Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Prof. 13

organic compounds Acta Crystallographica Section E Z=4 Mo K radiation  = 0.22 mm1 Structure Reports Online T = 296 K 0.30  0.24  0.22 mm ISSN 1600-5368 Data collection (2E)-3-(3,4-Dimethoxyphenyl)-1-(2,5dimethylthiophen-3-yl)prop-2-en-1-one Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) Tmin = 0.868, Tmax = 0.965 Abdullah M. Asiri,a,b Salman A. Khanb and M. Nawaz Tahirc* a The Center of Excellence for Advanced Materials Research, King Abdul Aziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, bDepartment of Chemistry, Faculty of Science, King Abdul Aziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, and cDepartment of Physics, University of Sargodha, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com Received 18 July 2010; accepted 22 July 2010 Key indicators: single-crystal X-ray study; T = 296 K; mean (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.106; data-to-parameter ratio = 14.6. The molecule of the title compound, C17H18O3S, is essentially planar: the phenyl and thiophene rings form a dihedral angle of 2.79 (10) and they are inclined to the central propenone unit by 6.20 (15) and 4.78 (15) , respectively. In the crystal, molecules are connected into dimers via pairs of C—H  O interactions, generating R22(14) motifs. – stacking interactions between the thiophene rings also occur, with a centroid–centroid distance of 3.8062 (12) Å. Related literature For background to chalcones, their activity and applications, see: Bandgar et al. (2010); Deng et al. (2007); Liu et al. (2003); Verma et al. (2007). For graph-set notation, see: Bernstein et al. (1995). 11371 measured reflections 2791 independent reflections 2182 reflections with I > 2(I) Rint = 0.025 Refinement R[F 2 > 2(F 2)] = 0.036 wR(F 2) = 0.106 S = 1.07 2791 reflections 191 parameters H-atom parameters constrained max = 0.15 e Å3 min = 0.24 e Å3 Table 1 Hydrogen-bond geometry (Å,  ). D—H  A D—H H  A D  A D—H  A C6—H6  O3i 0.93 2.41 3.175 (2) 139 Symmetry code: (i) x þ 1; y; z. Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON. The authors would like to thank the Chemistry Department, King Abdul Aziz University, Jeddah, Saudi Arabia for providing research facilities and for financial support of this work via grant No. 3–045/430. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2297). References Experimental Crystal data C17H18O3S Mr = 302.37 Monoclinic, P21 =n a = 9.1821 (6) Å Acta Cryst. (2010). E66, o2133 b = 8.3529 (5) Å c = 20.3443 (13) Å = 94.624 (4) V = 1555.27 (17) Å3 Bandgar, B. P., Patil, S. A., Korbad, B. L., Biradar, S. C., Nile, S. N. & Khobragade, C. N. (2010). Eur. J. Med. Chem. 45, 3223–3227. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Deng, J., Sanchez, T., Al-Mawsawi, L. Q., Dayam, R., Yunes, R. A., Garofalo, A., Bolger, M. B. & Neamati, N. (2007). Bioorg. Med. Chem. 15, 4985–5002. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. Liu, M., Wilairat, P., Croft, S. L., Tan, A. L. C. & Go, M. (2003). Bioorg. Med. Chem. 11, 2729–2738. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Spek, A. L. (2009). Acta Cryst. D65, 148–155. Verma, A. K., Koul, S., Pannu, A. P. S. & Razdan, T. K. (2007). Tetrahedron, 63, 8715–8722. doi:10.1107/S1600536810029272 Asiri et al. o2133 supplementary materials supplementary materials Acta Cryst. (2010). E66, o2133 [ doi:10.1107/S1600536810029272 ] (2E)-3-(3,4-Dimethoxyphenyl)-1-(2,5-dimethylthiophen-3-yl)prop-2-en-1-one A. M. Asiri, S. A. Khan and M. N. Tahir Comment α,β- Unsaturated ketones are a family of bicyclic flavonoids, defined by the presence of two benzene rings joined by a three carbon bridge. Many natural or synthetic chalcones, as well as chalcone glucosides and dimeric chalcones, were found to show diverse pharmacological effects, such as antimicrobial activity (Bandgar et al., 2010), anti-HIV-1 protease activity (Deng et al., 2007) and antileishmanial activity (Liu et al., 2003). In addition, chalcones were used as important intermediates for the total synthesis of some natural products (Verma et al., 2007). On the bases of these aspects, we herein report the synthesis and crystal structure of title compound (Fig. 1). In the title compound, the group A (C1—C6/O1/O2) of 3,4-dimethoxyphenyl, the central group B (C9—C11/O3) and group C (C12—C17/S1) of 2,5-dimethylthiophen-3-yl moiety are planar. The dihedral angle between A/B, A/C and B/C is 6.58 (14), 3.19 (8) and 4.78 (15)°, respectively. The C-atoms, C7 and C8 of methoxy groups are at a distance of -0.1564 (27) and -0.0979 (32) Å from the mean square plane of the group A. The title compound consists of dimers which are formed due to C—H···O type of intermolecular H-bonding (Table 1, Fig. 2) and complete R22(14) ring motif (Bernstein et al., 1995). The π···π stacking interactions between their thiophene rings is also present, with the centroid-to centroid distance of 3.8062 (12) Å [symmetry code: - x, 1 - y, - z]. Experimental A solution of 3-acetyl-2,5-dimethythiophene (0.38 g, 2.5 mmol) and 3,4-dimethoxybenzaldehyde (0.41 g, 2.5 mmol) in ethanolic solution of NaOH (3.0 g in 10 ml of methanol) was stirred for 16 h at room temperature. The solution was poured into ice cold water of pH = 2 (pH adjusted by HCl). The solid was separated and dissolved in CH2Cl2, washed with saturated solution of NaHCO3 and evaporated to dryness. The residual was recrystallized from methanol/chloroform to affoard light yellow prisms . Yield: 76%; m.p. 387–388 K. IR (KBr) \vmax cm-1: 2909 (C—H), 1647 (C═O), 1583(C═C). Refinement The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for aryl H-atoms. One of the methyl group is disordered over two positions related by a rotation of 60° around the C-C bond. Figures Fig. 1. View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. H-atoms are shown as small spheres of arbitrary radii. sup-1 supplementary materials Fig. 2. The dimers with R22(14) ring motif. (2E)-3-(3,4-Dimethoxyphenyl)-1-(2,5-dimethylthiophen-3-yl)prop-2-en-1-one Crystal data C17H18O3S F(000) = 640 Mr = 302.37 Dx = 1.291 Mg m−3 Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å Hall symbol: -P 2yn a = 9.1821 (6) Å Cell parameters from 2182 reflections θ = 2.5–25.3° b = 8.3529 (5) Å µ = 0.22 mm−1 T = 296 K Prism, yellow c = 20.3443 (13) Å β = 94.624 (4)° V = 1555.27 (17) Å3 Z=4 0.30 × 0.24 × 0.22 mm Data collection Bruker KAPPA APEXII CCD diffractometer Radiation source: fine-focus sealed tube graphite Detector resolution: 8.10 pixels mm-1 ω scans Absorption correction: multi-scan (SADABS; Bruker, 2005) Tmin = 0.868, Tmax = 0.965 2791 independent reflections 2182 reflections with I > 2σ(I) Rint = 0.025 θmax = 25.3°, θmin = 2.5° h = −10→11 k = −9→10 l = −24→24 11371 measured reflections Refinement R[F2 > 2σ(F2)] = 0.036 Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites wR(F2) = 0.106 H-atom parameters constrained Refinement on F2 Least-squares matrix: full S = 1.07 2791 reflections sup-2 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.374P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 supplementary materials 191 parameters Δρmax = 0.15 e Å−3 0 restraints Δρmin = −0.24 e Å−3 Special details Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) S1 O1 O2 O3 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 H2 H5 H6 H7A H7B H7C H8A H8B H8C H9 x y z Uiso*/Ueq −0.23565 (6) 0.29637 (14) 0.54659 (15) 0.20712 (19) 0.37251 (18) 0.29878 (18) 0.36019 (19) 0.49784 (19) 0.57073 (19) 0.50821 (19) 0.1508 (2) 0.6814 (3) 0.3079 (2) 0.1823 (2) 0.1314 (2) −0.0124 (2) −0.1133 (2) −0.2388 (2) −0.0661 (2) 0.00200 (19) −0.3685 (2) 0.20796 0.66227 0.55856 0.08903 0.14723 0.11750 0.75919 0.67593 0.69998 0.36315 0.41751 (7) −0.19408 (15) −0.32480 (16) 0.1767 (2) −0.05442 (19) −0.07466 (19) −0.16436 (19) −0.2356 (2) −0.2145 (2) −0.1245 (2) −0.1415 (3) −0.4081 (3) 0.0318 (2) 0.1089 (2) 0.1829 (2) 0.2618 (2) 0.2654 (3) 0.3431 (3) 0.3419 (2) 0.3678 (3) 0.3698 (3) −0.02712 −0.26053 −0.11126 −0.18692 −0.02682 −0.17510 −0.33235 −0.47691 −0.47129 0.03252 −0.05399 (3) 0.29377 (6) 0.28650 (7) −0.04839 (7) 0.12728 (8) 0.18470 (8) 0.23649 (8) 0.23254 (9) 0.17692 (10) 0.12462 (9) 0.29816 (9) 0.28383 (12) 0.06976 (9) 0.06199 (8) −0.00184 (9) −0.00808 (8) 0.04167 (9) 0.02449 (10) −0.06373 (9) −0.12765 (8) 0.06374 (9) 0.18767 0.17423 0.08712 0.26264 0.29529 0.33951 0.28076 0.24591 0.32304 0.03340 0.0660 (2) 0.0576 (4) 0.0659 (5) 0.0981 (7) 0.0467 (6) 0.0450 (5) 0.0451 (5) 0.0490 (6) 0.0551 (6) 0.0541 (6) 0.0614 (7) 0.0842 (9) 0.0543 (6) 0.0518 (6) 0.0582 (7) 0.0512 (6) 0.0626 (7) 0.0645 (7) 0.0534 (6) 0.0764 (9) 0.0992 (11) 0.0540* 0.0661* 0.0649* 0.0921* 0.0921* 0.0921* 0.1263* 0.1263* 0.1263* 0.0652* Occ. (<1) sup-3 supplementary materials H10 H13 H16A H16B H16C H17A H17B H17C H16D H16E H16F 0.12456 −0.09372 0.01848 0.09342 −0.06243 −0.35355 −0.45484 −0.38004 −0.06913 0.08332 0.03529 0.11680 0.21771 0.26624 0.42280 0.43103 0.31512 0.32891 0.48231 0.34716 0.29641 0.47650 0.09736 0.08274 −0.14783 −0.11923 −0.15670 0.10525 0.03968 0.07136 −0.16386 −0.13003 −0.12987 0.0621* 0.0751* 0.1146* 0.1146* 0.1146* 0.1488* 0.1488* 0.1488* 0.1146* 0.1146* 0.1146* 0.800 0.800 0.800 0.200 0.200 0.200 Atomic displacement parameters (Å2) S1 O1 O2 O3 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 U11 0.0546 (3) 0.0578 (8) 0.0603 (8) 0.0874 (11) 0.0462 (10) 0.0419 (9) 0.0468 (10) 0.0462 (10) 0.0390 (10) 0.0475 (10) 0.0589 (12) 0.0675 (14) 0.0573 (11) 0.0536 (11) 0.0617 (12) 0.0527 (10) 0.0606 (12) 0.0541 (12) 0.0549 (11) 0.0811 (16) 0.0693 (16) U22 0.0741 (4) 0.0640 (8) 0.0686 (9) 0.1509 (16) 0.0443 (9) 0.0426 (9) 0.0402 (9) 0.0434 (9) 0.0560 (11) 0.0590 (11) 0.0756 (13) 0.0900 (17) 0.0587 (11) 0.0596 (11) 0.0680 (12) 0.0548 (10) 0.0760 (13) 0.0737 (13) 0.0563 (10) 0.0956 (16) 0.134 (2) U33 0.0675 (3) 0.0522 (7) 0.0679 (9) 0.0607 (9) 0.0504 (10) 0.0512 (10) 0.0489 (9) 0.0565 (10) 0.0706 (12) 0.0575 (11) 0.0514 (10) 0.0931 (17) 0.0490 (10) 0.0433 (9) 0.0466 (10) 0.0465 (10) 0.0525 (11) 0.0666 (12) 0.0484 (10) 0.0524 (12) 0.0976 (19) U12 0.0037 (3) 0.0112 (6) 0.0191 (7) 0.0547 (11) −0.0022 (7) 0.0027 (7) −0.0008 (7) 0.0007 (8) 0.0033 (8) −0.0019 (8) 0.0145 (10) 0.0315 (13) 0.0026 (9) 0.0034 (9) 0.0098 (9) 0.0003 (8) 0.0089 (10) 0.0029 (10) −0.0049 (8) 0.0066 (13) 0.0252 (16) U13 −0.0054 (2) 0.0117 (6) −0.0009 (7) 0.0350 (8) 0.0085 (8) 0.0080 (7) 0.0068 (8) −0.0014 (8) 0.0069 (9) 0.0142 (8) 0.0152 (9) −0.0065 (12) 0.0164 (8) 0.0117 (8) 0.0146 (9) 0.0061 (8) 0.0131 (9) 0.0104 (9) 0.0006 (8) 0.0046 (11) 0.0270 (14) Geometric parameters (Å, °) S1—C14 S1—C15 O1—C3 O1—C7 O2—C4 O2—C8 O3—C11 C1—C2 C1—C6 C1—C9 sup-4 1.716 (2) 1.7063 (19) 1.369 (2) 1.417 (2) 1.372 (2) 1.425 (3) 1.220 (2) 1.407 (2) 1.382 (2) 1.459 (2) C2—H2 C5—H5 C6—H6 C7—H7A C7—H7B C7—H7C C8—H8A C8—H8B C8—H8C C9—H9 0.9300 0.9300 0.9300 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9300 U23 −0.0005 (3) 0.0113 (6) 0.0068 (7) 0.0337 (10) −0.0028 (7) −0.0023 (7) −0.0029 (7) −0.0028 (8) −0.0077 (9) −0.0030 (9) 0.0050 (9) 0.0054 (13) 0.0015 (8) −0.0026 (8) 0.0029 (9) −0.0044 (8) 0.0037 (9) −0.0047 (10) −0.0058 (8) 0.0097 (11) 0.0061 (17) supplementary materials C2—C3 C3—C4 C4—C5 C5—C6 C9—C10 C10—C11 C11—C12 C12—C13 C12—C15 C13—C14 C14—C17 C15—C16 1.376 (2) 1.405 (2) 1.372 (3) 1.389 (3) 1.319 (3) 1.480 (2) 1.472 (3) 1.427 (3) 1.372 (2) 1.344 (3) 1.503 (3) 1.503 (2) C10—H10 C13—H13 C16—H16A C16—H16B C16—H16C C16—H16D C16—H16E C16—H16F C17—H17A C17—H17B C17—H17C 0.9300 0.9300 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 S1···C1i 3.5635 (17) H2···C7 2.5400 S1···C11ii 3.6293 (18) H2···C10 2.7900 S1···C12ii 3.6734 (18) H2···H7A 2.3600 3.624 (2) H2···H7B 2.3000 2.5588 (19) H2···H10 2.2800 iii S1···C7 O1···O2 O1···C2 iv O1···C10iv O2···O1 O3···C6 v O3···C16 vii 3.335 (2) H2···O1 2.8100 3.356 (2) H5···C8 2.5400 2.5588 (19) H5···H8A 2.3500 3.175 (2) H5···H8B 2.3200 v 2.865 (3) H5···H16E 2.5900 O1···H16C 2.7000 H6···H9 2.3500 O1···H10iv 2.7700 H6···O3v 2.4100 O1···H2iv 2.8100 H7A···C2 2.7600 O2···H13iv 2.6800 H7A···H2 2.3600 O2···H7Biv 2.8800 H7A···H16Ai 2.5500 O3···H9 2.4300 2.4100 O3···H16B O3···H16E 2.6700 2.1800 H7A···H16Di H7B···C2 H7B···H2 2.7700 2.3000 O3···H16A 2.6600 H7B···O2vii 2.8800 2.4100 H7B···C3 vii 3.1000 vii 2.8100 vi O3···H6 v i 3.5635 (17) H7B···C4 vii 3.335 (2) H8A···C5 2.8000 viii 3.475 (3) H8A···H5 2.3500 v 3.175 (2) H8B···C5 2.7400 vi 3.624 (2) H8B···H5 2.3200 C8···C5ix 3.475 (3) H8C···C5ix 2.9300 C10···C12i 3.598 (2) H8C···C6ix 3.0800 C10···O1vii 3.356 (2) H9···O3 2.4300 C11···S1ii 3.6293 (18) H9···H6 2.3500 C12···C10i 3.598 (2) H10···C2 2.8000 3.6734 (18) H10···C13 2.6800 C1···S1 C2···O1 C5···C8 C6···O3 C7···S1 C12···S1 ii sup-5 supplementary materials C16···O3 C2···H7B 2.865 (3) 2.7700 H10···H2 H10···H13 2.2800 2.1700 C2···H10 2.8000 C2···H7A 2.7600 H10···O1vii H13···C10 2.7600 3.1000 H13···H10 2.1700 2.9600 H13···H17A 2.6000 C3···H7Biv vi C3···H16C iv 2.8100 C4···H7B viii 2.9300 H13···O2 2.7700 vii 2.6800 vii 3.0800 C5···H8C C5···H8A 2.8000 H13···C8 H16A···O3 2.6600 C5···H8B 2.7400 H16A···H7Ai 2.5500 3.0800 H16B···O3 2.6700 viii C6···H8C C7···H2 C8···H13 H16B···C13 ii 3.0400 3.0800 H16B···C14 ii 2.9800 2.5400 iii 2.7000 2.5400 iv C8···H5 C10···H13 2.7600 H16C···O1 H16C···C3 iii 2.9600 i C10···H2 2.7900 C11···H16E C13···H10 2.7800 2.6800 H16D···H7A H16E···C11 H16E···O3 C13···H16Fii 2.8600 H16E···H5v 2.5900 C13···H16Bii 3.0400 H16F···C13ii 2.8600 ii C14···H16B 2.9800 H17A···H13 2.6000 C14—S1—C15 C3—O1—C7 C4—O2—C8 C2—C1—C6 C2—C1—C9 C6—C1—C9 C1—C2—C3 O1—C3—C2 O1—C3—C4 C2—C3—C4 O2—C4—C3 O2—C4—C5 C3—C4—C5 C4—C5—C6 C1—C6—C5 C1—C9—C10 C9—C10—C11 O3—C11—C10 O3—C11—C12 C10—C11—C12 C11—C12—C13 C11—C12—C15 C13—C12—C15 C12—C13—C14 S1—C14—C13 93.32 (9) 117.93 (14) 117.60 (16) 118.52 (15) 122.25 (15) 119.17 (15) 120.42 (15) 125.00 (15) 114.88 (15) 120.12 (16) 114.92 (15) 125.49 (16) 119.59 (16) 120.17 (16) 121.18 (16) 129.21 (17) 121.36 (16) 120.27 (17) 121.02 (17) 118.71 (15) 125.28 (16) 123.34 (16) 111.37 (17) 114.71 (18) 109.79 (15) O1—C7—H7A O1—C7—H7B O1—C7—H7C H7A—C7—H7B H7A—C7—H7C H7B—C7—H7C O2—C8—H8A O2—C8—H8B O2—C8—H8C H8A—C8—H8B H8A—C8—H8C H8B—C8—H8C C1—C9—H9 C10—C9—H9 C9—C10—H10 C11—C10—H10 C12—C13—H13 C14—C13—H13 C15—C16—H16A C15—C16—H16B C15—C16—H16C C15—C16—H16D C15—C16—H16E C15—C16—H16F H16A—C16—H16B 109.00 109.00 109.00 109.00 109.00 109.00 110.00 109.00 109.00 109.00 109.00 109.00 115.00 115.00 119.00 119.00 123.00 123.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 sup-6 2.4100 2.7800 2.1800 supplementary materials S1—C14—C17 C13—C14—C17 S1—C15—C12 S1—C15—C16 C12—C15—C16 C1—C2—H2 C3—C2—H2 C4—C5—H5 C6—C5—H5 C1—C6—H6 C5—C6—H6 120.94 (15) 129.27 (19) 110.81 (14) 119.62 (14) 129.57 (17) 120.00 120.00 120.00 120.00 119.00 119.00 H16A—C16—H16C H16B—C16—H16C H16D—C16—H16E H16D—C16—H16F H16E—C16—H16F C14—C17—H17A C14—C17—H17B C14—C17—H17C H17A—C17—H17B H17A—C17—H17C H17B—C17—H17C 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 C15—S1—C14—C13 0.60 (19) C2—C3—C4—C5 0.3 (3) C15—S1—C14—C17 −179.89 (19) O2—C4—C5—C6 178.31 (16) C14—S1—C15—C12 −0.23 (15) C3—C4—C5—C6 −0.6 (3) C14—S1—C15—C16 179.43 (17) C4—C5—C6—C1 0.1 (3) C7—O1—C3—C2 6.1 (2) C1—C9—C10—C11 −176.81 (16) C7—O1—C3—C4 −172.97 (16) C9—C10—C11—O3 −1.6 (3) C8—O2—C4—C3 176.26 (17) C9—C10—C11—C12 177.63 (16) C8—O2—C4—C5 −2.7 (3) O3—C11—C12—C13 175.23 (19) C6—C1—C2—C3 −0.9 (2) O3—C11—C12—C15 −4.6 (3) C9—C1—C2—C3 176.38 (16) C10—C11—C12—C13 −4.0 (3) C2—C1—C6—C5 0.7 (2) C10—C11—C12—C15 176.11 (16) C9—C1—C6—C5 −176.74 (16) C11—C12—C13—C14 −179.21 (19) C2—C1—C9—C10 3.9 (3) C15—C12—C13—C14 0.7 (3) C6—C1—C9—C10 −178.80 (18) C11—C12—C15—S1 179.70 (14) C1—C2—C3—O1 −178.57 (15) C11—C12—C15—C16 0.1 (3) C1—C2—C3—C4 0.5 (2) C13—C12—C15—S1 −0.2 (2) O1—C3—C4—O2 0.4 (2) C13—C12—C15—C16 −179.81 (19) O1—C3—C4—C5 179.43 (15) C12—C13—C14—S1 −0.8 (3) C2—C3—C4—O2 −178.71 (15) C12—C13—C14—C17 179.7 (2) Symmetry codes: (i) −x, −y, −z; (ii) −x, −y+1, −z; (iii) x−1/2, −y+1/2, z−1/2; (iv) −x+1/2, y−1/2, −z+1/2; (v) −x+1, −y, −z; (vi) x+1/2, −y+1/2, z+1/2; (vii) −x+1/2, y+1/2, −z+1/2; (viii) −x+3/2, y+1/2, −z+1/2; (ix) −x+3/2, y−1/2, −z+1/2. Hydrogen-bond geometry (Å, °) D—H···A v C6—H6···O3 Symmetry codes: (v) −x+1, −y, −z. D—H H···A D···A D—H···A 0.93 2.41 3.175 (2) 139 sup-7 supplementary materials Fig. 1 sup-8 supplementary materials Fig. 2 sup-9