
− 15
0
0.2
0.4
0.6
0.8
Normalised frequency
(c)
(d)
Fig. 16.35 Filters using Hamming Window (a) Low-pass (b) High-pass
(c) Bandpass and (d) Bandstop
16.14.6 Hanning Window
Algorithm
1.
2.
3.
4.
5.
6.
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter
Find the window coefficients using Eq. 7.44
Draw the magnitude and phase responses.
% Program for the design of FIR Low pass, High pass, Band pass
and Band stop filters using Hanning window
clc;clear all;close all;
rp5input(‘enter the passband ripple’);
rs5input(‘enter the stopband ripple’);
fp5input(‘enter the passband freq’);
fs5input(‘enter the stopband freq’);
f5input(‘enter the sampling freq’);
1
MATLAB Programs
875
wp52*fp/f;ws52*fs/f;
num5220*log10(sqrt(rp*rs))213;
dem514.6*(fs2fp)/f;
n5ceil(num/dem);
n15n11;
if (rem(n,2)˜50)
n15n;
n5n21;
end
y5hamming(n1);
% LOW-PASS FILTER
b5fir1(n,wp,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,1);plot(o/pi,m);ylabel(‘Gain in dB --.’);
xlabel(‘(a) Normalised frequency --.’);
% HIGH-PASS FILTER
b5fir1(n,wp,’high’,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,2);plot(o/pi,m);ylabel(‘Gain in dB --.’);
xlabel(‘(b) Normalised frequency --.’);
% BAND PASS FILTER
wn5[wp ws];
b5fir1(n,wn,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,3);plot(o/pi,m);ylabel(‘Gain in dB --.’);
xlabel(‘(c) Normalised frequency --.’);
% BAND STOP FILTER
b5fir1(n,wn,’stop’,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,4);plot(o/pi,m);ylabel(‘Gain in dB --.’);
xlabel(‘(d) Normalised frequency --.’);
As an example,
enter the passband ripple
0.03
enter the stopband ripple
0.01
enter the passband freq
1400
enter the stopband freq
2000
enter the sampling freq
8000
The gain responses of low-pass, high-pass, bandpass and bandstop filters using
Hanning window are shown in Fig. 16.36.
876
Digital Signal Processing
20
20
0
0
Gain in dB
Gain in dB
− 20
− 40
− 60
− 80
− 40
− 60
− 80
− 100
− 120
0
− 20
0.2
0.4
0.6
0.8
Normalised frequency
−100
1
0
0.2
0.4
0.6
0.8
Normalised frequency
(b)
0
2
− 20
0
− 40
−2
Gain in dB
Gain in dB
(a)
− 60
− 80
−100
−120
0
−4
−6
−8
−10
0.2
0.4
0.6
0.8
Normalised frequency
1
−12
0
0.2
0.4
0.6
0.8
Normalised frequency
(c)
Fig. 16.36
16.14.7
(d)
Filters using Hanning Window (a) Low-pass (b) High-pass
(c) Bandpass and (d) Bandstop
Kaiser Window
Algorithm
1.
2.
3.
4.
5.
6.
1
Get the passband and stopband ripples
Get the passband and stopband edge frequencies
Get the sampling frequency
Calculate the order of the filter
Find the window coefficients using Eqs 7.46 and 7.47
Draw the magnitude and phase responses.
% Program for the design of FIR Low pass, High pass, Band pass
and Bandstop filters using Kaiser window
clc;clear all;close all;
rp5input(‘enter the passband ripple’);
rs5input(‘enter the stopband ripple’);
fp5input(‘enter the passband freq’);
fs5input(‘enter the stopband freq’);
f5input(‘enter the sampling freq’);
beta5input(‘enter the beta value’);
1
MATLAB Programs
877
wp52*fp/f;ws52*fs/f;
num5220*log10(sqrt(rp*rs))213;
dem514.6*(fs2fp)/f;
n5ceil(num/dem);
n15n11;
if (rem(n,2)˜50)
n15n;
n5n21;
end
y5kaiser(n1,beta);
% LOW-PASS FILTER
b5fir1(n,wp,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,1);plot(o/pi,m);ylabel(‘Gain in dB -->’);
xlabel(‘(a) Normalised frequency -->’);
% HIGH-PASS FILTER
b5fir1(n,wp,’high’,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,2);plot(o/pi,m);ylabel(‘Gain in dB -->’);
xlabel(‘(b) Normalised frequency -->’);
% BAND PASS FILTER
wn5[wp ws];
b5fir1(n,wn,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,3);plot(o/pi,m);ylabel(‘Gain in dB -->’);
xlabel(‘(c) Normalised frequency -->’);
% BAND STOP FILTER
b5fir1(n,wn,’stop’,y);
[h,o]5freqz(b,1,256);
m520*log10(abs(h));
subplot(2,2,4);plot(o/pi,m);ylabel(‘Gain in dB -->’);
xlabel(‘(d) Normalised frequency -->’);
As an example,
enter the passband ripple
0.02
enter the stopband ripple
0.01
enter the passband freq
1000
enter the stopband freq
1500
enter the sampling freq
10000
enter the beta value
5.8
The gain responses of low-pass, high-pass, bandpass and bandstop filters using
Kaiser window are shown in Fig. 16.37.
878
Digital Signal Processing
20
20
0
0
Gain in dB
Gain in dB
− 20
− 40
− 60
−80
−20
−40
−60
−100
−120
0
0.6
0.8
0.2
0.4
Normalised frequency
−80
0
1
(a)
0.6
0.8
0.2
0.4
Normalised frequency
1
(b)
0
5
0
− 40
Gain in dB
Gain in dB
− 20
− 60
− 80
−5
−10
−100
−120
0
0.6
0.8
0.2
0.4
Normalised frequency
1
(c)
−15
0
0.6
0.8
0.2
0.4
Normalised frequency
(d)
Fig. 16.37 Filters using Kaiser Window (a) Low-pass (b) High-pass
(c) Bandpass and (d) Bandstop
16.15
UPSAMPLING A SINUSOIDAL SIGNAL
% Program for upsampling a sinusoidal signal by factor L
N5input(‘Input length of the sinusoidal sequence5’);
L5input(‘Up Samping factor5’);
fi5input(‘Input signal frequency5’);
% Generate the sinusoidal sequence for the specified length N
n50:N21;
x5sin(2*pi*fi*n);
% Generate the upsampled signal
y5zeros (1,L*length(x));
y([1:L:length(y)])5x;
%Plot the input sequence
subplot (2,1,1);
stem (n,x);
title(‘Input Sequence’);
xlabel(‘Time n’);
ylabel(‘Amplitude’);
1
MATLAB Programs
879
%Plot the output sequence
subplot (2,1,2);
stem (n,y(1:length(x)));
title(‘[output sequence,upsampling factor5‘,num2str(L)]);
xlabel(‘Time n’);
ylabel(‘Amplitude’);
16.16
UPSAMPLING AN EXPONENTIAL
SEQUENCE
% Program for upsampling an exponential sequence by a factor M
n5input(‘enter length of input sequence …’);
l5input(‘enter up sampling factor …’);
% Generate the exponential sequence
m50:n21;
a5input(‘enter the value of a …’);
x5a.^m;
% Generate the upsampled signal
y5zeros(1,l*length(x));
y([1:l:length(y)])5x;
figure(1)
stem(m,x);
xlabel({‘Time n’;’(a)’});
ylabel(‘Amplitude’);
figure(2)
stem(m,y(1:length(x)));
xlabel({‘Time n’;’(b)’});
ylabel(‘Amplitude’);
As an example,
enter length of input sentence …
25
enter upsampling factor …
3
enter the value of a …
0.95
The input and output sequences of upsampling an exponential sequence an are shown
in Fig. 16.38.
Fig. 16.38 (Contd.)
880
Digital Signal Processing
Fig. 16.38 (a) Input Exponential Sequence
(b) Output Sequence Upsampled by a Factor of 3
16.17
DOWN SAMPLING A SINUSOIDAL
SEQUENCE
% Program for down sampling a sinusoidal sequence by a factor M
N5input(‘Input length of the sinusoidal signal5’);
M5input(‘Down samping factor5’);
fi5input(‘Input signal frequency5’);
%Generate the sinusoidal sequence
n50:N21;
m50:N*M21;
x5sin(2*pi*fi*m);
%Generate the down sampled signal
y5x([1:M:length(x)]);
%Plot the input sequence
subplot (2,1,1);
stem(n,x(1:N));
title(‘Input Sequence’);
xlabel(‘Time n’);
ylabel(‘Amplitude’);
%Plot the down sampled signal sequence
subplot(2,1,2);
stem(n,y);
title([‘Output sequence down sampling factor’,num2str(M)]);
xlabel(‘Time n’);
ylabel(‘Amplitude’);
16.18
DOWN SAMPLING AN EXPONENTIAL
SEQUENCE
% Program for downsampling an exponential sequence by a factor M
N5input(‘enter the length of the output sequence …’);
M5input(‘enter the down sampling factor …’);
MATLAB Programs
881
% Generate the exponential sequence
n50:N21;
m50:N*M21;
a5input(‘enter the value of a …’);
x5a.^m;
% Generate the downsampled signal
y5x([1:M:length(x)]);
figure(1)
stem(n,x(1:N));
xlabel({‘Time n’;’(a)’});
ylabel(‘Amplitude’);
figure(2)
stem(n,y);
xlabel({‘Time n’;’(b)’});
ylabel(‘Amplitude’);
As an example,
enter the length of the output sentence …
25
enter the downsampling factor …
3
enter the value of a …
0.95
The input and output sequences of downsampling an exponential sequence an are
shown in Fig. 16.39.
Fig. 16.39 (a) Input Exponential Sequence
(b) Output Sequence Downsampled by a Factor of 3
882
Digital Signal Processing
16.19
DECIMATOR
% Program for downsampling the sum of two sinusoids using
MATLAB’s inbuilt decimation function by a factor M
N5input(‘Length of the input signal5’);
M5input(‘Down samping factor5’);
f15input(‘Frequency of first sinusoid5’);
f25input(‘Frequency of second sinusoid5’);
n50:N21;
% Generate the input sequence
x52*sin(2*pi*f1*n)13*sin(2*pi*f2*n);
%Generate the decimated signal
% FIR low pass decimation is used
y5decimate(x,M,‘fir’);
%Plot the input sequence
subplot (2,1,1);
stem (n,x(1:N));
title(‘Input Sequence’);
xlabel(‘Time n’);
ylabel(‘Amplitude’);
%Plot the output sequence
subplot (2,1,2);
m50:N/M21;
stem (m,y(1:N/M));
title([‘Output sequence down sampling factor’,num2str(M)]);
xlabel(‘Time n’);
ylabel(‘Amplitude’);
16.20
DECIMATOR AND INTERPOLATOR
% Program for downsampling and upsampling the sum of two
sinusoids using MATLAB’s inbuilt decimation and interpolation
function by a factor of 20.
%Generate the input sequence for Fs5200Hz, f1550Hz and
f25100 Hz
t50:1/200:10;
y53.*cos(2*pi*50.*t/200)11.*cos(2*pi*100.*t/200);
figure(1)
stem(y);
xlabel({‘Times in Seconds’;’(a)});
ylabel(‘Amplitude’);
MATLAB Programs
%Generate the decimated and interpolated signals
figure(2)
stem(decimate(y,20));
xlabel({‘Times in Seconds’;’(b)});
ylabel(‘Amplitude’);
figure(3)
stem(interp(decimate(y,20),2));
xlabel({‘Times in Seconds’;’(c)});
ylabel(‘Amplitude’);
Amplitude
5
0
−5
0
500
1000
1500
Time in Seconds
(a)
2000
2500
Amplitude
5
0
−5
0
20
40
60
Time in Seconds
(b)
80
100
120
Amplitude
5
0
−5
0
50
100
150
Time in Seconds
(c)
200
250
Fig. 16.40 (a) Input Sequence, (b) Decimated Sequence and
(c) Interpolated sequence
16.21
ESTIMATION OF POWER SPECTRAL
DENSITY (PSD)
% Program for estimating PSD of two sinusoids plus noise
%
%
%
%
Algorithm;
1:Get the frequencies of the two sinusoidal waves
2:Get the sampling frequency
3:Get the length of the sequence to be considered
883
884
Digital Signal Processing
% 4:Get the two FFT lengths for comparing the corresponding power spectral densities
clc; close all; clear all;
f15input(‘Enter the frequency of first sinusoid’);
f25input(‘Enter the frequency of second sinusoid’);
fs5input(‘Enter the sampling frequency’);
N5input(“Enter the length of the input sequence’);
N15input(“Enter the input FFT length 1’);
N25input(“Enter the input FFT length 2’);
%Generation of input sequence
t50:1/fs:1;
x52*sin(2*pi*f1*1)13*sin(2*pi*f2*t)2randn(size(t));
%Generation of psd for two different FFT lengths
Pxx15abs(fft(x,N1)).^2/(N11);
Pxx25abs(fft(x,N2)).^2/(N11);
%Plot the psd;
subplot(2,1,1);
plot ((0:(N121))/N1*fs,10*log10(Pxx1));
xlabel(‘Frequency in Hz’);
ylabel(‘Power spectrum in dB’);
title(‘[PSD with FFT length,num2str(N1)]’);
subplot (2,1,2);
plot ((0:(N221))/N2*fs,10*log10(Pxx2));
xlabel(‘Frequency in Hz’);
ylabel(‘Power spectrum in dB’);
title(‘[PSD with FFT length,num2str(N2)]’);
16.22
PSD ESTIMATOR
% Program for estimating PSD of a two sinusoids plus noise using
%(i)non-overlapping sections
%(ii)overlapping sections and averaging the periodograms
clc; close all; clear all;
f15input(‘Enter the frequency of first sinusoid’);
f25input(‘Enter the frequency of second sinusoid’);
fs5input(‘Enter the sampling frequency’);
N5input(“Enter the length of the input sequence’);
N15input(“Enter the input FFT length 1’);
N25input(“Enter the input FFT length 2’);
%Generation of input sequence
t50:1/fs:1;
x52*sin(2*pi*f1*1)13*sin(2*pi*f2*t)2randn(size(t));
MATLAB Programs
885
%Generation of psd for two different FFT lengths
Pxx15(abs(fft(x(1:256))).^21abs(fft(x(257:512))).^21
abs(fft(x(513:768))).^2/(256*3); %using nonoverlapping
sections
Pxx25(abs(fft(x(1:256))).^21abs(fft(x(129:384))).^21ab
s(fft(x(257:512))).^21abs(fft(x(385:640))).^21abs(fft(
x(513:768))).^21abs(fft(x(641:896))).^2/(256*6); %using
overlapping sections
% Plot the psd;
subplot (2,1,1);
plot ((0:255)/256*fs,10*log10(Pxx1));
xlabel(‘Frequency in Hz’);
ylabel(‘Power spectrum in dB’);
title(‘[PSD with FFT length,num2str(N1)]’);
subplot (2,1,2);
plot ((0:255)/256*fs,10*log10(Pxx2));
xlabel(‘Frequency in Hz’);
ylabel(‘Power spectrum in dB’);
title(‘[PSD with FFT length,num2str(N2)]’);
16.23
PERIODOGRAM ESTIMATION
% Periodogram estimate cold be done by applying a nonrectangular data windows to the sections prior to computing the periodogram
% This program estimates PSD for the input signal of two
sinusoids plus noise using Hanning window
f15input(‘Enter the frequency of first sinusoid’);
f25input(‘Enter the frequency of second sinusoid’);
fs5input(‘Enter the sampling frequency’);
t50:1/fs:1;
w5hanning(256);
x52*sin(2*pi*f1*t)13*sin(2*pi*f2*t)2randn(size(t));
Pxx5(abs(fft(w.*x(1:256))).^21abs(fft(w.*x(129:384))).^
21abs(fft(w.*x(257:512))).^21abs(fft(w.*x(385:640))).^2
1abs(fft(w.*x(513:768))).^21abs(fft(w.*x(641:896))).^2/
(norm(w)^2*6);
Plot((0:255)/256*fs,10*log10(Pxx));
16.24
WELCH PSD ESTIMATOR
% Program for estimating the PSD of sum of two sinusoids plus
noise using Welch method
n50.01:0.001:.1;
x5sin(.25*pi*n)13*sin(.45*pi*n)1rand(size(n));
pwelch(x)
Digital Signal Processing
Power Spectrum Density (dB/rad/sample)
886
Welch PSD Estimate
5
0
−5
−10
−15
−20
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalised Frequency (x pi rad/sample)
1
Fig. 16.41 Welch PSD Estimate
xlabel(‘Normalised Frequency (x pi rad/sample)’);
ylabel(‘Power Spectrum Density (dB/rad/sample)’)
16.25
WELCH PSD ESTIMATOR USING WINDOWS
% Program for estimating the PSD of sum of two sinusoids using
Welch method with an overlap of 50 percent and with Hanning,
Hamming, Bartlett, Blackman and rectangular windows.
fs51000;
t50:1/fs:3;
x5sin(2*pi*200*t)1sin(2*pi*400*t);
figure(1)
subplot(211)
pwelch(x,[],[],[],fs);
title(‘Overlay plot of 50 Welch estimates’)
subplot(212)
pwelch(x,hanning(512),0,512,fs)
title(‘N5512 Overlap550% Hanning’)
figure(2)
subplot(211)
pwelch(x,[],[],[],fs);
title(‘Overlay plot of 50 Welch estimates’)
subplot(212)
pwelch(x,hamming(512),0,512,fs)
title(‘N5512 Overlap550% Hamming’)
figure(3)
subplot(211)
pwelch(x,[],[],[],fs);
title(‘Overlay plot of 50 Welch estimates’)
subplot(212)
pwelch(x,bartlett(512),0,512,fs)
title(‘N5512 Overlap550% Bartlett’)
figure(4)
subplot(211)
pwelch(x,[],[],[],fs);
MATLAB Programs
Power Spectral Density (dB/Hz)
Power Spectral Density (dB/Hz)
title(‘Overlay plot of 50 Welch estimates’)
subplot(212)
pwelch(x,blackman(512),0,512,fs)
title(‘N5512 Overlap550% Blackman’)
figure(5)
subplot(211)
pwelch(x,[],[],[],fs);
title(‘Overlay plot of 50 Welch estimates’)
subplot(212)
pwelch(x,boxcar(512),0,512,fs)
title(‘N5512 Overlap550% Rectangular’)
Overlay plot of 50 Welch estimates
0
−20
−40
−60
−80
0
50
100
150
0
50
100
150
0
200
250
300
350
Frequency (Hz)
N=512 Overlap = 50% Hanning
400
450
500
400
450
500
−50
−100
−150
200
250
300
Frequency (Hz)
350
Power Spectral Density (dB/Hz)
Power Spectral Density (dB/Hz)
Fig. 16.42 (a) Welch Estimate with N5512, 50% Overlap Hanning
Overlay plot of 50 Welch estimates
0
−20
−40
−60
−80
0
50
100
150
0
50
100
150
0
200
250
300
350
Frequency (Hz)
N=512 Overlap = 50% Hamming
400
450
500
400
450
500
−20
−40
−60
−80
200
250
300
Frequency (Hz)
350
Fig. 16.42 (b) Welch Estimate with N5512, 50% Overlap Hamming
887
Power Spectral Density (dB/Hz)
Power Spectral Density (dB/Hz)
Digital Signal Processing
Overlay plot of 50 Welch estimates
0
−20
−40
−60
−80
0
50
100
150
200
250
300
350
Frequency (Hz)
N=512 Overlap = 50% Bartlett
0
50
100
150
0
400
450
500
400
450
500
−20
−40
−60
−80
200
250
300
Frequency (Hz)
350
Power Spectral Density (dB/Hz)
Fig. 16.42 (c) Welch Estimate with N5512, 50% Overlap Bartlett
Power Spectral Density (dB/Hz)
888
Overlay plot of 50 Welch estimates
0
−20
−40
−60
−80
0
50
100
150
50
100
150
0
200
250
300
350
Frequency (Hz)
N=512 Overlap = 50% Blackman
400
450
500
400
450
500
−50
−100
−150
−200
0
200
250
300
Frequency (Hz)
350
Fig. 16.42 (d) Welch Estimate with N5512, 50% Overlap Blackman
Power Spectral Density (dB/Hz)
Power Spectral Density (dB/Hz)
MATLAB Programs
889
Overlay plot of 50 Welch estimates
0
−20
−40
−60
−80
0
50
100
150
200
250
300
Frequency (Hz)
350
400
450
500
400
450
500
N = 512 Overlap = 50% Rectangular
0
−10
−20
−30
−40
−50
−60
0
50
100
150
250
300
200
Frequency (Hz)
350
Fig. 16.42 (e) Welch Estimate with N5512, 50% Overlap Rectangular
16.26
WELCH PSD ESTIMATOR USING WINDOWS
% Program for estimating the PSD of sum of two sinusoids plus
noise using Welch method with an overlap of 50 percent and with
Hanning, Hamming, Bartlett, Blackman and rectangular windows
fs51000;
t50:1/fs:3;
x52*sin(2*pi*200*t)15*sin(2*pi*400*t);
y5x1randn(size(t));
figure(1)
subplot(211);
pwelch(y,[],[],[],fs);
title(‘Overlay plot of 50 Welch estimates’);
subplot(212);
pwelch(y,hanning(512),0,512,fs);
title(‘N5512 Overlap550% Hanning’);
figure(2)
subplot(211);
pwelch(y,[],[],[],fs);
title(‘Overlay plot of 50 Welch estimates’);
subplot(212);
pwelch(y,hamming(512),0,512,fs);
title(‘N5512 Overlap550% Hamming’);
890
Digital Signal Processing
figure(3)
subplot(211);
pwelch(y,[],[],[],fs);
title(‘Overlay plot of 50 Welch estimates’);
subplot(212);
pwelch(y,bartlett(512),0,512,fs);
title(‘N5512 Overlap550% Bartlett’);
figure(4)
subplot(211);
pwelch(y,[],[],[],fs);
title(‘Overlay plot of 50 Welch estimates’);
subplot(212);
pwelch(y,blackman(512),0,512,fs);
title(‘N5512 Overlap550% Blackman’);
figure(5)
subplot(211);
pwelch(y,[],[],[],fs);
title(‘Overlay plot of 50 Welch estimates’);
subplot(212);
pwelch(y,boxcar(512),0,512,fs);
title(‘N5512 Overlap550% Rectangular’);
Power Spectral Density (dB/Hz)
Overlay plot of 50 Welch estimates
10
0
−10
−20
−30
Power Spectral Density (dB/Hz)
−40
0
50
100
150
250
300
200
Frequency (Hz)
350
400
450
500
400
450
500
N=512 Overlap = 50% Hanning
10
0
−10
−20
−30
−40
0
50
100
150
250
300
200
Frequency (Hz)
350
Fig. 16.43 (a) Welch Estimate with N5512, 50% Overlap Hanning
Power Spectral Density (dB/Hz)
Power Spectral Density (dB/Hz)
MATLAB Programs
Overlay plot of 50 Welch estimates
10
0
−10
−20
−30
−40
0
50
100
150
250
300
200
Frequency (Hz)
350
400
450
500
400
450
500
N=512 Overlap = 50% Hanning
10
0
−10
−20
−30
−40
0
50
100
150
250
300
200
Frequency (Hz)
350
Fig. 16.43 (b) Welch Estimate with N5512, 50% Overlap Hamming
Power Spectral Density (dB/Hz)
Overlay plot of 50 Welch estimates
10
0
−10
−20
−30
Power Spectral Density (dB/Hz)
−40
0
50
100
150
250
300
200
Frequency (Hz)
350
400
450
500
400
450
500
N=512 Overlap = 50% Bartlett
10
0
−10
−20
−30
−40
0
50
100
150
250
300
200
Frequency (Hz)
350
Fig. 16.43 (c) Welch Estimate with N5512, 50% Overlap Bartlett
891
892
Power Spectral Density (dB/Hz) Power Spectral Density (dB/Hz)
Digital Signal Processing
Overlay plot of 50 Welch estimates
10
0
−10
−20
−30
−40
0
50
100
150
200
250
300
350
Frequency (Hz)
N=512 Overlap = 50% Blackman
400
450
500
0
50
100
150
400
450
500
10
0
−10
−20
−30
−40
200
250
300
Frequency (Hz)
350
Power Spectral Density (dB/Hz)
Power Spectral Density (dB/Hz)
Fig. 16.43 (d) Welch Estimate with N5512, 50% Overlap Blackman
Overlay plot of 50 Welch estimates
10
0
−10
−20
−30
−40
0
50
100
150
250
300
200
Frequency (Hz)
350
400
450
500
400
450
500
N=512 Overlap = 50% Hanning
10
0
−10
−20
−30
−40
0
50
100
150
250
300
200
Frequency (Hz)
350
Fig. 16.43 (e) Welch Estimate with N5512, 50% Overlap Rectangular
MATLAB Programs
16.27
893
STATE-SPACE REPRESENTATION
% Program for computing the state-space matrices from the given
transfer function
function [A,B,C,D]5tf2ss(b,a);
a5input (‘enter the denominator polynomials5’);
b5input (‘enter the numerator polynomials5’);
p5length(a)21;q5length(b)21;N5max(p,q);
if(Np),a5[a,zeros(1,N2p)];end
if(Nq),b5[b,zeros(1,N2q)];end
A5[2a(2:N11);[eye(N21),zeros(N21,1)]];
B5[1;zeros(N21,1)];
C5b(2:N11)2b(1)*(2:N11);
D5b(1);
16.28
PARTIAL FRACTION DECOMPOSITION
% Program for partial fraction decomposition of a rational transfer
function
function[c,A,alpha]5tf2pf(b,a);
a5input (‘enter the denominator polynomials5’);
b5input (‘enter the numerator polynomials5’);
p5length(a)21;
q5length(b)21;
a5(1/a(1))*reshape(a,1,p11);
b5(1/a(1))*reshape(b,1,q11);
if(q5p),%case of nonempty c(z)
temp5toeplitz([a,zeros(1,q2p)]’,[a(1),zeros(1,q2p)]);
temp5[temp,[eye(p);zeros(q2p11,p)]);
temp5temp/b’;
c5temp(1:;q2p11);
d5temp(q2p12:q11)’;
else
c5[];
d5[b,zeros(1,p2q21)];
end
alpha5cplxpair (roots(a));’;
A5zeros(1,p);
for k51 :p
temp5prod(alpha(k)2alpha(find(1:p5k)));
if(temp550),error(‘repeated roots in TF2PF’);
else,A(k)5polyval(d,alpha(k))/temp;
end
end
894
Digital Signal Processing
16.29
INVERSE z-TRANSFORM
% Program for computing inverse z-transform of a rational transfer
function
function x5invz(b,a,N);
b5input (‘enter the numerator polynomials5’);
a5input (‘enter the denominator polynomials5’);
N5input (‘enter the number of points to be computed5’);
[c,A,alpha]5tf2pf(b,a);
x5zeros (1,N);
x(1:length(c))5c;
for k51:length(A),
x5x1A(k)*(alpha(k)).^(0:N21);
end
x5real(x);
16.30
GROUP DELAY
% Program for computing group delay of a rational transfer
function on a given frequency interval
function D5grpdly(b,a,K,theta);
b5input (‘enter the numerator polynomials5’);
a5input (‘enter the denominator polynomials5’);
K5input (‘enter the number of frequency response
points5’);
theta5input (‘enter the theta value5’);
a5reshape(a,1,length(a));
b5reshape(b,1,length(b));
if (length(a)551)%case of FIR
bd52j*(0:length(b)21).*b;
if(nargin553),
B5frqresp(b,1,K);
Bd5frqresp(bd,1,K);
else,
B5frqresp(b,1,K,theta);
Bd5frqresp(bd,1,K,theta);
end
D5(real(Bd).*imag(B)2real(B).*imag(Bd))./abs(B).^2;
else %case of IIR
if(nargin553),
D5grpdly (b,1,K)2grpdly(a,1,K);
else,
D5grpdly(b,1,K,theta)2grpdly(a,1,K,theta);
end
end
MATLAB Programs
16.31
895
IIR FILTER DESIGN-IMPULSE INVARIANT
METHOD
% Program for transforming an analog filter into a digital filter using
impulse invariant technique
function [bout,aout]5impinv(bin,ain,T);
bin5input(‘enter the numerator polynomials5’);
ain5input(‘enter the denominator polynomials5’);
T5input(‘enter the sampling interval5’);
if(length(bin)5length(ain)),
error(‘Anlog filter in IMPINV is not strictly proper’);
end
[r,p,k]5residue(bin,ain);
[bout,aout]5pf2tf([],T*r,exp(T*p));
16.32
IIR FILTER DESIGN-BILINEAR
TRANSFORMATION
% Program for transforming an analog filter into a digial filter using
bilinear transformation
function [b,a,vout,uout,Cout]5bilin(vin,uin,Cin,T);
pin5input(‘enter the poles5’);
zin5input(‘enter the zero5’);
T5input(‘enter the sampling interval5’);
Cin5input(‘enter the gain of the analog filter5’);
p5length(pin);
q5length(zin);
Cout5Cin*(0.5*T)^(p2q)*prod(120.5*T*zin)/
prod(120.5*T*pin);
zout5[(110.5*T*zin)./(120.5*T*pin),2ones(1,p2q)];
pout5(110.5*T*pin)./(120.5*T*pin);
a51;
b51;
for k51 :length(pout),a5conv(a,[1,2pout(k)]); end
for k51 :length(zout),b5conv(b,[1,2zout(k)]); end
a5real(a);
b5real(Cout*b);
Cout5real(Cout);
16.33
DIRECT REALISATION OF IIR DIGITAL
FILTERS
% Program for computing direct realisation values of IIR digital filter
function y5direct(typ,b,a,x);
x5input(‘enter the input sequence5’);
896
Digital Signal Processing
b5input(‘enter the numerator polynomials5’);
a5input(‘enter the denominator polynomials5’);
typ5input(‘type of realisation5’);
p5length(a)21;
q5length(b)21;
pq5max(p,q);
a5a(2:p11);u5zeros(1,pq);%u is the internal state;
if(typ551)
for i51:length(x),
unew5x(i)2sum(u(1:p).*a);
u5[unew,u];
y(i)5sum(u(1:q11).*b);
u5u(1:pq);
end
elseif(typ552)
for i51:length(x)
y(i)5b(1)*x(i)1u(1);
u5u[(2:pq),0];
u(1:q)5u(1:q)1b(2:q11)*x(i);
u(1:p)5u(1:p)2a*y(i);
end
end
16.34
PARALLEL REALISATION OF IIR DIGITAL
FILTERS
% Program for computing parallel realisation values of IIR digital
filter
function y5parallel(c,nsec,dsec,x);
x5input(‘enter the input sequence5’);
b5input(‘enter the numerator polynomials5’);
a5input(‘enter the denominator polynomials5’);
c5input(‘enter the gain of the filter5’);
[n,m]5size(a);a5a(:,2:3);
u5zeros(n,2);
for i51:length(x),
y(i)5c*x(i);
for k51:n,
unew5x(i)2sum(u(k,:).*a(k,:));u(k,:)5[unew,u(k,1)];
y(i)5y(i)1sum(u(k,:).*b(k,:));
end
end
MATLAB Programs
16.35
897
CASCADE REALISATION OF IIR DIGITAL
FILTERS
% Program for computing cascade realisation values of digital IIR filter
function y5cascade(c,nsec,dsec,x);
x5input(‘enter the input sequence5’);
b5input(‘enter the numerator polynomials5’);
a5input(‘enter the denomiator polynomials5’);
c5input(‘enter the gain of the filter5’);
[n,m]5size(b);
a5a(:,2:3);b5b(:,2,:3);
u5zeros(n,2);
for i51 :length(x),
for k51 :n,
unew5x(i)2sum(u(k,:).*a(k,:));
x(i)52unew1sum(u(k,:).*b(k,:))
u(k,:)5[unew,u(k,1)];
end
y(i)5c*x(i);
end
16.36
DECIMATION BY POLYPHASE
DECOMPOSITION
% Program for computing convolution and m-fold decimation by
polyphase decomposition
function y5ppdec(x,h,M);
x5input(‘enter the input sequence5’);
h5input(‘enter the FIR filter coefficients5’);
M5input(‘enter the decimation factor5’);
1h5length(h); 1p5floor((1h21)/M)11;
p5reshape([reshape(h,1,1h),zeros(1,1p*M21h)],M,1p);
lx5length(x); ly5floor ((1x11h22)/M)11;
1u5foor((1x1M22)/M)11; %length of decimated sequences
u5[zeros(1,M21),reshape(x,1,1x),zeros(1,M*lu2lx2M11)];
y5zeros(1,1u11p21);
for m51:M,y5y1conv(u(m,: ),p(m,: )); end
y5y(1:1y);
16.37
MULTIBAND FIR FILTER DESIGN
% Program for the design of multiband FIR filters
function h5firdes(N,spec,win);
N5input(‘enter the length of the filter5’);
898
Digital Signal Processing
spec5input(‘enter the low,high cutoff frequencies and
gain5’);
win5input(‘enter the window length5’);
flag5rem(N,2);
[K,m]5size(spec);
n5(0:N)2N/2;
if (˜flag),n(N/211)51;
end,h5zeros(1,N11);
for k51:K
temp5(spec (k,3)/pi)*(sin(spec(k,2)*n)2sin(spec(k,1)
*n))./n;
if (˜flag);temp(N/211)5spec(k,3)*(spec(k,2)2
spec(k,1))/pi;
end
h5h1temp;
end
if (nargin553),
h5h.*reshape(win,1,N11);
end
16.38
ANALYSIS FILTER BANK
% Program for maximally decimated uniform DFT analysis filter
bank
function u5dftanal(x,g,M);
g5input(‘enter the filter coefficient5’);
x5input(‘enter the input sequence5’);
M5input(‘enter the decimation factor5’);
1g5length(g); 1p5floor((1g21)/M)11;
p5reshape([reshape(g,1,1g),zeros(1,1p*M21g)],M,1p);
lx5length(x); lu5floor ((1x1M22)/M)11;
x5[zeros(1,M21),reshape(x,1,1x),zeros(1,M*lu2lx2M11)];
x5flipud(reshape(x,M,1u)); %the decimated sequences
u5[];
for m51:M,u5[u; cov(x(m,:),p(m,:))]; end
u5ifft(u);
16.39
SYNTHESIS FILTER BANK
% Program for maximally decimated uniform DFT synthesis filter
bank
function y5udftsynth(v,h,M);
1h5length(h); ‘1q5floor((1h21)/M)11;
q5flipud(reshape([reshape(h,1,1h),zeros(1,1q*M21h)],M,1q));
MATLAB Programs
899
v5fft(v);
y5[ ];
for m51:M,y5[conv(v(m,:),q(m,:));y]; end
y5y(:).’;
16.40
LEVINSON-DURBIN ALGORITHM
% Program for the solution of normal equations using LevinsonDurbin algorithm
function [a,rho,s]5levdur(kappa);
% Input;
% kappa: covariance sequence values from 0 to p
% Output parameters:
% a: AR polynomial,with leading entry 1
% rho set of p reflection coefficients
% s: innovation variance
kappa5input(‘enter the covariance sequence5’);
p5length(kappa)21;
kappa5reshape(kappa,p11,1);
a51; s5kappa(1); rho5[];
for i51:p,
rhoi5(a*kappa(i11:21:2))/s; rho5[rho,rhoi];
s5s*(12rhoi^2);
a5[a,0]; a5a2rhoi*fliplr(a);
end
16.41
WIENER EQUATION’S SOLUTION
% Program
function b5wiener(kappax,kappayx);
kappax5input(‘enter the covariance sequence5’);
kappyx5input(‘enter the joint covariance sequence5’);
q5length(kappax)21;
kappax5reshape(kappax,q11,1);
kappayx5reshape(kappayx,q11,1);
b5(toeplitz(kappax)/(kappayx)’;
16.42
SHORT-TIME SPECTRAL ANALYSIS
% Program
function X5stsa(x,N,K,L,w,opt,M,theta0,dtheta);
x5input(‘enter the input signal5’); L5input(‘enter the
number consecutive DFTs to average5’);
N5input(‘enter the segment length5’); K5input(‘enter
the number of overlapping points5’); w5input(‘enter
900
Digital Signal Processing
the window coefficients5’); opt5input(‘opt5’);
M5input(‘enter the length of DFT5’);
theta05input(‘theta05’); dtheta5input(‘dtheta5’);
1x5length(x); nsec5ceil((1x2N)/(N2K)11;
x5[reshape(x,1,1x),zeros(1,N1(nsec21)*(N2K))2lx)];
nout5N; if (nargin 5),nout5M; else,opt5‘n’; end
X5zeros(nsec,nout);
for n51: nsec,
temp5w.*x((n21)*(N2K)11:(n21)*(N2K)1N);
if (opt(1) 55 ‘z’),temp5[temp,zeros(1,M2N)]; end
if (opt(1)55‘c’),temp5chirpf (temp,theta0,dtheta,M);
else,temp5fftshift(fft(temp)); end
X(n,: )5abs(temp).^2;
end
if(L1);
nsecL5floor(nsec/L);
for n51:nsecL,X(n,:)5mean (X((n21)*L11:n*L,:)); end
if (nsec55nsecL*L11),
X(nsecL11,:)5X(nsecL*L11,:); X5X(1:nsecL11),: );
elseif(nsec nsecL*L),
X(nsecL11,:)5mean(x(nsecL*L11:nsec,:));
X5X(1:nsecL11,:);
else,X5X(1:nsecL,:); end
end
LKh
16.43
CANCELLATION OF ECHO PRODUCED ON
THE TELEPHONE-BASE BAND CHANNEL
Base band
transmit
filter
Desired
sequence
Echo
Canceler
Echo
path
Estimated
sequence
Fig. 16.44 Baseband Channel Echo Canceler
% Simulation program for baseband echo cancellation
shown in Fig. 16.44 using LMS algorithm
clc; close all; clear all;
format short
T5input(‘Enter the symbol interval’);
br5input(‘Enter the bit rate value’);
rf5input(‘Enter the roll off factor’);
n5[210 10];
y55000*rcosfir(rf,n,br,T); %Transmit filter pulse shape
is assumed as raised cosine
MATLAB Programs
901
ds5[5 2 5 2 5 2 5 2 5 5 5 5 2 2 2 5 5 5 5]; % data sequence
m5length(ds);
nl5length(y);
i51;
z5conv(ds(i),y);
while(i)
z15[z, zeros(1,1.75*br)];
z5conv(ds(i11),y);
z25[zeros(1,i*1.75*br),z];
z5z11z2;
i5i11;
end
%plot(z); %near end signal
h5randn(1,length(ds)); %echo path impulse response
rs15filter(h,1,z);
for i51; length(ds);
rs(i)5rs 1(i)/15;
end
for i51: round(x3/3),
rs(i)5randn(1); % rs2echo produced in the hybrid
end
fs5[5 5 2 2 2 2 2 5 2 2 2 5 5 5 2 5 2 5 2]; % Desired data signal
m5length(ds);
nl5length(y);
i51;
z5conv(fs(i),y);
while(i)
z15[z,zeros(1,1.75*br)];
z5conv(fs(i11),y);
z25[zeros(1,i*1.75*br),z];
z5z11z2;
i5i11;
end
fs15rs1fs; % echo added with desired signal
ar5xcorr(ds,ds);
crd5xcorr(rs,ds);
ll5length(ar); j51;
for i5round(11/2): 11,
ar1(j)5ar(i);
j5j11;
end
r5toeplitz(ar1);
l25length(crd); j51;
for i5round(l2/2):12,
crdl(j)5crd(i);
j5j11;
end
p5crd1’;
902
Digital Signal Processing
lam5max(eig(r)); la5min(eig(r)); l5lam/la;
w5inv(r)*p; % Initial value of filter coefficients
e5rs2filter(w,l,ds);
s51; mu51.5/lam;
ni51;
while (s 1 e210)
w15w22*mu*(e.*ds)’ ; % LMS algorithm adaptation
rs
y45filter(w1,1,ds); % Estimated echo signal using
LMS algorithm
e5y42rs; s50; e15xcorr(e);
for i51:length(e1),
s5s1e1(i);
end
s5s/length(e1);
if (y455rs)
break
end
ni5ni11;
w5w1;
end
figure(1); subplot(2,2,1); plot(z); title(‘near end
signal’);
subplot(2,2,2); plot(rs); title(‘echo produced in the
hybrid’);
subplot(2,2,3); plot(fs); title(‘desired signal’);
subplot(2,2,4); plot(fs1); title(‘echo added with
desired signal’);
figure(2); subplot(2,1,1); plot(y4); title(‘estimated
echo signal using LMS algorithm’);
subplot(2,1,2); plot(fs12y4); title(‘echo cancelled
signal’);
16.44
CANCELLATION OF ECHO PRODUCED ON
THE TELEPHONE—PASS BAND CHANNEL
Pass band
transmit
filter
Desired
sequence
Echo
Canceler
Estimated
sequence
Echo
path
Passband
receive
filter
Fig. 16.45 Pass Band Channel Echo Canceler
MATLAB Programs
903
% Simulation program for passband echo cancellation
shown in Fig. 16.45 using LMS algorithm
clc; close all; clear all;
format long
fd58000; fs516000; fc58000;
f54000; t50:.01:1; %d5sin(2*pi*f*t/fd);
% Near end signal
ns5[5 2 5 2 5 5 2 2 2 5 5 2 2 2 2 2 2 5 5 2 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5];
% Near end input signal is digitally modulated and
plotted
y5dmod(ns,fc,fd,fs,‘psk’);
subplot(2,2,1); plot(y); title(‘input signal’);
xlabel(‘Time ———’); ylabel(‘Amplitude ———’);
% Echo is generated due to mismatch of hybrid impedances
h55*randn(1,length(ns));———
rsl5filter(h,1,y);
% for i51; length(ns);
% rsl(i)5rs6(i);
% end
for i51; length(ns);
rs(i)5rs1(i);
end
subplot(2,2,2); plot(rs); title(‘noise signal’);
xlabel(‘Time ———’); ylabel(‘Amplitude ———’);
% Far end signal
fs15[5 5 2 5 2 5 2 5 2 5 2 5 2 5 5 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 5];
% rs5sign(rs2);
% Far end signal is digitally modulated and plotted
z15dmod(fs1,fc,fd,fs,‘psk’);
for i51:length(ns),
z(i)5z1(i);
end
subplot(2,2,3); plot(z); title(‘far-end signal’);
xlabel(‘Time ———’); ylabel(‘Amplitude ———’);
% Echo and the far end modulated signal is added in the
hybrid
q15z11rs1;
for i51; length(ns);
q(i)5q1(i);;
end
subplot(2,2,4); plot(q); title(‘received signal’);
xlabel(‘Time ———’); ylabel(‘Amplitude ———’);
q25xcorr(q);
% Auto correlation is taken for the near end signal
ar5xcorr(ns);
% cross correction is taken for the near end and far end
signal
crd5xcorr(rs,ns);
904
Digital Signal Processing
l15length(ar); j51;
for i5round(ll/2): l1,
ar1(j)5ar(i)
j5j11;
end
% Toeplitz matrix is taken for the auto correlated
signal
r5toeplitz(ar1);
l25length(crd); j51;
for i5round(l2/2):l2,
crd1(j)5crd(i);
j5j11;
end
p5crd1’;
% Maximum and minimum eigen values are calculated from
the toeplitz matrix
lam5max(eig(r)); la5min(eig(r)); l5lam/la;
% initial filter taps are found using the below relation
w5inv(r)*p;
% The step size factor is calculated
m5length(ns)22.5;
a5(m2.95367)/.274274;
mu5a/lam;
% The initial error is calculated
s51;
e5rs2filter(w,1,ns); ni51; figure(2); subplot(2,2,1);
% Filter taps are iterated until the mean squared error
becomes E225
while (‘s25’ ! s0’)
w15w22*mu*(e.*ns)’;
if (ni5100)
break;
end
rs
y45filter(w1,1,ns)
e5y42rs; s50; el5e.*e;
for i51: length(e1),
s5s1e1(i);
end
s5s/length(e1);
ni5ni11;
w5w1; plot (ni,e); hold on; title(‘ MSE vs no. of
iterations’);
end
end
subplot(2,2,2); plot(y4); title(‘estimated noise signal’);
xlabel(‘Time ———’); ylabel(‘Amplitude ———’);
subplot(2,2,3); plot(q-y4); title(‘noise cancelled signal’);
xlabel(‘Time ———’); ylabel(‘Amplitude ———’);
MATLAB Programs
905
Review Questions
16.1
(a) Generate unit impulse function
(b) Generate signal x(n)5u(n) 2 u(n 2 N)
(c) Plot the sequence, x(n)5A cos ((2p f n)/fs ), where n50 to 100
fs5100 Hz, f51 Hz, A50.5
(d) Generate x (n)5exp (25n), where n50 to 10.
16.2 Consider a system with impulse response
(1 / 2) n , n = 0 to 4
h( n) =
elsewhere.
0,
16.3
Consider the figure.
( )
y (n)
h 1 (n)
h 2 (n)
(−)
h 3 (n)
h 4 (n)
Fig. Q16.3
(a) Express the overall impulse response in terms of h1(n), h2(n), h3(n), h4(n)
(b) Determine h(n) when h1(n)5{1/2, 1/4, 1/2}
h2(n)5h3(n)5(n 1 1) u(n)
h4(n)5d(n 2 2)
(c) Determine the response of the system in part (b) if x(n)5 d(n 1 2)
1 3d(n 2 1) 2 4d(n 2 3).
16.4
Compute the overall impulse response of the system
( )
H1
3 (n)
H2
H3
H4
y (n)
y 3(n)
Fig. Q16.4
for 0 # n # 99. The system H1, H2, H3, H4, are specified by
H1 : h1[n]5{1, 1/2, 1/4, 1/8, 1/16, 1/32}
H2 : h2[n]5{1, 1, 1, 1, 1}
H3 : y3[n]5(1/4) x(n) 1 (1/2) x(n 2 1) 1 (1/4) x(n 2 2)
H4 : y[n]50.9 y(n 2 1) 2 0.81 y(n 2 2) 1 V(n) 1 V(n 2 1)
Plot h(V) for 0 # n # 99.
16.5
Consider the system with h(n)5an u(n), 21 , a , 1. Determine the response.
x(n)5u(n 1 5) 2 u(n 2 10)
906
Digital Signal Processing
y (n)
h (n)
(−)
z −2
h(n)
Fig. Q16.5
16.6
(i) Determine the range of values of the parameter ‘a’ for which the linear
time invariant system with impulse response
a n , n ≥ 0, n even
h( n) =
0, otherwise
is stable.
(ii) Determine the response of the system with impulse response
h(n)5an u(n) to the input signal x(n)5u(n) 2 u(n 2 10)
16.7 Consider the system described by the difference equation y(n)5a (y 1 1) 1
bx (n). Determine ‘b’ in terms of a so that S h(n)51.
16.8
16.9
(a) Compute the zero-state step response s(n) of the system and choose ‘b’
so that s(`)51.
(b) Compare the values of ‘b’ obtained in parts (a) and (b). What did you
observe?
Compute and sketch the convolution y(n) and correlation rxh(n) sequences
for the following pair of signals and comment on the results obtained.
1, 2, 4
1, 1, 1, 1, 1
x1 ( n) =
h1 ( n) =
↑
↑
0, 1, − 2, 3, − 4
1 / 2, 1, 2, 1, 1 / 2
x2 ( n) =
h2 ( n) =
↑
↑
1, 2, 3, 4
4, 3, 2, 1
x3 ( n) =
h3 ( n) =
↑
↑
1, 2, 3, 4
1, 2, 3, 4
x4 ( n) =
h4 ( n) =
↑
↑
Consider the recursive discrete-time system described by the difference
equation.
y(n)5a1y(n 2 1) 2 a2(n 2 2) 1 b0 x(n)
where a1520.8, a250.64, b050.866
(a) Write a program to compute and plot the impulse response h(n) of the
system for 0 # n # 49.
(b) Write a program to compute and plot the zero-state step response s(n)
of the system for 0 # n # 100.
(c) Define an FIR system with impulse response hFIR(n) given by
h( n), 0 ≤ n ≤ 19
hFIR ( n) =
elsewhere
0,
where h(n) is the impulse response computed in part (a). Write a
program to compute and plot its step response.
(d) Compare the results obtained in part (b) and part (c) and explain their
similarities and differences.
MATLAB Programs
16.10
16.11
907
Determine and plot the real and imaginary parts and the magnitude and phase
spectra of the following DTFT for various values of r and u
G(z)51/(1 2 2r(cos u) z21 1 r2z22) for 0 , r , 1.
Using MATLAB program compute the circular convolution of two length-N
sequences via the DFT based approach. Using this problem determine the
circular convolution of the following pairs of sequences:
(a) x(n)5{1, 2 3, 4, 2, 0, 2 2}
h(n)5{3, 0, 1, 2 1, 2, 1}
(b) x(n)5{3 1 j2, 22 1 j, j3,
h(n)5{ 1 2 j3, 4 1 j2, 2 2 j2,
1 1 j4, 23 1 j3},
23 1 j5, 2 1 j }
(c) x(n)5cos (pn/2)
h(n)53
0#n#5
Determine the factored form of the following z-transforms
n
16.12
(a) H1(z)5(2z4 1 16z3 1 44z2 1 56z 1 32)/
(3z3 1 3z3 2 15z2 1 18z 2 12)
(b) H2(z)5(4z4 2 8.68z3 2 17.98z2 1 26.74z 2 8.04)/
(z4 2 2z3 1 10z2 1 6z 1 65)
and show their pole-zero plots. Determine all regions of convergence of each
of the above z-transforms, and describe the type of their inverse z-transform
(left-sided, right-sided, two-sided sequences) associated with each of the
ROCs.
16.13 Determine the z-transform as a ratio of two polynomials in z21 from each of
the partial-fraction expansions listed below:
(a) H1 ( z ) = 3 +
12
16
−
,
( 2 − z −1 ) ( 4 − z −1 )
(b) H 2 ( z ) = 3 +
3
( 4 − z −1 )
−
,
(1 + 0.5 − z −1 ) (1 + 0.25 z −2 )
(c) H 3 ( z ) =
z > 0.5
z > 0.5
20
10
4
−
+
,
−1 2
−1
(5 + 2 − z )
(5 + 2 z ) (1 + 0.9 z −2 )
(d) H 4 ( z ) = 8 +
z −1
10
+
,
( 5 + 2 z −1 ) ( 6 + 5 z −1 + z −2 )
z > 0.4
z > 0.4
16.14 Determine the inverse z-transform of each z-transform given in Q16.13.
16.15 Consider the system
(1− 2 z −1 + 2 z −2 − z −3 )
H ( z) =
, ROC 0.5 < z < 1
(1− z −1 )(1− 0.5 z −1 )(1− 0.2 z −1 )
(a) Sketch the pole-zero pattern. Is the system stable?
(b) Determine the impulse response of the system.
16.16 Determine the impulse response and the step response of the following
causal systems. Plot the pole-zero patterns and determine which of the
systems are stable.
3
1
(a) y( n) = y( n −1) − y( n − 2) + x( n)
4
8
908
Digital Signal Processing
(b) y(n)5y (n 2 1) 2 0.5y(n 2 2) 1 x(n) 1 x (n 2 1)
z −1 (1 + z −1 )
(1− z )3
(d) y(n)50.6y(n 2 1) 2 0.08y(n 2 2) 1 x(n)
(e) y(n)50.7y(n 2 1) 2 0.1y(n 2 2) 1 2x(n) 2 x(n 2 2)
Ans: (a), (b), (d) and (e) are stable, (c) is unstable
The frequency analysis of an amplitude-modulated discrete-time signal
x(n)5sin 2p f1n 1 sin 2p f2 n
1
5
and f 2 =
modulates the amplitude-modulated siganl is
where f1 =
128
128
xc(n) 5 sin 2p fc n
where fc 550/128. The resulting amplitude-modulated signal is
xam(n)5x(n) sin 2p fc n
(c) H ( z ) =
16.17
(a) Sketch the signals x(n), xc(n) and xam(n), 0 # n # 255
(b) Compute and sketch the 128-point DFT of the signal xam(n),
0 # n # 127
(c) Compute and sketch the 128-point DFT of the signal xam(n), 0 # n # 99
(d) Compute and sketch the 256-point DFT of the signal xam(n),
0 # n # 179
(e) Explain the results obtained in parts (b) through (d) by deriving the
spectrum of the amplitude modulated signal and comparing it with the
experimental results.
16.18 A continuous time signal xa(t) consists of a linear combination of sinusoidal signals of frequencies 300Hz, 400Hz, 1.3kHz, 3.6KHz and 4.3KHz. The
xa(t) is sampled at 4kHz rate and the sampled sequence is passed through an
ideal low-pass filter with cut off frequency of 1kHz, generating a continuous
time signal ya(t). What are the frequency components present in the reconstructed signal ya(t)?
16.19 Design an FIR linear phase, digital filter approximating the ideal frequency
response
1,
for ≤ / 6
H d () =
0,
for / 6 < ≤
(a) Determine the coefficient of a 25 tap filter based on the window method
with a rectangular window.
(b) Determine and plot the magnitude and phase response of the filter.
(c) Repeat parts (a) and (b) using the Hamming window
(d) Repeat parts (a) and (b) using the Bartlett window.
16.20 Design an FIR Linear Phase, bandstop filter having the ideal frequency response
1,
for ≤ / 6
H d () = 0,
for / 6 < ≤ / 3
for / 3 ≤ ≤
1,
(a) Determine the coefficient of a 25 tap filter based on the window
method with a rectangular window.
(b) Determine and plot the magnitude and phase response of the filter.
MATLAB Programs
909
(c) Repeat parts (a) and (b) using the Hamming window
(d) Repeat parts (a) and (b) using the Bartlett window.
16.21 A digital low-pass filter is required to meet the following specfications
Passband ripple # 1 dB
Passband edge 4 kHz
Stopband attenuation 40 dB
Stopband edge 6 kHz
Sample rate 24 kHz
The filter is to be designed by performing a bilinear transformation on an
analog system function. Determine what order Butterworth, Chebyshev and
elliptic analog design must be used to meet the specifications in the digital
implementation.
16.22 An IIR digital low-pass filter is required to meet the following specfications
Passband ripple # 0.5 dB
Passband edge 1.2 kHz
Stopband attenuation 40 dB
Stopband edge 2 kHz
Sample rate 8 kHz
Use the design formulas to determine the filter order for
(a) Digital Butterworth filter
(b) Digital Chebyshev filter
(c) Digital elliptic filter
16.23 An analog signal of the form xa(t)5a(t) cos(2000 pt) is bandlimited to the range
900 # F # 1100Hz. It is used as an input to the system shown in Fig. Q16.23.
a (t )
A/D
R = 2500
( )
ϖ(n)
H ( ω)
D /A
a(n)
cos (0.8 πn)
Fig. Q16.23
16.24
(a) Determine and sketch the spectra for the signal x(n) and w(n).
(b) Use Hamming window of length M531 to design a low-pass linear
phase FIR filter H() that passes {a(n)}.
(c) Determine the sampling rate of A/D converter that would allow us to
eliminate the frequency conversion in the above figure.
Consider the signal x(n)5an u(m), |a| , 1
(a) Determine the spectrum X()
16.25
(b) The signal x(n) is applied to a device (decimator) which reduces the
rate by a factor of two. Determine the output spectrum.
(c) Show that the spectrum is simply the Fourier transform of x(2n).
Design a digital type-I Chebyshev low-pass filter operating at a sampling
rate of 44.1kHz with a passband frequency at 2kHz, a pass band ripple
of 0.4dB, and a minimum stopband attenuation of 50dB at 12kHz using
the impulse invariance method and the bilinear transformation method.
Determine the order of analog filter prototype and design the analog prototype filter. Plot the gain and phase responses of the both designs using
910
Digital Signal Processing
MATLAB. Compare the performances of the two filters. Show all steps
used in the design.
Hint 1. The order of filter
cosh−1 ( ( A2 −1) /
cosh−1 ( s / p)
2. Use the function cheblap.
16.26 Design a linear phase FIR high-pass filter with following specifications:
Stopband edge at 0.5p, passband edge at 0.7p, maximum passband attenuation
of 0.15dB and a minimum stopband attenuation of 40dB. Use each of the
following windows for the design. Hamming, Hanning, Blackman and
Kaiser. Show the impulse response coefficients and plot the gain response of
the designed filters for each case.
16.27 Design using the windowed Fourier series approach a linear phase FIR lowpass filter with the following specifications: pass band edge at 1 rad/s, stop
band edge at 2rad/s, maximum passband attenuation of 0.2dB, minimum
stopband attenuation of 50dB and a sampling frequency of 10rad/s. Use each
of the following windows for the design: Hamming, Hanning, Blackman,
Kaiser and Chebyshev. Show the impulse response coefficients and plot the
gain response of designed filters for each case.
16.28 Design a two-channel crossover FIR low-pass and high-pass filter pair for
digital audio applications. The low-pass and high-pass filters are of length
31 and have a crossover frequency of 2kHz operating at a sampling rate of
44.1KHz. Use the function ‘fir1’ with a Hamming window to design the lowpass filter while the high-pass filter is derived from the low-pass filter using
the delay complementary property. Plot the gain responses of both filters
on the same figure. What is the minimum number of delays and multipliers
needed to implement the crossover network?
16.29 Design a digital network butterworth low-pass filter operating at sampling
rate of 44.1kHz with a 0.5dB cutoff frequency at 2kHz and a minimum stopband attenuation of 45dB at 10kHz using the impulse invariance method
and the bilinear transformation method. Assume the sampling interval for
the impulse invariance design to be equal to 1. Determine the order of the
analog filter prototype and then design the analog prototype filter. Plot the
gain and phase responses of both designs. Compare the performances of the
filters. Show all steps used in the design. Does the sampling interval have
any effect on the design of the digital filter design based on the impulse
invariance method?
Hint The order of filter is
log10 (1 / k1 )
N=
log10 (1 / k )
N=
and use the function ‘buttap’.