Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

HR 8844: A New Transition Object between the Am Stars and the HgMn Stars?

The Astrophysical Journal
...Read more
HR 8844: A New Transition Object between the Am Stars and the HgMn Stars? R. Monier 1 , M. Gebran 2 , F. Royer 3 , T. Kilicoglu 4 , and Y. Frémat 5 1 LESIA, UMR 8109, Observatoire de Paris et Université Pierre et Marie Curie Sorbonne Universités, place J. Janssen, Meudon, France 2 Department of Physics and Astronomy, Notre Dame University-Louaize, P.O. Box 72, Zouk Mikael, Lebanon 3 GEPI, Observatoire de Paris, place J. Janssen, Meudon, France 4 Department of Astronomy and Space Sciences, Faculty of Science, Ankara University, 06100, Turkey 5 Royal observatory of Belgium, Dept. Astronomy and Astrophysics, Brussels, B-8510, Belgium Received 2017 July 26; revised 2017 December 2; accepted 2017 December 14; published 2018 February 9 Abstract While monitoring a sample of apparently slowly rotating supercially normal early-A stars, we have discovered that HR 8844 (A0 V) is actually a new chemically peculiar star. We rst compared the high-resolution spectrum of HR 8844 with that of four slow rotators near A0V (ν Cap, ν Cnc, Sirius A, and HD 72660) to highlight similarities and differences. The lines of Ti II, Cr II, Sr II, and Ba II are conspicuous features in the high-resolution high signal- to-noise SOPHIE spectra of HR 8844 and much stronger than in the spectra of the normal star ν Cap. The Hg II line at 3983.93 Å is also present in a 3.5% blend. Selected unblended lines of 31 chemical elements from He up to Hg have been synthesized using model atmospheres computed with ATLAS9 and the spectrum synthesis code SYNSPEC48 including hyperne structure of various isotopes when relevant. These synthetic spectra have been adjusted to the mean SOPHIE spectrum of HR 8844, and high-resolution spectra of the comparison stars. Chi- squares were minimized to derive abundances or upper limits to the abundances of these elements for HR 8844 and the comparison stars. HR 8844 is found to have underabundances of He, C, O, Mg, Ca, and Sc, mild enhancements of Ti, V, Cr, Mn, and distinct enhancements of the heavy elements Sr, Y, Zr, Ba, La, Pr, Sm, Eu, and Hg, the overabundances increasing steadily with atomic number. This chemical pattern suggests that HR 8844 may actually be a new transition object between the coolest HgMn stars and the Am stars. Key words: stars: abundances stars: chemically peculiar stars: early-type stars: individual (HR 8844) 1. Introduction A bibliographic query of the CDS for HR 8844 actually reveals only 34 publications. HR 8844 appears in Cowley et al. (1969)ʼs classication of the bright A stars and was ascribed an A0V spectral type by these authors. They did not comment on any peculiarity of the spectrum. HR 8844 is also in Eggens survey of A0 stars (Eggen 1984); it appears as a single star in Eggleton & Tokovinin (2008). The purpose of this paper is to perform a detailed abundance analysis of HR 8844 and show that this star is a new chemically peculiar (CP) star. We have recently undertaken a spectroscopic survey of all apparently slowly rotating bright early-A stars (A0-A1V) and late-B stars (B8-B9V) observable from the northern hemisphere. This project addresses fundamental questions of the physics of late-B and early-A stars: (i) can we nd new instances of rapid rotators seen pole-on (other than Vega) and study their physical properties (gradient of temperature across the disk, limb and gravity darkening) and (ii) is our census of CP stars complete up to the magnitude limits we adopted? If not, what are the physical properties of the newly found CP stars? The abundance results for the A0-A1V sample have been published in Royer et al. (2014). Targets have been observed with SOPHIE, the échelle high- resolution spectrograph at Observatoire de Haute Provence yielding spectra covering the 39006800 Å spectral range over 39 orders at a resolving power R=75,000. A careful abundance analysis of the high-resolution high signal-to- noise ratio (S/N) spectra of the A stars sample and a hierarchical classication have allowed to sort out the sample of 47 A stars into 17 chemically normal stars (i.e., those whose abundances do not depart by more than ±0.20 dex from solar values), 12 spectroscopic binaries, and 13 CP stars among which ve are new CP stars. The status of these new CP stars still needs to be fully specied by spectropolari- metric observations to address their magnetic nature or by exploring new spectral ranges which we had not explored in this rst study. We now started to examine the B8-B9V sample using the full wavelength coverage provided by SOPHIE to search for new CP stars. We have already reported on the discovery of four new HgMn stars (Monier et al. 2015), whose spectra display strong Hg II lines at 3984 Å and strong Mn II lines. In the process of our analysis of the B8-B9V sample, we also found that HD 67044 is most likely another new HgMn star (Monier et al. 2016). Royer et al. (2014) performed abundance analyses for C, O, Mg, Si, Ca, Sc, Ti, Cr, Fe, Sr, Y, and Zr using Takedas automated procedure and classied HR 8844 as probably normal: the four criteria used for the automatic classication were not fully consistent, depending on the chemical species used. To clarify the nature of HR 8844, we have compared its spectra with high-resolution high S/N spectra of four stars near A0V and B9V: the supercially normal ν Cap (B9V), the cool HgMn star ν Cnc, Sirius A (A1m), and HD 72660 (A1m). We then determined the abundances of 31 chemical elements, in particular helium and several species heavier than barium (not studied in Royer et al. 2014), for HR 8844 using spectrum synthesis to quantify the enhancements and depletions of these elements or to provide upper limits. We also performed the abundance analysis for the four comparison stars using as much as feasible the same lines and atomic data as employed for HR 8844 for consistency to compare the chemical composition of The Astrophysical Journal, 854:50 (28pp), 2018 February 10 https://doi.org/10.3847/1538-4357/aaa246 © 2018. The American Astronomical Society. All rights reserved. 1
HR 8844 with that of these comparison stars and clarify the nature of this object. 2. Observations and Reduction We obtained one spectrum of HR 8844 on 2009 August 5 and then secured three new spectra in 2016 December at Observatoire de Haute Provence using the high-resolution (R = 75,000) mode of the SOPHIE échelle spectrograph (Perruchot et al. 2008). The S/N ratio of the individual spectra ranges from 251 up to 381 at 5500 Å. For ν Cap, we secured four high-resolution spectra with HERMES (Raskin et al. 2011) at the Roque de los Muchachos Observatory. For the three other comparison stars, we fetched spectra from spectroscopic archives. For HD 72660, we fetched a spectrum from the HARPS archive (R=125,000) and for Sirius A several I proles obtained with NARVAL from the the Polarbase database (R=75,000). For ν Cnc, we retrieved a spectrum form the ELODIE archive (R=45,000). The observations log of these data for the 5 stars is displayed in Table 1. The SOPHIE, ELODIE, HARPS, NARVAL, and HERMES data are automatically reduced by the individual projects to produce 1D extracted and wavelength calibrated échelle orders. Each reduced order was normalized separately using a Chebychev polynomial t with sigma clipping, rejecting points above or below 1σ of the local continuum. Normalized orders were then merged together, corrected by the blaze function and resampled into a constant wavelength step of about 0.02 Å(see Royer et al. 2014, for more details). The radial velocity of HR 8844, ν Cap, and HD 72660 were derived in Royer et al. (2014) using cross-correlation techniques, avoiding the Balmer lines and the atmospheric telluric lines. The normalized spectrum was cross-correlated with a synthetic template extracted from the POLLUX database 6 (Palacios et al. 2010) corresponding to the parameters T eff = 11,000 K, g log 4 = and solar abundances. A parabolic t of the upper part of the resulting cross-correlation function yields the Doppler shift, which is then used to shift spectra to rest wavelengths. The projected rotational velocities are taken from Royer et al. (2014) who derived them from the position of the rst zero of the Fourier transform of individual lines. The radial velocity and projected equatorial velocity of HR 8844, ν Cap, HD 72660, ν Cap, and ν Cnc are collected in Table 2. For Sirius A, they were retrieved from Landstreet (2011). 3. The Line Spectrum of HR 8844Comparison to ν Cap 3.1. The Line Spectrum of HR 8844 To establish the chemical peculiarity of HR 8844, we measured the centroids of all 552 lines absorbing more than 2% of the continuum. Almost all these lines could be identied after we performed a complete synthesis of the spectrum and derived the abundances. The proposed identications corresponding to the nal abundances of HR 8844 are collected in Table 3. The strongest lines (i.e., which absorb more than 5% of the continuum) are due to Mg II, Mg I, Ca II (resonance lines), Ca I (idem), Ti II, Cr II, Fe II, Fe I, Sr II, and Ba II. Several spectral regions have been inspected to search for the chemical peculiarity of HR 8844. First, the red wing of H, harbors a line close to the location of the Hg II λ 3983.93 Å line and several Zr II and Y II lines Table 1 Observation Log for HR 8844, Vega, ν Cap, ν Cnc, Sirius A, and HD 72660 Star ID Spectral V Observation Instrument Resolving Exposure S/N S/N S/N Type Date Power Time (s) at 3900 Å at 5000 Å at 6000 Å HR 8844 A0V 5.89 2009 Aug 05 SOPHIE 75,000 600 143 269 274 HR 8844 A0V 5.89 2016 Dec 12 SOPHIE 75,000 900 202 381 389 HR 8844 A0V 5.89 2016 Dec 13 SOPHIE 75,000 400 133 251 256 HR 8844 A0V 5.89 2016 Dec 14 SOPHIE 75,000 600 174 328 335 Vega A0V 0.00 2012 Aug 06 SOPHIE 75,000 25 309 583 595 ν Cap B9IV 4.76 2014 Aug 16 HERMES 85000 150 85 160 163 ν Cap B9IV 4.76 2014 Aug 16 HERMES 85000 150 54 102 104 ν Cap B9IV 4.76 2014 Aug 16 HERMES 85000 150 87 164 167 ν Cap B9IV 4.76 2014 Aug 16 HERMES 85000 150 80 150 153 ν Cnc B9.5VHgMn 5.45 2005 Feb 05 ELODIE 42000 3600 182 344 350 Sirius A A1Vm -1.46 2007 Mar 12 NARVAL 75,000 2 239 450 459 HD 72660 A0Vm 5.80 2012 Feb 19 HARPS 125,000 117.8 77 146 149 Table 2 Adopted Fundamental Parameters for HR 8844, Vega, ν Cap, ν Cnc, Sirius A, and HD 72660 Star ID T eff g log v i sin V rad ξ (K) (km s -1 ) (km s -1 ) (km s -1 ) HR 8844 9752±250 3.80±0.25 27.3±0.3 -4.48±0.21 1.40±0.20 Vega 9500±250 4.00±0.25 27.0±0.3 -17.51±0.02 1.70±0.30 ν Cap 10300±250 3.90±0.25 24.0±0.3 -11.39±0.20 0.50±0.20 ν Cnc 10300±250 3.67±0.25 18.0±0.3 -20.04±0.20 0.10±0.20 Sirius A 9900±250 4.30±0.25 16.5±0.3 variable 2.10±0.30 HD 72660 9650±250 4.05±0.25 5.0±0.5 4.50±0.07 2.20±0.20 6 http://pollux.graal.univ-montp2.fr 2 The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al.
The Astrophysical Journal, 854:50 (28pp), 2018 February 10 https://doi.org/10.3847/1538-4357/aaa246 © 2018. The American Astronomical Society. All rights reserved. HR 8844: A New Transition Object between the Am Stars and the HgMn Stars? 1 R. Monier1 , M. Gebran2 , F. Royer3, T. Kilicoglu4, and Y. Frémat5 LESIA, UMR 8109, Observatoire de Paris et Université Pierre et Marie Curie Sorbonne Universités, place J. Janssen, Meudon, France 2 Department of Physics and Astronomy, Notre Dame University-Louaize, P.O. Box 72, Zouk Mikael, Lebanon 3 GEPI, Observatoire de Paris, place J. Janssen, Meudon, France 4 Department of Astronomy and Space Sciences, Faculty of Science, Ankara University, 06100, Turkey 5 Royal observatory of Belgium, Dept. Astronomy and Astrophysics, Brussels, B-8510, Belgium Received 2017 July 26; revised 2017 December 2; accepted 2017 December 14; published 2018 February 9 Abstract While monitoring a sample of apparently slowly rotating superficially normal early-A stars, we have discovered that HR 8844 (A0 V) is actually a new chemically peculiar star. We first compared the high-resolution spectrum of HR 8844 with that of four slow rotators near A0V (ν Cap, ν Cnc, Sirius A, and HD 72660) to highlight similarities and differences. The lines of Ti II, Cr II, Sr II, and Ba II are conspicuous features in the high-resolution high signalto-noise SOPHIE spectra of HR 8844 and much stronger than in the spectra of the normal star ν Cap. The Hg II line at 3983.93 Å is also present in a 3.5% blend. Selected unblended lines of 31 chemical elements from He up to Hg have been synthesized using model atmospheres computed with ATLAS9 and the spectrum synthesis code SYNSPEC48 including hyperfine structure of various isotopes when relevant. These synthetic spectra have been adjusted to the mean SOPHIE spectrum of HR 8844, and high-resolution spectra of the comparison stars. Chisquares were minimized to derive abundances or upper limits to the abundances of these elements for HR 8844 and the comparison stars. HR 8844 is found to have underabundances of He, C, O, Mg, Ca, and Sc, mild enhancements of Ti, V, Cr, Mn, and distinct enhancements of the heavy elements Sr, Y, Zr, Ba, La, Pr, Sm, Eu, and Hg, the overabundances increasing steadily with atomic number. This chemical pattern suggests that HR 8844 may actually be a new transition object between the coolest HgMn stars and the Am stars. Key words: stars: abundances – stars: chemically peculiar – stars: early-type – stars: individual (HR 8844) from solar values), 12 spectroscopic binaries, and 13 CP stars among which five are new CP stars. The status of these new CP stars still needs to be fully specified by spectropolarimetric observations to address their magnetic nature or by exploring new spectral ranges which we had not explored in this first study. We now started to examine the B8-B9V sample using the full wavelength coverage provided by SOPHIE to search for new CP stars. We have already reported on the discovery of four new HgMn stars (Monier et al. 2015), whose spectra display strong Hg II lines at 3984 Å and strong Mn II lines. In the process of our analysis of the B8-B9V sample, we also found that HD 67044 is most likely another new HgMn star (Monier et al. 2016). Royer et al. (2014) performed abundance analyses for C, O, Mg, Si, Ca, Sc, Ti, Cr, Fe, Sr, Y, and Zr using Takeda’s automated procedure and classified HR 8844 as “probably normal”: the four criteria used for the automatic classification were not fully consistent, depending on the chemical species used. To clarify the nature of HR 8844, we have compared its spectra with high-resolution high S/N spectra of four stars near A0V and B9V: the superficially normal ν Cap (B9V), the cool HgMn star ν Cnc, Sirius A (A1m), and HD 72660 (A1m). We then determined the abundances of 31 chemical elements, in particular helium and several species heavier than barium (not studied in Royer et al. 2014), for HR 8844 using spectrum synthesis to quantify the enhancements and depletions of these elements or to provide upper limits. We also performed the abundance analysis for the four comparison stars using as much as feasible the same lines and atomic data as employed for HR 8844 for consistency to compare the chemical composition of 1. Introduction A bibliographic query of the CDS for HR 8844 actually reveals only 34 publications. HR 8844 appears in Cowley et al. (1969)ʼs classification of the bright A stars and was ascribed an A0V spectral type by these authors. They did not comment on any peculiarity of the spectrum. HR 8844 is also in Eggen’s survey of A0 stars (Eggen 1984); it appears as a single star in Eggleton & Tokovinin (2008). The purpose of this paper is to perform a detailed abundance analysis of HR 8844 and show that this star is a new chemically peculiar (CP) star. We have recently undertaken a spectroscopic survey of all apparently slowly rotating bright early-A stars (A0-A1V) and late-B stars (B8-B9V) observable from the northern hemisphere. This project addresses fundamental questions of the physics of late-B and early-A stars: (i) can we find new instances of rapid rotators seen pole-on (other than Vega) and study their physical properties (gradient of temperature across the disk, limb and gravity darkening) and (ii) is our census of CP stars complete up to the magnitude limits we adopted? If not, what are the physical properties of the newly found CP stars? The abundance results for the A0-A1V sample have been published in Royer et al. (2014). Targets have been observed with SOPHIE, the échelle highresolution spectrograph at Observatoire de Haute Provence yielding spectra covering the 3900–6800 Å spectral range over 39 orders at a resolving power R=75,000. A careful abundance analysis of the high-resolution high signal-tonoise ratio (S/N) spectra of the A stars sample and a hierarchical classification have allowed to sort out the sample of 47 A stars into 17 chemically normal stars (i.e., those whose abundances do not depart by more than ±0.20 dex 1 The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 1 Observation Log for HR 8844, Vega, ν Cap, ν Cnc, Sirius A, and HD 72660 Star ID HR 8844 HR 8844 HR 8844 HR 8844 Vega ν Cap ν Cap ν Cap ν Cap ν Cnc Sirius A HD 72660 Spectral Type V Observation Date Instrument Resolving Power Exposure Time (s) S/N at 3900 Å S/N at 5000 Å S/N at 6000 Å A0V A0V A0V A0V A0V B9IV B9IV B9IV B9IV B9.5VHgMn A1Vm A0Vm 5.89 5.89 5.89 5.89 0.00 4.76 4.76 4.76 4.76 5.45 −1.46 5.80 2009 Aug 05 2016 Dec 12 2016 Dec 13 2016 Dec 14 2012 Aug 06 2014 Aug 16 2014 Aug 16 2014 Aug 16 2014 Aug 16 2005 Feb 05 2007 Mar 12 2012 Feb 19 SOPHIE SOPHIE SOPHIE SOPHIE SOPHIE HERMES HERMES HERMES HERMES ELODIE NARVAL HARPS 75,000 75,000 75,000 75,000 75,000 85000 85000 85000 85000 42000 75,000 125,000 600 900 400 600 25 150 150 150 150 3600 2 117.8 143 202 133 174 309 85 54 87 80 182 239 77 269 381 251 328 583 160 102 164 150 344 450 146 274 389 256 335 595 163 104 167 153 350 459 149 Table 2 Adopted Fundamental Parameters for HR 8844, Vega, ν Cap, ν Cnc, Sirius A, and HD 72660 Star ID HR 8844 Vega ν Cap ν Cnc Sirius A HD 72660 Teff (K) log g v sin i (km s−1) Vrad (km s−1) ξ (km s−1) 9752±250 9500±250 10300±250 10300±250 9900±250 9650±250 3.80±0.25 4.00±0.25 3.90±0.25 3.67±0.25 4.30±0.25 4.05±0.25 27.3±0.3 27.0±0.3 24.0±0.3 18.0±0.3 16.5±0.3 5.0±0.5 −4.48±0.21 −17.51±0.02 −11.39±0.20 −20.04±0.20 variable 4.50±0.07 1.40±0.20 1.70±0.30 0.50±0.20 0.10±0.20 2.10±0.30 2.20±0.20 HR 8844 with that of these comparison stars and clarify the nature of this object. and the atmospheric telluric lines. The normalized spectrum was cross-correlated with a synthetic template extracted from the POLLUX database6 (Palacios et al. 2010) corresponding to the parameters Teff = 11,000 K, log g = 4 and solar abundances. A parabolic fit of the upper part of the resulting cross-correlation function yields the Doppler shift, which is then used to shift spectra to rest wavelengths. The projected rotational velocities are taken from Royer et al. (2014) who derived them from the position of the first zero of the Fourier transform of individual lines. The radial velocity and projected equatorial velocity of HR 8844, ν Cap, HD 72660, ν Cap, and ν Cnc are collected in Table 2. For Sirius A, they were retrieved from Landstreet (2011). 2. Observations and Reduction We obtained one spectrum of HR 8844 on 2009 August 5 and then secured three new spectra in 2016 December at Observatoire de Haute Provence using the high-resolution (R = 75,000) mode of the SOPHIE échelle spectrograph (Perruchot et al. 2008). The S/N ratio of the individual spectra ranges from 251 up to 381 at 5500 Å. For ν Cap, we secured four high-resolution spectra with HERMES (Raskin et al. 2011) at the Roque de los Muchachos Observatory. For the three other comparison stars, we fetched spectra from spectroscopic archives. For HD 72660, we fetched a spectrum from the HARPS archive (R=125,000) and for Sirius A several I profiles obtained with NARVAL from the the Polarbase database (R=75,000). For ν Cnc, we retrieved a spectrum form the ELODIE archive (R=45,000). The observations log of these data for the 5 stars is displayed in Table 1. The SOPHIE, ELODIE, HARPS, NARVAL, and HERMES data are automatically reduced by the individual projects to produce 1D extracted and wavelength calibrated échelle orders. Each reduced order was normalized separately using a Chebychev polynomial fit with sigma clipping, rejecting points above or below 1σ of the local continuum. Normalized orders were then merged together, corrected by the blaze function and resampled into a constant wavelength step of about 0.02 Å(see Royer et al. 2014, for more details). The radial velocity of HR 8844, ν Cap, and HD 72660 were derived in Royer et al. (2014) using cross-correlation techniques, avoiding the Balmer lines 3. The Line Spectrum of HR 8844—Comparison to ν Cap 3.1. The Line Spectrum of HR 8844 To establish the chemical peculiarity of HR 8844, we measured the centroids of all 552 lines absorbing more than 2% of the continuum. Almost all these lines could be identified after we performed a complete synthesis of the spectrum and derived the abundances. The proposed identifications corresponding to the final abundances of HR 8844 are collected in Table 3. The strongest lines (i.e., which absorb more than 5% of the continuum) are due to Mg II, Mg I, Ca II (resonance lines), Ca I (idem), Ti II, Cr II, Fe II, Fe I, Sr II, and Ba II. Several spectral regions have been inspected to search for the chemical peculiarity of HR 8844. First, the red wing of H , harbors a line close to the location of the Hg II λ 3983.93 Å line and several Zr II and Y II lines 6 2 http://pollux.graal.univ-montp2.fr The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 3 Line Identifications for HR 8844 l obs (Å) llab (Å) Identification log gf Elow 3900.55 3900.55 3903.08 3903.99 3905.58 3905.78 3906.18 3920.44 3922.93 3927.98 3900.515 3900.550 3902.945 3903.99 3905.525 3905.644 3906.035 3920.26 3922.912 3927.92 3927.925 3930.296 3930.304 3932.023 3933.660 3935.813 3938.289 3938.400 3944.006 3944.101 3945.210 3946.487 3947.480 3949.056 3949.953 3950.352 3950.389 3951.150 3951.163 3951.065 3956.710 3961.600 3968.469 3979.505 3981.771 3983.838 3983.844 3983.853 3983.912 3983.932 3983.941 3983.993 3984.072 3984.183 3986.581 3987.930 3990.977 3994.006 3997.392 3998.985 4002.083 4002.592 4003.146 ? 4005.242 4005.467 4005.706 4005.804 4009.713 4012.385 4012.386 4012.386 4012.496 ? Fe I Ti II Fe I Fe I Si I Cr II Fe II Fe I Fe I Fe I Fe I Fe I Fe II Ti II Ca II Fe I Fe II Mg I Al I Ni I Fe II Ni II OI La II Fe I Y II Dy II Fe I Fe I V II Fe I Al I Ca II Cr II Fe I Hg II Hg II Hg II Hg II Hg II Hg II Hg II Hg II Mn I Mn II Fe I Fe II Fe II Fe I Zr II Fe II Si II Mn II −0.92 −0.45 −0.47 −2.53 −1.09 −0.90 −1.83 −1.75 −1.65 −1.59 −2.19 −1.590 −4.030 −1.780 0.130 −0.770 −3.890 −0.760 −0.620 +0.130 −4.250 −1.600 −2.430 0.410 −1.160 −0.490 0.100 −0.600 −0.380 −0.740 −0.430 −0.320 −0.170 −0.730 −1.080 −3.000 −3.130 −3.000 −2.500 −3.100 −2.900 −2.400 −1.700 −1.490 −2.600 −1.800 −1.600 −1.810 −0.390 −0.520 −3.470 −0.610 −9.831 26140.176 9118.260 12560.933 34121.602 15394.369 42986.619 44929.549 978.074 415.933 888.132 22838.320 704.007 13671.086 9118.260 0.000 22838.320 13474.411 35051.263 0.000 29320.783 13673.186 76402.031 73768.202 3250.350 17550.800 840.213 10953.940 33412.716 26406.404 11908.270 21715.731 112.061 0.000 45730.581 21999.128 35514.000 35514.000 35514.000 35514.000 35514.000 35514.000 35514.000 35514.000 25280.982 44138.961 33412.716 79331.503 88723.398 21999.129 4205.500 22409.852 83801.952 109241.500 Fe I Tb II V II Mn II Fe I Ti II Ce II Ce II Cr II −0.640 0.570 −0.460 −1.350 −1.200 −1.610 0.470 0.470 −0.890 12560.933 1016.380 14655.630 81993.850 17927.381 4628.580 4523.033 4253.033 45669.369 3930.28 3932.99 3933.65 3935.88 3938.29 3938.45 3943.97 3944.01 3945.32 3946.51 3947.42 3948.99 3949.85 3950.28 3951.14 3952.06 3956.71 3961.60 3968.50 3979.59 3981.81 3983.951 3983.957 3983.966 3984.025 3984.045 3984.054 3984.106 3984.185 3984.12 3986.57 3987.84 3991.01 3994.03 3997.31 3998.88 4002.14 4002.67 4003.08 4003.59 4005.17 4005.44 4005.70 4005.86 4009.73 4012.31 4012.42 4012.50 4012.59 3 Comments No IS comp. ? hfs iso Blend The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 3 (Continued) l obs (Å) llab (Å) Identification 4014.56 4015.58 4017.30 4021.68 4021.88 4023.20 4023.51 4014.531 4015.506 4017.282 4021.728 4021.866 4023.220 4023.520 4023.578 4024.547 4024.725 4025.223 4026.187 4026.318 4028.322 4028.338 4028.465 4029.622 4029.684 4030.488 4032.940 4033.070 4035.595 4035.604 4036.806 4037.972 4041.360 4043.897 4043.977 4044.012 4045.812 4048.831 4051.930 4053.834 4057.461 4057.442 4057.505 4063.594 4063.637 4063.733 4063.848 4067.031 4067.978 4070.840 4071.738 4071.775 4075.623 4076.780 4076.800 4077.709 4118.545 4122.638 4128.054 4128.735 4130.872 4130.890 4132.058 4134.677 4136.902 4136.998 4143.415 4143.430 4143.826 4143.868 4144.078 Fe I Fe I V II Nd II Fe I Sm II Ca I La II Fe II Fe I CI He I Al II Dy II Ti II Si II Fe I Zr II Fe I Fe II Mn I Fe I V II Cr I Cr II Mn I Fe I Fe I Fe I Fe I Fe II Cr II Ti II Fe II Dy II Mg I Fe I Fe I Mn I Mn I Ni II Fe I Cr II Fe I Ce II Cr II Si II Fe I Sr II Fe I Fe II Si II Fe II Si II Si II Fe I Fe I Mn II Fe I Fe I NI Fe I Fe I Fe I 4024.53 4024.66 4025.24 4026.29 4028.22 4028.39 4029.56 4029.88 4030.58 4033.020 4035.59 4036.80 4037.98 4041.39 4043.97 4045.81 4048.83 4051.87 4053.85 4057.46 4063.58 4063.69 4063.70 4067..04 4068.04 4070.86 4071.73 4075.58 4076.75 4077.73 4118.57 4122.72 4128.02 4128.84 4130.88 4132.14 4134.71 4136.97 4143.39 4143.73 4144.02 log gf −0.200 −0.950 −1.210 −0.300 −0.660 −1.070 −2.270 −0.600 −2.480 −0.710 −2.870 −0.700 −1.740 1.27 −0.960 −0.360 −1.940 −0.600 −0.550 −2.570 −0.620 −1.100 −0.960 −0.560 0.280 −0.830 −1.130 −2.410 +0.280 −2.150 −2.190 −1.210 −1.550 0.960 −1.200 0.07 −0.800 −1.760 −0.650 −1.830 −0.130 −0.750 −0.020 −0.150 −3.470 −1.700 −1.180 0.170 0.280 −3.300 0.360 −3.600 −0.780 0.550 −0.650 −0.490 −1.250 −0.540 −0.200 −2.090 −1.270 −0.450 −2.565 4 Elow 24574.652 33695.394 30613.920 1470.105 22249.428 326.460 23652.305 14375.170 36252.917 26140.178 60362.630 169086.867 110089.834 20884.419 15257.553 84004.259 26339.695 5752.920 25893.936 36254.622 0.000 34039.315 4035.604 20520.900 52321.010 17052.289 26140.178 26140.178 44929.438 11976.238 44917.017 25033.700 15265.119 58668.776 23707.180 35031.263 12560.933 33095.940 34250.619 37789.930 32496.075 25899.986 52321.189 12968.554 2634.686 25035.399 79338.502 26339.695 0.000 28819.950 20830.553 79338.502 20830.553 79355.019 79355.019 12968.554 22838.320 49514.374 27543.002 24574.652 83317.831 23051.748 12560.934 58906.436 Comments 5% line Broad blend 18% line Asymetric 14% blend idem idem idem 12% line Broad blend Broad blend The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 3 (Continued) l obs (Å) llab (Å) Identification 4145.78 4149.23 4154.67 4145.782 4149.217 4154.499 4154.805 4161.535 4162.665 4163.644 4167.271 4167.299 4171.033 4171.903 4171.904 4172.122 4173.450 4173.537 4174.265 4175.83 4176.566 4167.599 4177.530 4177.686 4178.711 4178.855 4179.054 4179.421 4179.393 4179.421 4179.807 4181.513 4181.580 4181.755 4183.200 4184.867 4187.039 4187.795 4188.914 4188.977 4190.707 4191.430 4191.750 4195.184 4195.417 4195.618 4198.304 4199.095 4200.658 4200.778 4202.029 4203.965 4205.48 4205.381 4208.977 4210.343 4211.907 4213.518 4215.519 4217.419 4219.360 4222.104 4222.381 4224.860 4226.728 4227.427 4233.172 Cr II Zr II Fe I Fe I Ti II S II Ti II Mg I Fe II Mn II Cr II Ti II Fe I Fe II Ti II S II Fe II Fe I Mn I Y II Fe II Fe I Fe II V II Cr II Pr II Cr II Zr II Cr II Fe II Fe I Fe I Si II Fe I Fe I Fe II Fe II Si II Fe I Cr I Dy II Cr II Fe I Fe I Fe I Si II Fe I Fe I Fe I Fe I Mn II Zr II Fe I Zr II Fe II Sr II Ho III Fe I NI Zr II Cr II Ca I Fe I Fe II 4161.522 4162.73 4163.59 4167.28 4171.02 4171.86 4172.05 4173.50 4174.27 4175.76 4176.60 4177.66 4178.73 4178.84 4179.00 4179.42 4179.54 4179.70 4181.58 4181.75 4183.28 4184.82 4186.99 4187.81 4188.89 4190.70 4191.50 4191.77 4195.19 4195.41 4195.60 4198.33 4199.15 4200.77 4202.02 4204.02 4205.48 4209.00 4210.35 4211.90 4213.54 4215.53 4217.43 4219.39 4222.09 4222.44 4224.96 4226.73 4227.43 4233.15 log gf −1.160 −0.030 −0.690 −0.370 −2.360 0.780 −0.130 −1.600 −0.560 −2.340 −2.380 −0.290 −0.900 −2.160 −2.000 0.800 −0.620 −0.120 −0.160 −3.450 −2.930 −2.440 −2.500 −1.800 0.510 −1.770 −0.780 −2.500 −1.860 −0.180 −4.870 −0.390 −0.550 −0.550 −2.820 −1.310 −0.330 −0.670 −2.500 −0.360 −2.320 −1.800 −0.720 0.250 −0.890 −4.030 −0.710 −1.010 −5.380 −3.380 −0.460 −0.870 −1.080 −2.210 −0.170 −1.080 0.120 −1.590 −0.900 −1.250 0.240 0.230 −2.00 5 Elow 42900.629 6467.610 22838.320 27166.817 8744.250 128599.162 20891.790 35051.263 90300.626 49425.654 25042.811 20951.754 26224.966 20830.553 8744.250 140319.232 90487.827 27166.817 34138.880 3298.808 20518.744 35856.400 20830.553 13608.961 30866.837 1649.010 30864.459 13428.500 45730.581 90898.872 22838.320 21308.040 131677.039 19757.031 19562.437 84863.353 90780.619 108820.317 19912.494 20523.629 9870.990 42897.990 24335.763 19350.891 24574.655 101023.046 12968.554 11976.238 26406.464 29313.051 14593.879 5752.920 20019.633 4248.300 62693.478 0.000 8645.000 19.952 83317.031 9742.800 42989.353 0.000 26874.546 20830.582 Comments 9% line Broad absorbtion 15% line Very broad line Resonance 21% line The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 3 (Continued) l obs (Å) 4235.95 4238.82 4242.39 4244.90 4246.85 4247.49 4250.14 4250.30 4250.74 4252.71 4254.43 4528.21 4259.06 4259.27 4260.42 4261.91 4263.89 4267.14 4269.28 4271.134 4271.80 4273.24 4273.38 4274.76 4275.61 4278.20 4282.45 4284.35 4287.91 4289.50 4290.66 4294.06 4296.59 4299.18 4301.93 4302.08 4303.17 4305.38 4307.87 4309.50 4312.87 4313.89 4314.18 4314.97 4316.75 llab (Å) Identification 4233.243 4235.936 4238.731 4238.810 4238.819 4242.333 4242.364 4242.448 4244.963 4246.85 4247.425 4250.119 4250.359 4250.787 4252.632 4252.726 4252.755 4254.336 4254.522 4528.15 Cr II Fe I Mn II Fe I Fe II Mn II Cr II Mg II Nd II Sc II Fe I Fe I Fe II Fe I Cr II Fe II Fe II Cr I Cr II Fe II Mn II Mn II Mn II Fe I Cr II Cr II Fe II V II C II C II C II Cr II Fe I Fe I Fe II Fe II Cr I Cr II Fe II Fe I Mn II Mn II Fe I Ti II Mn II Fe I Ti II Fe I Fe II Fe I Ti II Fe I Fe II Sr II Fe I Ti II Fe I Y II Ti II Fe II Sc II Ti II Fe II Ti II 4260.467 4260.474 4261.913 4261.847 4263.869 4263.849 4267.001 4267.261 4267.261 4269.277 4271.153 4271.750 4273.326 4273.326 4274.797 4275.606 4278.159 4282.403 4282.490 4284.429 4287.940 4287.872 4289.58 4290.624 4294.099 4294.125 4296.572 4299.234 4301.914 4302.186 4303.176 4305.443 4305.450 4307.863 4307.902 4309.631 4312.864 4313.957 4314.975 4314.979 4316.799 log gf Elow −2.120 −0.340 −3.680 −0.280 −2.720 −1.260 −0.590 −1.070 −1.030 0.320 −0.230 −0.410 −6.150 −0.710 −2.020 −2.290 −2.170 −0.110 −0.970 −3.400 31168.581 19562.437 14781.170 27394.689 54902.315 49820.159 31219.350 9330.590 1650.205 2540.980 27166.817 19912.491 79885.523 12560.933 31117.390 74606.841 82853.660 0.000 47354.440 21812.055 Comments Wrong gf? Resonance 15 hfs 6 −4.250 −0.020 −1.530 −3.000 −1.710 −2.680 0.563 0.716 −0.584 −2.170 −0.350 −0.160 −3.260 −3.260 −0.230 −1.710 −3.820 −0.810 −1.680 −2.270 −2.110 −2.020 −2.266 −4.660 −1.110 −1.110 −3.010 −0.430 −1.160 −1.740 −2.490 −0.140 −1.300 −1.290 −0.070 −0.750 −1.160 −6.588 14901.180 19350.891 31168.581 25033.700 62049.023 13594.730 145549.27 145550.70 145550.70 31082.940 19757.031 11976.238 21812.055 21812.055 0.000 31117.390 21711.917 17550.180 44521.521 43311.301 27666.345 8710.440 43339.452 29313.005 8794.250 11976.238 21812.055 19562.437 9363.620 24574.652 21812.055 24516.650 24335.763 9393.710 12560.933 1449.808 5518.060 104315.373 −1.130 −3.100 −1.420 9363.620 38164.195 16615.060 13% blend Resonance Wrong gf ? 16% line Wrong gf 5 hfs The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 3 (Continued) l obs (Å) llab (Å) Identification log gf Elow 4320.75 4325.20 4325.73 4320.725 4325.176 4325.762 4325.758 4351.769 4351.811 4357.584 4359.720 4359.786 4362.099 4368.03 4369.411 4371.27 4374.426 4374.765 4374.815 4374.965 4383.545 4384.637 4385.387 4386.844 4388.078 4390.514 4390.572 4394.051 4395.033 4395.817 4395.850 4399.772 4400.379 4401.68 4403.033 4404.750 4404.750 4409.516 4411.074 4413.601 4415.122 4416.830 4416.830 4417.719 4418.330 4421.938 4425.53 4427.298 4427.310 4427.994 4430.614 4433.988 4434.067 4434.957 4443.008 4443.794 4444.539 4444.558 4447.504 4449.646 4450.482 4451.551 4451.606 4454.629 4455.031 4455.266 4455.621 Sc II Fe I Fe I Nd II Fe II Cr I Fe II Zr II Fe II Ni II Sm II Fe II Cr I Cr I Dy II Ti II Y II Fe I Mg II Fe II Ti II Mn I Mg II Mg II Ti II Ti II Fe II Ti II Ti II Sc II Cr II Fe II Fe I Zr II Ti II Ti II Fe II Fe I Fe II Fe II Ti II Ti II Ti II Fe I Fe I Fe I Mg II Fe I Mg II Mn II Ca I Zr II Ti II Fe II Ti II Fe II Fe II Ti II Fe II Mn I Sm II Mn I Fe II Fe I −0.260 −1.580 −0.010 0.010 −2.100 −0.440 −2.110 −0.460 −2.590 −2.720 −1.110 −3.670 −1.090 −4.737 −1.100 −1.290 0.160 0.200 −0.790 −2.570 −1.260 −1.250 −1.490 −0.530 −1.590 −0.660 −1.200 −2.170 −1.270 −0.510 −1.430 −4.187 −0.140 −1.100 −2.570 −1.050 −3.870 −0.620 −2.600 −2.600 −1.435 −2.460 −1.779 −6.806 −1.250 −3.040 −1.210 −1.660 −0.910 −1.510 −0.030 −0.420 −0.700 −2.530 −2.030 −0.920 −1.590 −1.450 −1.840 0.280 −0.590 −0.390 −2.140 −1.160 4883.370 24338.766 12968.554 3801.990 21812.055 8307.577 49100.978 9968.650 50212.823 32499.529 3052.690 22469.852 8095.1842 27703.777 4341.100 16625.110 3296.184 11976.238 80619.500 22409.852 20951.600 38120.18 80550.022 80550.022 9850.900 8744.250 90487.811 10024.730 9975.920 4883.570 7103.000 87759.062 12560.933 14739.350 9930.690 24961.031 21581.638 12968.354 22409.852 22409.852 9395.710 9975.920 16625.110 5999.394 42225.410 415.933 80619.500 17927.381 80550.022 53017.157 15210.063 11984.460 8710.440 50157.455 8997.710 90397.870 63948.792 8744.250 49506.935 2328.670 4386.030 24779.319 50212.823 36766.964 4351.81 4357.56 4359.75 4362.11 4368.05 4369.45 4371.29 4374.35 4374.74 4375.03 4383.62 4384.52 4385.38 4386.86 4388.10 4390.55 4394.07 4395.08 4395.86 4399.73 4400.50 4401.61 4402.99 4404.75 4409.50 4411.08 4413.67 4415.17 4416.78 4416.89 4417.69 4418.37 4421.92 4425.46 4427.28 4427.95 4430.56 4434.03 4434.98 4443.00 4443.84 4444.50 4447.50 4449.60 4450.49 4451.52 4451.62 4454.60 4455.03 4455.25 4455.68 7 Comments Broad blend Wrong gf 15% ? Wrong gf 10% line Wrong gf Broad The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 3 (Continued) l obs (Å) llab (Å) 4456.48 4457.26 4459.09 4456.465 ? 4459.117 4459.027 4461.653 4464.450 4466.551 4468.507 4469.376 4471.473 4471.488 4472.929 4476.068 4478.637 4481.126 4481.150 4481.325 4484.220 4489.921 4488.33 4489.179 4489.179 4389.183 4491.405 4493.512 4493.529 4494.563 4494.523 4496.980 4496.986 4501.273 4508.288 4515.339 4518.327 4520.224 4520.244 4522.634 4522.602 4522.636 4522.658 4525.034 4525.137 452 6.489 4528.473 4528.503 4528.614 4529.569 4533.969 4539.608 4541.524 4545.133 4545.148 4549.474 4549.617 4554.033 4555.027 4555.846 4555.887 4558.650 4563.761 4565.740 4571.968 4576.340 4579.86 4461.55 4464.53 4466.60 4468.51 4469.32 4471.54 4472.91 4476.12 4478.62 4481.24 4484.25 4484.91 4488.33 4489.18 4491.46 4493.58 4494.65 4496.91 4501.28 4508.24 4515.34 4518.40 4520.24 4522.65 4525.05 4526.492 4528.49 4529.48 4534.04 4539.60 4541.55 4545.04 4549.53 4554.01 4554.99 4555.94 4558.66 4563.69 4565.76 4571.98 4576.36 4579.80 Identification log gf Elow Fe II −1.120 91048.254 Fe I Ni I Fe I Ti II Fe I Ti II Fe I He I He I Fe II Fe I Mn II Mg II Mg II Mg II Fe I Fe II Ti II Ca II Ca II Fe II Fe I Ti II Fe II Fe I Ho III Zr II Mn II Ti II Fe II Fe II Ti II Fe II Fe I Fe II Eu II Eu II Eu II Fe II Fe I Fe II Ce II V II Fe I Fe II Ti II Cr II Fe II Ti II Fe II Fe II Ti II Ba II Fe I Fe II Ca I Cr II Ti II Cr II Ti II Fe II Co I −1.280 −0.150 −3.210 −2.080 −0.590 −0.600 −0.260 −0.280 −0.550 −3.450 −2.700 −0.950 0.749 −0.553 0.594 −0.720 −7.500 −0.820 −0.618 −0.730 −1.970 −2.700 −2.780 −1.430 −1.140 −1.360 −0.890 −0.860 −0.750 −2.210 −2.480 −2.550 −2.600 −2.500 −2.030 −0.680 −0.680 −0.680 −3.060 −0.340 −1.430 0.070 −1.310 −0.822 −3.190 −0.770 −2.530 −3.050 −1.870 −2.460 −1.750 −0.450 0.140 −1.090 −4.120 −0.540 −0.660 −0.960 −2.110 −0.330 −3.040 −2.657 17550.180 26665.902 704.007 9363.620 22838.320 9118.260 29469.023 169086.867 169086.943 22939.350 26623.794 53597.132 71490.190 71490.190 71491.060 29056.322 16369.360 25192.791 68056.699 68056.699 22810.356 23031.299 8710.440 63876.319 17726.988 0.000 57329.920 85895.298 8937.710 23031.299 22939.357 8710.440 22637.205 24772.016 22939.357 1669.210 1669.210 1669.210 50075.928 29056.322 90901.125 6967.547 33500.854 17550.181 44929.519 9975.920 32603.400 23031.299 9118.260 62689.878 22810.356 12774.689 0.000 31307.244 32277.322 15315.940 32854.311 9850.900 32603.400 12676.970 22439.357 54561.681 8 Comments 15% blend Wrong log(gf)? 10% 14% Blend 15% line 20% line 9% line 33% line 10% line, 15 hfs iso 15% line 7% line blend The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 3 (Continued) l obs (Å) llab (Å) Identification log gf Elow 4582.88 4583.85 4588.20 4590.03 4582.835 4583.837 4588.199 4589.958 4589.967 4592.049 4593.807 4596.015 4598.494 4600.627 4605.06 4616.629 4618.803 4620.521 4621.722 4625.893 4629.279 4629.339 4634.070 4635.316 4638.050 4648.944 4654.498 4656.981 4657.206 4663.046 4663.708 4665.79 4666.758 4670.182 4679.159 4702.991 4702.991 4707.382 4708.665 4708.750 4714.410 4736.773 4731.453 4755.727 4762.538 4764.738 4770.027 4771.742 4775.897 4779.985 4786.580 4805.085 4812.468 4824.126 4836.229 4848.235 4876.399 4876.473 4883.684 4890.755 4891.492 4891.485 4900.120 4911.193 4918.994 4918.954 4920.502 4922.192 Fe II Fe II Cr II Ti II OI Cr II Cr II Fe II Fe II Ti II Cr I Cr II Cr II Fe II Si II Fe II Ti II Fe II Cr II Fe II Fe II Fe II Fe I Fe II Ti II Al II Fe II Fe II Fe II Fe II Ni II Mg I Zr II Ti II Ti II Fe II Mn II Fe I Fe II Mn II CI Mn II CI CI CI Ti II Y II Ti II Fe I Cr II Cr II Cr II Cr II Cr II Y II Fe I Fe I Cr II Y II Ti II Fe I Fe I Fe I Fe II −3.100 −2.020 −0.630 −1.790 −2.290 −1.220 −4.920 −1.840 −1.500 −3.620 −3.361 −1.290 −1.110 −3.280 −0.380 −2.200 −2.240 −2.370 −1.240 −1.650 −1.520 −4.390 −2.780 −3.630 −2.150 −0.280 −4.270 −4.860 −3.330 −4.100 −1.750 −0.670 −0.800 −4.170 −2.210 −2.350 −3.550 −0.740 −3.360 −1.240 −2.440 −1.350 −2.720 −2.120 −2.160 −1.370 −1.290 −1.100 −5.400 −1.220 −2.250 −1.140 −1.460 −1.460 0.070 −0.430 −0.140 −3.040 −0.090 −0.340 −0.370 −0.340 0.060 −0.800 22939.357 22637.205 32836.680 9975.920 86631.453 32854.949 23317.632 30212.823 62945.040 10024.730 42261.229 32844.760 32854.949 22810.356 101024.439 48039.077 9518.060 22637.205 32844.760 48039.087 62171.614 20830.582 12560.953 23317.632 10024.730 85481.548 23317.632 21812.045 22810.356 20830.582 56371.411 35051.263 20080.301 42208.591 9375.920 78577.282 14593.819 25899.986 23317.632 43528.639 60352.630 43357.156 60352.630 60393.138 60393.138 16518.860 8328.041 16625.110 22249.428 31219.350 31117.390 31168.581 31082.940 31168.581 8743.816 23192.497 22996.673 31350.901 8328.041 25192.791 23110.937 33507.120 22845.868 83558.539 4592.10 4593.87 4596.05 4598.56 4600.26 4604.99 4616.64 4618.84 4620.52 4621.78 4625.90 4629.29 4634.98 4635.22 4638.18 4648.90 4654.48 4657.10 4663.06 4663.77 4665.72 4666.72 4670.17 4679.07 4702.95 4707.37 4708.66 4714.41 4736.82 4731.45 4755.78 4762.58 4764.71 4770.00 4771.73 4775.89 4780.06 4786.57 4805.07 4812.46 4824.15 4836.14 4848.25 4876.47 4883.67 4890.87 4891.53 4900.17 4911.23 4919.01 4920.57 4922.14 9 Comments 20% line Wrong gf? 13% Wrong gf? Wrong gf? 10% line The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 3 (Continued) l obs (Å) llab (Å) Identification log gf Elow Comments 4923.96 4932.10 4924.030 4932.049 4932.080 4934.076 4951.584 4957.596 4957.692 4967.897 4968.698 4982.499 4984.276 4990.441 4990.768 4991.268 4991.326 4992.093 4993.680 5001.863 5001.959 5004.195 5006.841 5007.447 5010.06 5014.042 5015.520 5018.440 5019.971 5020.015 5022.583 5030.89 5032.712 5040.907 5041.024 5047.641 5047.783 5047.823 5048.843 5052.167 5056.194 5056.718 5065.018 5065.097 5065.193 5070.78 5080.528 5082.230 5087.416 5087.350 5093.465 5093.576 5097.270 5098.70 5100.607 5100.852 5100.727 5129.152 5133.688 5137.088 5139.462 5142.486 5142.541 5144.355 5146.127 5149.465 Fe II CI Fe II Ba II Fe II Fe I Fe I Fe I Fe I Fe I Mn II Cr II Fe II Fe I CI Mn II Fe I Fe I Fe II Fe II Fe II Fe II Fe II S II Fe II Fe II Ca II Fe II Fe II Fe II Fe II Fe I Si II Fe II OI OI Ni I CI Ni II Fe II Fe I Fe II Fe I Co I Ni I Fe II Y II Fe II Fe II Fe II Fe II Fe I Fe II Fe II Fe II Ti II Fe I Cr II Fe I Cr II Fe I Fe II Fe II Fe II −1.321 −1.880 −1.730 −0.150 0.180 0.130 −0.330 −0.530 −1.780 0.160 −3.270 −2.380 −3.850 −0.670 −2.470 −3.670 −1.450 0.010 0.900 0.500 −0.430 −0.360 −0.850 0.030 −2.520 −1.220 −0.260 −0.720 −4.040 −1.772 0.110 −0.500 0.290 −0.070 −2.520 −3.220 −0.380 −1.650 0.500 0.220 −0.450 −0.450 −1.510 −3.341 0.130 −0.100 −0.170 −1.830 −2.140 0.110 0.310 −2.030 0.170 −1.780 0.700 −1.390 0.140 −1.530 −0.570 −2.190 −0.140 0.280 −3.910 0.400 23317.632 61981.822 83196.488 0.000 83136.488 22650.014 33801.571 33811.571 29356.743 33095.940 94886.504 47354.440 64831.941 33801.571 69744.032 86936.810 33946.933 31307.244 82853.660 82853.660 83713.596 83726.362 83726.362 113461.337 73395.932 23337.033 60611.279 22978.679 44929.549 104588.729 83812.217 34547.209 81191.341 83136.488 88631.144 88631.302 31031.041 61981.822 99154.808 83136.488 34328.750 84131.564 29371.811 55165.690 29481.020 83990.065 8743.316 83459.671 54870.528 83713.536 83713.536 17550.181 83726.362 47674.718 83726.362 15257.430 33695.394 55023.098 23711.453 50667.272 34328.750 84424.372 22810.356 84266.557 20% line 4934.11 4951.62 4957.65 4967.97 4968.77 4982.59 4984.30 4990.38 4990.73 4991.26 4992.11 4993.53 5001.88 5004.16 5006.86 5007.55 5010.04 5013.93 5015.52 5018.45 5019.95 5022.54 5030.81 5032.72 5040.94 5047.75 5048.78 5052.15 5056.11 5056.81 5065.10 5070.70 5080.60 5082.32 5087.44 5093.47 5097.16 5098.81 5100.49 5100.80 5129.18 5133.81 5137.16 5139.43 5142.48 5144.30 5146.08 5149.42 10 Resonance Very broad blend Wrong gf? Wrong gf? wrong gf? Wrong gf? 20% Broad blend The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 3 (Continued) l obs (Å) llab (Å) Identification 5154.10 5157.36 5160.84 5162.84 5167.37 5154.070 5157.282 5160.839 5162.92 5167.321 5167.488 5169.033 5171.596 5171.640 5172.684 5177.333 5180.170 5183.600 5185.902 5188.69 5191.454 5192.442 5195.124 5196.44 5197.577 5197.480 5197.577 5199.122 5205.724 5208.425 5210.626 5211.47 5213.540 5215.349 5216.814 5226.862 5226.897 5226.899 5227.481 5227.323 5232.787 5232.940 5234.625 5237.329 5247.952 5249.344 5249.437 5251.233 5251.211 5253.479 5253.514 5253.641 5234.140 5257.122 5260.259 5264.177 5264.697 5266.555 5266.957 5269.537 5270.356 5272.337 5274.964 5276.002 5279.876 5280.054 5280.054 5281.63 5282.01 Ti II Fe II Fe II NI Mg I Fe I Fe II Fe I Fe II Mg I Fe I Fe I Mg I Ti II Ti II Fe I Fe II Pr II Fe II Fe II Fe II Fe I Fe II Y II Cr I Fe I Mn I Fe II Fe II Fe II Fe I Fe I Cr I Fe II Fe II Fe II Fe I Fe II Cr II Fe II Fe II Cr II Fe II Fe II P II Fe II Fe II Cr I Fe II Fe II Fe II Fe II Fe I Co I Fe I Fe I Fe II Cr II Fe II Cr II Cr II Cr II Fe I Fe II 5169.07 5171.54 5172.73 5177.21 5180.14 5183.52 5185.80 5188.77 5191.52 5192.50 5195.00 5196.30 5197.59 5199.15 5205.74 5208.88 5210.64 5211.39 5213.57 5215.48 5216.83 5226.84 5227.41 5232.85 5234.59 5237.29 5247.95 5249.39 5251.26 5253.55 5254.12 5257.09 5260.29 5264.10 5264.59 5266.55 5266.87 5269.70 5270.30 5272.32 5275.01 5276.11 5279.99 5280.13 5281.62 5281.93 log gf −1.920 −0.310 −2.640 −1.405 −1.030 −1.260 −0.870 −1.790 −4.370 −0.400 −2.420 −1.230 −0.180 −1.350 −1.210 −0.550 −2.020 −0.130 −1.020 −2.100 −2.720 −2.320 0.100 −0.340 0.160 −3.580 −7.870 −0.820 −0.010 −0.230 −0.550 −1.250 −2.010 0.800 −0.030 −0.060 −0.190 −2.250 −1.150 0.630 −0.600 −2.430 0.510 −0.850 0.290 −1.100 −0.090 −1.950 0.030 −1.070 0.360 −2.810 −0.490 −7.244 −1.320 −1.510 −2.030 −1.29 −1.940 −2.100 −2.010 −2.010 −2.795 11 Elow 12628.731 84236.910 44915.046 94881.820 21850.405 11976.238 23317.632 11976.238 22637.205 21870.163 29798.933 40257.311 21911.173 15265.701 12758.260 24506.914 5192.442 8950.490 83713.536 26055.422 48039.087 39969.851 3713.536 8328.041 7593.150 39625.801 47212.078 84870.863 83713.536 83726.362 24506.914 34636.789 27222.944 84296.829 84344.832 83726.362 2378.453 25981.630 32854.311 84938.177 83930.015 30307.439 84844.832 84236.910 85893.219 84296.829 84296.829 35397.270 84685.198 84035.139 84710.686 65696.036 24180.861 57813.258 6928.268 12968.554 48039.087 32836.680 25805.329 32851.311 32854.949 32834.949 4059.432 108929.031 Comments 12% 20% 15% 18% 3% 7% Broad 10% Wrong gf? Wrong gf Broad 7% broad 5% 10% 5% Wrong gf 12% The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 3 (Continued) l obs (Å) llab (Å) Identification log gf Elow 5283.33 5283.94 5291.66 5294.00 5283.44 5284.109 5291.666 5294.086 5294.099 5299.30 5302.300 5302.342 5302.402 5302.431 5306.180 5305.929 5307.224 5308.408 5310.635 5310.687 5313.563 5316.615 5324.179 5325.503 5328.039 5328.934 5329.673 Ti II Fe II Fe II Fe I Nd III Mn II Fe I Mn II Mn II Mn II Fe II Cr II Ca II Cr II Fe II Cr II Cr II Fe II Fe I Fe II Fe I Fe II OI OI OI OI Cr II V II Fe II Cr II Fe II Fe II Fe II Fe I Fe I Fe I Cr II Fe I Fe I Cr II Ti II Fe I Fe II Fe II Cr II Fe II Fe I Fe I Fe II Fe I Cr II Ti I Fe I Fe II Cr II Fe II Fe I Fe II Fe II Fe II Fe II Fe I Mn II OI −3.190 0.58 −0.660 −0.650 −0.420 −0.880 −0.820 0.230 1.000 0.220 0.110 −0.850 −1.810 −0.860 −2.880 −1.650 −1.850 −0.240 −2.800 −1.470 −0.790 −2.200 −1.610 −1.410 −1.120 −1.560 −4.058 −3.890 −2.030 0.540 −2.740 −0.080 0.220 0.350 0.350 0.320 −1.650 −1.240 −0.700 −2.080 0.500 0.520 0.360 0.910 0.500 0.540 0.520 −0.440 −1.840 −2.090 −3.007 0.280 −0.310 −1.780 −2.290 0.320 −3.360 −1.660 0.460 −3.630 −0.840 −2.040 −1.880 12156.802 23317.632 84527.779 40842.150 0.000 79558.538 26479.378 79569.268 79569.268 79569.268 84870.863 86732.041 60611.179 32836.680 84527.779 32844.700 32854.949 25428.783 25899.986 25981.670 7376.64 0 84938.177 86627.777 86627.777 86627.777 86631.453 32844.760 216464.20 26055.422 32854.949 84296.829 25805.329 84685.798 53856.400 35611.622 35257.323 86782.011 7728.059 35767.561 86980.102 12628.731 34782.420 84863.353 85495.303 86980.102 85184.734 34782.420 35767.561 48708.863 7985.784 30864.459 43592.120 36079.371 84863.359 55023.098 83130.901 34843.954 25805.329 54232.193 85462.859 26352.767 40871.951 84307.200 86625.757 5299.20 5302.35 5305.99 5307.22 5308.36 5310.65 5313.57 5316.63 5324.14 5325.50 5328.11 5328.90 5329.68 5330.73 5334.85 5336.80 5337.80 5339.57 5362.92 5364.78 5367.44 5370.11 5371.42 5380.68 5381.08 5383.39 5387.02 5395.82 5401.90 5404.11 5405.67 5407.40 5408.30 5411.05 5414.56 5424.17 5425.07 5427.90 5429.87 5433.00 5433.67 5434.36 5435.14 5330.741 5334.869 5336.88 5337.732 5337.772 5339.585 5362.869 5362.957 5364.871 5367.466 5369.961 5370.164 5371.489 5371.437 5380.786 5381.015 5383.369 5387.063 5395.857 5395.751 5402.059 5404.117 5404.151 5405.663 5405.775 5407.604 5408.373 5410.910 5414.850 5414.862 5414.925 5424.068 5425.257 5428.826 5429.988 5432.967 5433.643 5434.315 5435.178 12 Comments 5% Resonance 20% line Wrong gf 10% line Wrong gf Broad blend The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 3 (Continued) l obs (Å) llab (Å) Identification log gf Elow 5436.68 5455.54 5436.618 5455.454 5455.462 5465.931 5466.908 5466.894 5481.24 5481.27 5482.308 5487.619 5492.033 5492.079 5493.833 5493.876 5502.067 5503.211 5503.212 5503.358 5506.195 5508.610 5510.639 5510.702 5510.779 5525.43 5526.770 5528.405 5529.932 5534.847 5534.890 5544.763 5549.001 5567.842 5569.617 5569.618 5572.842 5575.967 5575.980 5576.089 5577.915 5577.997 5586.842 5586.756 5588.619 5594.462 5594.563 5598.287 5603.065 5615.644 5643.880 5662.93 5748.286 5813.677 5851.442 6024.178 6103.496 6141.713 6141.731 6147.741 6149.258 6155.961 6155.971 6155.989 6156.737 6156.755 Fe II Fe I Dy II Fe II Fe II Si II Fe I Fe II Fe II Fe II Fe II Fe II Fe II Fe I Cr II Fe II Cr II Fe II Fe II Cr II Fe II Cr II Fe II Fe II Sc II Mg I Fe II Fe II Fe II Fe II Fe II Fe II Cr II Fe I Fe II Si II cr II Fe I Fe II Fe II Cr II Fe I Cr II Ca I Fe II Fe I Mn I Fe I Fe II Y II Fe II Fe II V II P II Fe II Ba II Fe I Fe II Fe II OI OI OI OI OI −0.950 0.300 −0.541 0.520 −1.880 −0.040 −1.400 −1.210 0.430 0.360 −0.900 −0.180 0.210 −0.620 −1.990 −0.090 −2.310 −0.591 0.950 −2.110 −1.000 −2.450 0.000 −4.255 0.130 −0.620 −1.870 −2.940 −0.690 0.128 −0.230 −1.890 0.080 −0.540 −0.310 −1.670 −0.100 −1.000 −0.140 −0.610 0.910 −0.210 −5.550 −0.050 −1.130 −0.370 −2.400 −0.140 −1.460 0.340 −0.680 −2.750 −0.960 0.140 −2.170 −0.030 −1.610 −2.720 −2.720 −1.400 −1.050 −1.160 −1.520 −0.930 85048.600 34843.954 9492.000 85679.698 54902.319 101024.349 33095.941 85462.937 85184.734 85462.859 85495.303 85679.698 81685.198 45293.630 33618.940 8468.514 33417.990 85495.303 84863.353 33521.110 85184.734 30864.459 85184.734 105630.764 14261.320 35051.263 54273.640 26170.181 85048.620 84863.353 84870.863 54283.218 87948.549 27559.582 27394.689 103885.252 87666.259 27666.345 85462.859 85495.303 88001.361 27166.817 31117.390 20349.261 85495.303 37521.157 35041.370 26874.547 61726.078 15682.898 87471.765 44929.549 73530.712 86743.961 50142.788 5674.824 29056.322 31364.440 31968.450 86625.757 86625.757 86625.757 86627.777 86627.777 5465.99 5466.90 5481.18 5482.21 5487.53 5492.05 5493.86 5502.08 5503.28 5506.25 5508.72 5510.66 5525.34 5526.86 5528.50 5529.92 5534.83 5544.70 5549.00 5567.95 5569.58 5572.84 5576.00 5578.00 5586.79 5588.61 5594.44 5598.30 5603.12 5615.69 5643.92 5662.74 5748.28 5813.66 5851.34 6024.27 6103.49 6141.64 6147.62 6149.26 6155.87 6156.62 13 Comments Broad Wrong gf 5% Wrong gf ? Asymetric Broad The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 3 (Continued) l obs (Å) 6158.17 6175.26 6233.61 6238.37 6239.66 6247.61 6347.12 6371.48 6383.61 6390.04 6416.90 6419.85 6432.48 6453.56 6456.47 llab (Å) Identification log gf Elow Comments 6156.778 6158.149 6158.172 6158.187 6175.146 6233.534 6238.392 6239.614 6239.665 6247.557 6347.109 6371.371 6383.722 OI OI OI OI Fe II Fe II Fe II Si II Si II Fe II Si II Si II Fe II −0.730 −1.890 −1.030 −0.440 −1.980 −2.340 −2.630 0.190 0.080 −2.330 0.300 0.000 −2.270 86627.777 86631.453 86631.453 86631.453 50187.813 44232.513 31364.440 103556.025 103556.156 31307.949 65500.472 65500.472 44784.760 5% 6416.919 6419.949 6432.680 6453.602 6456.383 Fe II Fe I Fe II OI Fe II −2.740 −0.240 −3.710 −1.360 −2.070 31387.949 38175.351 23317.632 86625.757 31483.167 ? Blend Asymetric 10% ν Cap and HR 8844 in the range 4300 to 4320 Å where 4 Ti II lines, the Sc II line at 4314.18 Å, and the Sr II line at 4305.443 Å fall. The lines of Ti II, Sc II, and Sr II are all stronger in the spectrum of HR 8844 than in that of ν Cap. Figure 4 displays the comparison of the spectra of ν Cap and HR 8844 in the range 4060 Å up to 4080 Å where the Ni II at 4067.04 Å and the Sr II resonance line at 4077.70 Å fall. These two lines are stronger in the spectrum of HR 8844 than in that of ν Cap. Finally, Figure 5 displays the comparison of the SOPHIE spectra of ν Cap and HR 8844 in the range 4260 up to 4280 Å where the C II doublet at 4267.00 Å and 4267.26 Å and the Cr II lines at 4261.92 Å and 4275.56 Å fall. The C II lines are weaker in HR 8844 than in ν Cap and the Cr II lines are slightly stronger in HR 8844. From these first comparisons, we infer that C, O should be less abundant in HR 8844 than in ν Cap, whereas Fe may be comparable and Ti, Cr, Ni, Sr, and Ba are more abundant in HR 8844 than in ν Cap. Similar trends are found when comparing the spectra of Vega and HR 8844. The abundance analysis carried out in next paragraph will confirm this. likely to be strengthened in CP stars. After proper correction for the stellar radial velocity, we found that HR 8844 does show a feature next to the Hg II 3983.93 Å line absorbing about 3.5%, and also the lines of Y II at 3982.59 Å (2%) and of Zr II at 3991.13 Å (3.5%) and 3998.97 Å (2%). Several other lines of Y II and Zr II could be identified in the spectrum of HR 8844, and have been used to derive the abundances of these elements. Second, we examined the region from 4125 Å to 4145 Å for the Si II lines at 4128.054 Å and 4130.894 Å and the Mn II line at 4136.92 Å. This Mn II line is definitely present in HR 8844 but is only a weak line (0.5%). Similarly, the lines of Mn II at 4206.37 Å and 4252.96 Å absorb respectively 1.5% and 2.0%. The abundance analysis of two Mn II lines with hyperfine structure will reveal a manganese excess of about two times the solar value. 3.2. Comparison with Spectra of ν Cap HR 8844, Vega, and ν Cap have similar effective temperatures, surface gravities, and projected equatorial velocities ve sin i . Differences in the line intensities should therefore reflect mostly differences in chemical compositions. Several spectral regions highlight the differences between HR 8844 and ν Cap. Several lines are stronger in HR 8844 than in ν Cap and Vega which shows than HR 8844 is enriched in the elements responsible for these lines with respect to ν Cap and Vega. We will only show the comparisons with ν Cap here. Figure 1 displays the comparison of the spectra of ν Cap and HR 8844 in the range from 4930 to 4940 Å where three lines of C I and the resonance line of Ba II at 4934.096 Å fall. All lines of C I are slightly stronger and the Ba II line is much stronger in HR 8844. Figure 2 displays the comparison of the spectra of ν Cap and HR 8844 in the range 6140 to 6160 Å where several lines of O I fall together with the Fe II lines at 6147.62 Å and 6149.26 Å and the Ba II line at 6141.713 Å. All O I lines are weaker in HR 8844, whereas the Ba II line is much stronger in HR 8844. Figure 3 displays the comparison of the spectra of 4. Abundance Determinations for HR 8844, ν Cap, ν Cnc, Sirius A, and HD 72660 4.1. Fundamental Parameters Determinations For HR 8844, ν Cap, and ν Cnc, we applied Napiwotzky’s (Napiwotzki et al. 1993) UVBYBETA procedure to derive the effective temperature and surface gravity. The fundamental parameters of Sirius A and HD72660 were taken, respectively, from Landstreet (2011) and Golriz & Landstreet (2016). The adopted effective temperatures, surface gravities, projected equatorial velocities, and radial velocities for HR 8844, Vega, n Cap, ν Cnc, Sirius A, and HD 72660 are collected in Table 2. The adopted values for the parameters of HR 8844 are in good agreement with the spectroscopic determination of Gebran et al. (2016). The projected equatorial velocities and radial velocities of HR 8844 and 14 The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 4 Bibliographical References for the Atomic Data Element Bibliographical Source He I He I C II OI OI OI Mg II Mg II Al II Al I Si II Si II S II S II S II Ca II Ca II Sc II Ti II Ti II Ti II Ti II V II V II V II Cr II Mn II Fe II Fe II Ni II Sr II Y II Y II Zr II Ba II Ba II La II Ce II Ce II Pr III Nd III Sm II Eu II Eu II Gd II Dy II Dy II Gd II Tb II Ho II Er II Hg II Hg II Ma60=Martin (1960) DR2006=Drake (2006) NIST/ASD=Kramida et al. (2017) KZ91=Butler & Zeippen (1991) W96=Wiese et al. (1996) NIST/ASD=Kramida et al. (2017) NIST/ASD=Kramida et al. (2017) NIST/ASD=Kramida et al. (2017) NIST/ASD=Kramida et al. (2017) NIST/ASD=Kramida et al. (2017) NIST/ASD=Kramida et al. (2017) Sh61=Shenstone (1961) GUES KP=Kurucz & Peytremann (1975) MWRB=Miller et al. (1974) NIST = “http://physics.nist.gov/PhysRefData/ASD/” T89 = Theodosiou (1989) NIST/ASD = Kramida et al. (2017) NIST/ASD = Kramida et al. (2017) NIST/ASD = Kramida et al. (2017) NIST/ASD = Kramida et al. (2017) NIST/ASD = Kramida et al. (2017) K10 = Kurucz (2010) BGF = Biemont et al. (1989) WLDSC = Wood et al. (2014) SN14 = Sansonetti & Nave (2014) KL01 = Kling et al. (2001) NIST/ASD = Kramida et al. (2017) RU98 = Raassen & Uylings (1998) K03 = Kurucz (2003) PBL95 = Pinnington et al. (1995) Bie11 = Biémont et al. (2011) MCS75 = Meggers et al. (1975a) L06 = Ljung et al. (2006) NBS = Miles & Wiese (1969) DSVD92 = Davidson et al. (1992) Zi99 = Zhiguo et al. (1999) LSCI = Lawler et al. (2009) PQWB = Palmeri et al. (2000) ISAN = A. N. Ryabtsev 2010, private communication RRKB = Ryabchikova et al. (2006) LA06 = Lawler et al. (2006) LWHS = Lawler et al. (2001b) ZLLZ = Zhiguo et al. (2000) DH06 = Den Hartog et al. (2006) WLN = Wickliffe et al. (2000) MC = Meggers et al. (1975b) DH06 = Den Hartog et al. (2006) LA01 = Lawler et al. (2001a) LA04 = Lawler et al. (2004) LA08 = Lawler et al. (2008) SR01 = Sansonetti & Reader (2001) Do03 = Dolk et al. (2003) derived the iron abundance [Fe/H] for 50 unblended Fe II lines and a set of microturbulent velocities ranging from 0.0 to 5.0 kms−1. Figure 6 shows the standard deviation of the derived [Fe/H] as a function of the microturbulent velocity. The adopted microturbulent velocities are the values which minimize the standard deviations i.e., for that value, all Fe II lines yield the same iron abundance. We therefore adopt a HD 72660 are taken from Royer et al. (2014) and for ν Cap from Royer et al. (2002). 4.2. Microturbulent Velocity Determination To derive the microturbulenct velocity of HR 8844, Vega, ν Cap, ν Cnc, Sirius A, and HD 72660, we simultaneously 15 The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Figure 1. Comparison of the C I lines and the Ba II resonance line at 4934.076 Å in the spectra of ν Cap (solid line) and HR 8844 (dashed lines). Figure 3. Comparison of four Ti II lines, the Sr II line at 4305.443 Å, the Sc II line at 4314.18 Å in the spectra of ν Cap (solid line), and HR 8844 (dashed lines). Figure 2. Comparison of the O I lines at 6155.87, 6156.62 and 6158.17 Å, the Ba II line at 6141.713 Å in the spectra of ν Cap (solid line), and HR 8844 (dashed lines). Figure 4. Comparison of the Ni II lines at 4067.04 Å, the Sr II resonance line at 4077.70 Å in the spectra of ν Cap (solid line), and HR 8844 (dashed lines). microturbulent velocity xt = 1.4  0.2 kms−1 constant with depth for HR 8844. The microturbulent velocities of the six stars are collected in Table 2. (Hubeny & Lanz 1992) to model the lines of 31 elements for HR 8844 and ν Cap. Computations were iterated varying the unknown abundance until minimization of the chi-square between the observed and synthetic spectrum was achieved. Abundances are derived for 34 elements for ν Cnc, 37 elements for Sirius A, and 37 elements for HD72660, because these three stars have significantly lower projected rotational velocities. 4.3. Model Atmospheres and Spectrum Synthesis Calculations Plane parallel model atmospheres assuming radiative equilibrium and hydrostatic equilibrium were computed using the ATLAS9 code (Kurucz 1992) for the appropriate fundamental parameters of each star. The linelist was built from Kurucz’s gfall21oct16.dat7 which includes hyperfine splitting levels. The observed wavelengths and oscillator strengths were retrieved by querying the NIST8 Atomic Spectra Database (Kramida et al. 2017) for the following atoms or ions: He I. C II, O I, Mg II, Al I, Al II, Si II, S II, Ca II, Sc II, Ti II, Cr II, Mn II, Fe II, Sr II, Ba II, and Dy II. For the other species which lack data in the Atomic Spectra Database, we have used other references to retrieve their atomic data which are collected in Table 4. A grid of synthetic spectra was computed with SYNSPEC48 7 8 4.4. The Derived Abundances of HR 8844 We used only unblended lines to derive the abundances. For a given element, the final abundance is a weighted mean of the abundances derived for each transition (the weights are derived from the NIST grade assigned to that particular transition). For several elements, in particular the heaviest elements, only one unblended line was available. These final abundances and their estimated uncertainties for HR 8844 are collected in Table 5. The determination of the uncertainties is discussed in the Appendix. Table 5 contains for each analyzed species the adopted laboratory wavelength, logarithm of oscillator strength, its source, the logarithm of the absolute abundance normalized to that of http://kurucz.harvard.edu/linelists/gfnew/gfall21oct16.dat http://www.nist.gov/ 16 The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 5 Elemental Abundances from Unblended Lines for HR 8844 Element He I He I He I He I He I He I He I He I He I He I He I He I λ (Å) log gf Reference 4471.470 4471.474 4471.474 4471.485 4471.489 4471.683 5875.598 5875.613 5875.615 5875.625 5875.640 5875.966 −2.211 −0.287 −1.035 −1.035 −0.558 −0.910 −1.516 −0.339 0.409 −0.339 0.138 −0.214 NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD log (X H)HR8844 −1.37 −1.37 −1.37 −1.37 −1.37 −1.37 −1.22 −1.22 −1.22 −1.22 −1.22 −1.22 log (X ) log (X ) - 12 10.93 −1.07 8.52 −3.48 8.83 −3.17 7.58 −4.42 6.47 −5.53 7.55 −4.45 7.33 −4.67 log (He H) = -1.30  0.45 dex ⎡ He ⎤ = -0.23  0.45 dex ⎣H⎦ C II C II 4267.261 4267.261 0.716 −0.584 NIST/ASD NIST/ASD −3.88 −3.88 log (C H) = -3.88  0.34 dex ⎡ C ⎤ = -0.40  0.34 dex ⎣H⎦ O I O I O I O I O I O I O I O I O I O I O I 5330.726 5330.741 6155.961 6155.971 6155.989 6156.737 6155.755 6156.778 6158.149 6158.172 6158.187 −2.416 −0.983 −1.363 −1.011 −1.120 −1.487 −0.898 −0.694 −1.841 −0.995 −0.409 NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD −3.27 −3.27 −3.26 −3.26 −3.26 −3.26 −3.26 −3.26 −3.26 −3.26 −3.26 log (O H) = -3.27  0.19 dex ⎡ O ⎤ = -0.09  0.19 dex ⎣H⎦ Mg II Mg II 4390.572 4427.994 −0.523 −1.208 NIST/ASD NIST/ASD −4.72 −4.82 log (Mg H) = -4.77  0.29 dex ⎡ Mg ⎤ = -0.35  0.29 dex ⎣H⎦ Al II Al I 4663.056 3944.006 −0.244 −0.635 NIST/ASD NIST/ASD −5.53 −5.75 log (Al H) = -5.64  0.20 dex ⎡ Al ⎤ = -0.097  0.20 dex ⎣H⎦ Si II Si II Si II Si II Si II Si II Si II 4128.054 4130.894 4190.72 5041.024 5055.984 5056.317 6371.37 0.359 0.552 −0.351 0.029 0.523 −0.492 −0.082 NIST/ASD NIST/ASD Sh61 NIST/ASD NIST/ASD NIST/ASD NIST/ASD −4.60 −4.60 −4.60 −4.44 −4.52 −4.52 −4.27 log (Si H) = -4.51  0.09 dex ⎡ Si ⎤ = -0.06  0.09 dex ⎣H⎦ S II S II S II 4153.06 4162.31 4162.67 0.395 0.161 0.830 NIST/ASD NIST/ASD NIST/ASD −4.67 −4.67 −4.67 17 The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 5 (Continued) Element λ (Å) log gf Reference log (X H)HR8844 log (X ) log (X ) - 12 log (S H) = -4.67  0.16 dex ⎡ S ⎤ = 0.00  0.16 dex ⎣H⎦ Ca II 3933.663 0.135 NIST/ASD −5.83 6.36 −5.64 3.17 −8.83 5.02 −6.98 4.00 −8.00 5.67 −6.33 5.39 −6.61 7.50 −4.50 log (Ca H) = -5.83  0.17 dex ⎡ Ca ⎤ = -0.19  0.17 dex ⎣H⎦ Sc II Sc II Sc II 4246.822 5031.021 5526.813 0.242 −0.400 −0.77 NIST/ASD NIST/ASD NIST/ASD −9.05 −8.98 −8.93 log (Sc H) = -8.99  0.28 dex ⎡ Sc ⎤ = -0.16  0.28 dex ⎣H⎦ Ti II Ti II Ti II Ti II Ti II Ti II Ti II Ti II Ti II Ti II 4163.644 4287.873 4290.210 4300.042 4411.072 4468.492 4563.758 5129.156 5188.687 5336.780 −0.128 −2.020 −0.848 −0.442 −0.6767 −0.620 −0.96 −1.239 −1.220 −1.700 NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD −6.78 −6.98 −6.98 −6.68 −6.78 −6.78 −6.78 −6.98 −6.87 −6.98 log (Ti H) = -6.83  0.06 dex ⎡ Ti ⎤ = 0.15  0.06 dex ⎣H⎦ V II V II V II 4005.71 4023.39 4036.78 −0.450 −0.610 −1.570 NIST/ASD K10/BGF/WLDS NIST/ASD −7.77 −7.66 −7.70 log (V H) = -7.71  0.23 dex ⎡ V ⎤ = 0.29  0.23 dex ⎣H⎦ Cr II Cr II Cr II Cr II Cr II Cr II 4558.644 4558.787 5237.322 5308.421 5313.581 5502.086 −0.660 −2.460 −1.160 −1.810 −1.650 −1.990 NIST/ASD SN14 NIST/ASD NIST/ASD NIST/ASD NIST/ASD −6.12 −6.12 −6.33 −6.18 −6.18 −6.12 log (Cr H) = -6.18  0.17 dex ⎡ Cr ⎤ = 0.16  0.17 dex ⎣H⎦ Mn II 4206.368 −1.54 NIST/ASD −6.32 log (Mn H) = -6.32  0.08 dex ⎡ Mn ⎤ = 0.30  0.08 dex ⎣H⎦ Fe II Fe II Fe II Fe II Fe II Fe II Fe II Fe II Fe II Fe II Fe II 4258.148 4273.326 4296.566 4491.397 4508.280 4515.333 4520.218 4923.921 5275.997 5316.609 5506.199 −3.500 −3.350 −2.900 −2.640 −2.300 −2.360 −2.600 −1.210 −1.900 −1.780 0.860 NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD NIST/ASD −4.65 −4.62 −4.50 −4.50 −4.50 −4.50 −4.46 −4.35 −4.50 −4.42 −4.50 18 The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 5 (Continued) Element λ (Å) log gf Reference log (X H)HR8844 log (X ) log (X ) - 12 log (Fe H) = -4.50  0.16 dex ⎡ Fe ⎤ = 0.00  0.16 dex ⎣H⎦ Ni II 4067.04 −1.834 K03 −6.05 6.25 −5.75 −8.33 2.97 −9.03 2.24 −9.16 2.60 −9.40 2.13 −9.87 −9.43 1.17 −10.83 −8.81 0.71 −11.29 −9.50 1.50 −10.50 −9.21 1.01 −10.99 −10.31 0.51 −11.49 log (Ni H) = -6.05  0.27 dex ⎡ Ni ⎤ = -0.30  0.27 dex ⎣H⎦ Sr II 4215.519 −1.610 NIST/ASD log (Sr H) = -8.33  0.18 dex ⎡ Sr ⎤ = 0.70  0.18 dex ⎣H⎦ Y II Y II 3982.592 5662.922 −0.560 0.340 NIST/ASD Bie11 −8.46 −8.46 log (Y H) = -8.46  0.17 dex ⎡ Y ⎤ = 0.70  0.17 dex ⎣H⎦ Zr II Zr II Zr II Zr II 3998.965 4442.992 4457.431 5112.270 −0.520 −0.420 −1.220 −0.850 L06 L06 L06 L06 −8.86 −8.55 −8.55 −8.55 log (Zr H) = -8.63  0.17 dex ⎡ Zr ⎤ = 0.77  0.17 dex ⎣H⎦ Ba II Ba II 4934.077 6141.713 −0.156 −0.032 NIST NIST −8.87 −8.94 log (Ba H) = -8.91  0.25 dex ⎡ Ba ⎤ = 0.97  0.25 dex ⎣H⎦ La II 4042.91 0.33 Zi99 log (La H) = -9.43  0.25 dex ⎡ La ⎤ = 1.40  0.25 dex ⎣H⎦ Pr III 5299.99 −0.66 ISAN log (Pr H) = -8.81  0.25 dex ⎡ Pr ⎤ = 2.48  0.25 dex ⎣H⎦ Nd III 5265.019 −0.720 RRKB log (Nd H) = -9.50  0.25 dex ⎡ Nd ⎤ = 1.00  0.25 dex ⎣H⎦ Sm II 4424.32 0.14 LA06 log (Sm H) = -9.21  0.25 dex ⎡ Sm ⎤ = 1.78  0.25 dex ⎣H⎦ Eu II 4129.70 −0.062 LWHS log (Eu H) = -10.31  0.25 dex ⎡ Eu ⎤ = 1.18  0.25 dex ⎣H⎦ Tb II 4005.47 −0.02 LA01 Ho II 4152.62 −0.93 LA04 no conclusion −11.74 (ul) −0.1 −12.10 0.26 −11.74 0.93 −11.07 log (Ho H) = -11.74  0.25 dex ⎡ Ho ⎤ = 0.00  0.25 dex ⎣H⎦ Er II 3906.31 0.12 LA08 −9.67 19 The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 5 (Continued) Element λ (Å) log gf Reference log (X H)HR8844 log (X ) log (X ) - 12 log (Er H) = -9.67  0.25 dex ⎡ Er ⎤ = 1.40  0.25 dex ⎣H⎦ Hg II 3983.931 hfs Do03 −6.91 1.09 −10.91 log (Hg H) = -6.91  0.23 dex ⎡ Hg ⎤ = 4.00  0.23 dex ⎣H⎦ Note. References are defined in Table 4. Figure 7. Determination of the barium overabundance from the Ba II line at 4554.03 Å in HR 8844. Figure 5. Comparison of the C II doublet at 4267.00 and 4267.26 Å, and the Cr II lines at 4261.92 and 4275.56 Å, in the spectra of ν Cap (solid line) and HR 8844 (dashed lines). a reference. The final mean abundance and its estimated uncertainty are then given. The light elements, He, C, O, and Mg, are found to be depleted in HR 8844. The helium abundance is found to be about 0.70 times the solar abundance of helium consistently from the He I lines near 4471 Å and near 5875.5 Å. The NLTE abundance correction for the λ 4471.48 Å He I line is very small as shown by Lemke (1989) for early-A-type stars and we have not corrected for it. Carbon is depleted, about 0.40 times the solar abundance from the analysis of the C II triplet at 4267 Å. Oxygen is depleted about 0.80 times the solar oxygen abundance from 12 O I transitions near 5330 Å and from 6155 to 6158 Å. Magnesium is also depleted by 0.45 times the solar abundance, aluminium is 0.8 times solar and silicon is about solar. Calcium and scandium are depleted by 0.70 times the solar abundances. As from titanium, all elements start to be mildly overabundant, except for iron. From the analysis of 12 lines, titanium is found to be about 1.41 times enriched respect to the solar abundance. The vanadium abundance is 1.88 times the solar abundance and the chromium abundance 1.45 times the solar abundance. The Mn II lines at 4206.37 Å and 4259.19 Å include hyperfine structure of the isotopes of manganese and yield two times the solar manganese abundance. The iron abundance which is solar has been derived mostly by using 16 Fe II lines of multiplets 37, 38, and 186 in the range 4500–4600 Å, whose atomic parameters are critically assessed in NIST (these are C+ and D quality lines). These Figure 6. Determination of the microturbulent velocities of HR 8844, Vega, ν Cap, ν Cnc, Sirius A, and HD 72660. hydrogen (on a scale where log (NH ) = 12) for each transition, and the solar abundance adopted for that element. In this work, we adopted Grevesse & Sauval (1998) abundances for the Sun as 20 The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 6 Comparison of the Derived Abundances for HR8844 Derived in this Work with Those of Royer et al. (2014) Element C O Mg Si Ca Sc Ti Cr Fe Sr Y Zr log (X H)HR8844 This Work log (X H)HR8844 (Royer et al. 2014) −3.880 −3.270 −4.770 −4.510 −5.830 −8.990 −6.830 −6.180 −4.500 −8.330 −8.460 −8.630 −3.700 −3.300 −4.280 −4.208 −5.823 −9.223 −7.015 −6.098 −4.466 −8.480 −9.500 −8.900 lines are widely spaced and the continuum is fairly easy to trace in this spectral region. Their synthesis always yields consistent iron abundances from the various transitions with very little dispersion. The iron abundance is probably the most accurately determined of the abundances derived here. The Sr–Y–Zr triad is overabundant by modest amounts: about five times solar for strontium, about five times for yttrium, and 5.8 times solar for zirconium. Barium is enhanced by a factor of 9.3 and the Lanthanides by factors of 15 up to 100 times solar. Figure 7 illustrates the detection of a 10 times solar overabundance for barium from the Ba II line at 4554.03 Å. Mercury is enhanced by 10,000 times the solar value. The overall abundance pattern of HR 8844 is therefore that light species tend to be almost all underabundant (He, C, O, Mg, Si, Ca, and Sc) while the iron-peak elements show mild enhancements (less than five times solar) and Sr, Y, Zr, Ba, the Lanthanides, and Hg show more and more pronounced overabundances (larger than five times solar), the largest overabundance being for Hg. The general trend therefore is that the heaviest elements are the most overabundant which strongly suggests that atomic diffusion be responsible for the chemical pattern of HR 8844. The derived abundances of HR 8844 are compared with the previous determination in Royer et al. (2014) for the 12 elements in common in Table 6 and Figure 8. We find a reasonably good agreement (within ±0.25 dex) for C, O, Ca, Sc, Cr, Fe, and Sr. Figure 8. Comparison of the abundances derived in Royer et al. (2014) and this work for the 12 elements in common. & Dworetsky (1993). This star proves to be a very good normal comparison star. The abundances in Adelman (1991) differ slightly from ours for three reasons. Although he did use a similar effective temperature and surface gravity, Adelman adopted a null microturbulent velocity for ν Cap whereas we use 0.50 kms−1. We did not necessarily use the same lines for a given element and the atomic data for the few lines have been upgraded to the latest values compiled in NIST. For ν Cnc, our abundances are almost all larger than those reported in Adelman (1989), who used fundamental parameters and a microturbulent velocity similar to ours; however, he adopted a smaller ve sin i = 13 kms−1, whereas we use 18 kms−1. We therefore have to slightly enhance the abundances to reproduce the observed profiles. Note that we determine here for the first time the abundances of several Lanthanides in ν Cnc. For Sirius A, we have compared our results with the most recent determinations of Landstreet (2011) for the elements up to Nickel and Cowley et al. (2016) for heavier elements. We use the same effective temperature, surface gravity, and a slightly lower microturbulent velocity (2.10 kms−1 rather than 2.20 kms−1 adopted by these authors). In his paper, Landstreet (2011) emphasizes that even for Sirius large differences in elemental abundances remain for C, Mg, Al, Si, S, Ca, V, Mn, Ni, and even Fe from one author to another. We find good 4.5. The Derived Abundances for the Comparison Stars ν Cap, ν CnC, Sirius A, and HD 72660 Using the same method and linelist, we have derived the elemental abundances of the normal star ν Cap, the cool HgMn star ν Cnc, the hot Am stars Sirius A, and HD 72660 to compare the found abundances of HR 8844 to those of these four stars. The found abundances for these four comparison stars are collected in Table 7. We compared the derived abundances for these four stars with published abundance studies in the literature as displayed in Table 8. We expect differences with previous analyses because of (i) differences in the adopted ve sin i or ξ and (ii) differences in the lines used and their atomic data. The found abundances for ν Cap are very close to solar for most elements in agreement with Adelman (1991) and Smith 21 The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 7 Elemental Abundances for the Comparison Stars ν Cap, ν Cnc, Sirius A, and HD 72660 Element He I He I He I He I He I He I He I He I He I He I He I He I λ (Å) 4471.470 4471.474 4471.474 4471.485 4471.489 4471.683 5875.598 5875.613 5875.615 5875.625 5875.640 5875.966 Average He I C II C II C II C I C I 4267.001 4267.261 4267.261 4932.041 5052.15 Average C N I N I 4914.94 4935.12 Average N I O I O I O I O I O I O I O I O I O I O I O I O I 5329.673 5330.726 5330.741 6155.961 6155.971 6155.989 6156.737 6155.755 6156.778 6158.149 6158.172 6158.187 Average O I Na I Na I log (X H)n Cap log (X H)n Cnc −1.77 −1.77 −1.77 −1.77 −1.77 −1.77 −1.77 −1.77 −1.77 −1.77 −1.77 −1.77 −2.07 −2.07 −2.07 −2.07 −2.07 −2.07 −2.07 −2.07 −2.07 −2.07 −2.07 −2.07 −1.07 −1.47 −1.77 −2.07 −3.48 −3.48 −3.48 −3.78 −3.78 −3.78 −4.00 −4.08 −4.00 −4.30 −4.30 −4.00 bl. −4.15 −3.48 −3.78 −4.04 −4.02 (u.l) −4.02 (u.l) −4.02 (u.l) −4.02 (u.l) −4.02 (ul) −4.02 (ul) −4.02 −4.02 −4.02 −4.02 −3.02 −3.02 −3.02 −3.02 −3.02 −3.02 −3.02 −3.02 −3.02 −3.02 −3.02 −3.02 −3.22 −3.22 −3.22 −3.22 −3.22 −3.22 −3.22 −3.22 −3.22 −3.22 −3.22 −3.22 −3.47 −3.44 −3.44 −3.63 −3.63 −3.63 −3.63 −3.63 −3.63 −3.63 −3.63 −3.63 na na na −3.57 −3.57 −3.57 −3.57 −3.57 −3.57 −3.57 −3.57 −3.57 −3.02 −3.22 −3.63 −3.57 −5.07 −5.19 −4.82 −4.97 −5.13 −4.89 6154.226 6160.747 4390.572 4427.994 4481.126 4481.150 4481.325 Average Mg II Al II Al I 4663.056 3944.006 Average Al II Si II Si II Si II Si II Si II Si II Si II Si II 4128.054 4130.894 4190.72 5041.024 5055.984 5056.317 6347.11 6371.37 log (X H)HD72660 −1.47 −1.47 −1.47 −1.47 −1.47 −1.47 −1.47 −1.47 −1.47 −1.47 −1.47 −1.47 Average Na I Mg II Mg II Mg II Mg II Mg II log (X H)Sirius −1.07 −1.07 −1.07 −1.07 −1.07 −1.07 −1.07 −1.07 −1.07 −1.07 −1.07 −1.07 −4.02 (ul) −4.02 (ul) −4.42 −4.42 −4.42 −4.42 −4.42 −4.54 −4.52 −4.53 −4.53 −4.53 −4.49 −4.49 −4.49 −4.49 −4.49 −4.42 −4.34 −4.38 −4.38 −4.38 −4.42 −4.53 −4.49 −4.38 −5.53 −5.53 −5.68 −5.68 −5.72 −5.72 −4.90 bl. −5.53 −5.68 −5.72 −4.90 −4.28 −4.28 −4.28 −4.15 −4.32 −4.32 bl. −4.26 −4.25 −4.25 −4.27 −4.15 −4.45 −4.45 −4.15 −4.45 −4.22 −4.19 −4.15 −4.13 −4.13 −4.13 −4.11 −4.11 −4.16 −4.16 −4.13 −4.05 −4.16 −4.16 −4.05 −4.13 22 The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 7 (Continued) Element λ (Å) Average Si II P II P II 6024.18 6043.13 Average P II S II S II 4153.06 4162.67 Average S II Ca II Ca II 3933.663 5019.971 Average Ca II Sc II Sc II Sc II Sc II 4246.822 4670.407 5031.021 5526.813 Average Sc II Ti II Ti II Ti II Ti II Ti II Ti II Ti II Ti II Ti II Ti II Ti II Ti II 4163.644 4287.873 4290.210 4294.090 4300.042 4411.072 4468.492 4549.622 4563.758 5129.156 5188.687 5336.780 Average Ti II V II V II V II V II 4005.71 4023.39 4035.63 4036.78 Average V II Cr II Cr II Cr II Cr II Cr II Cr II 4558.644 4558.787 5237.322 5308.421 5313.581 5502.086 Average Cr II Mn II Mn II 4206.368 4259.19 Average Mn II Fe II Fe II Fe II Fe II Fe II Fe II Fe II Fe II Fe II Fe II 4233.162 4258.148 4273.326 4296.566 4491.397 4508.280 4515.333 4520.218 4522.628 4549.195 log (X H)n Cap log (X H)n Cnc log (X H)Sirius log (X H)HD72660 −4.27 −4.30 −4.15 −6.55 (ul) −6.55 (ul) −6.55 (ul) −6.55 (ul) bl. −6.55 (ul) −6.55 −6.55 −6.55 −6.55 −4.67 (ul) −4.67 (ul) −4.67 −4.67 −4.44 −4.67 −4.29 −4.29 −4.67 −4.67 −4.55 −4.29 −5.74 −5.74 −5.86 −5.86 −6.10 −6.10 −5.64 −5.64 −5.74 −5.86 −6.10 −5.64 −8.95 −8.95 bl. −8.95 −7.68 bl. bl. −7.68 −10.68 −10.68 −10.68 −10.68 −10.65 −10.65 −10.65 −10.65 −8.95 −7.68 −10.68 −10.65 −6.80 −6.80 −6.98 −6.98 −6.80 −6.68 −7.08 bl. −6.98 −6.98 −6.98 −6.98 −6.03 −5.98 −6.28 −6.03 −5.93 −5.93 −6.07 bl. −6.08 −6.08 −6.08 −6.08 −6.70 −6.70 −6.80 −6.72 −6.68 −6.58 −6.84 bl. −6.72 −6.75 −6.75 −6.75 −6.51 −6.51 −6.51 −6.51 −6.51 −6.51 −6.51 −6.51 −6.51 −6.51 −6.51 −6.51 −6.91 −6.05 −6.72 −6.51 bl. −7.40 −7.40 −7.40 −7.30 −7.30 bl. −7.30 −7.58 −7.58 −7.58 −7.58 −7.40 −7.09 −7.40 −7.40 −7.4 −7.30 −7.58 −7.32 −6.15 −6.15 −6.23 −6.15 −6.09 −6.15 −5.55 −5.55 −5.55 −5.63 −5.55 −5.55 −5.71 −5.71 −5.75 −5.75 −5.75 −5.75 −5.73 −5.73 −5.73 na na −5.86 −6.15 −5.56 −5.74 −5.76 −6.31 −6.31 −5.76 −5.91 −6.09 −6.09 −6.22 −6.22 −6.31 −5.83 −6.09 −6.22 −4.68 −4.68 −4.68 −4.68 −4.57 −4.72 −4.65 −4.65 −4.80 −4.68 −4.42 −4.42 −4.42 −4.42 −4.44 −4.50 −4.30 −4.35 −4.50 bl. −4.10 −4.27 −4.27 −4.27 −4.32 −4.35 −4.32 −4.32 −4.39 bl. −4.10 −4.20 −4.20 −4.20 −4.20 −4.20 −4.20 −4.20 −4.20 bl. 23 −4.13 bl. −6.55 (ul) The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 7 (Continued) Element Fe II Fe II Fe II Fe II Fe II Fe II λ (Å) 4549.466 4555.888 4923.921 5275.997 5316.609 5506.199 Average Fe II Co II Co II 4962.36 4964.17 Average Co II Ni II 4679.16 Average Ni II Sr II Sr II 4077.71 4215.519 Average Sr II Y II Y II 3982.592 5662.922 Average Y II Zr II Zr II Zr II Zr II Zr II Zr II 3991.127 3998.965 4442.992 4457.431 4496.962 5112.270 Average Zr II Ba II Ba II Ba II Ba II 4554.03 4934.077 5853.0*** 6141.713 Average Ba II La II 4042.91 Average La II Ce II 4460.21 Average Ce II Pr II Pr III 4222.93 5284.69 Average Pr Nd III 5294.10 Average Nd III Sm II 4280.79 Average Sm II Eu II log (X H)n Cap log (X H)n Cnc bl. −4.35 −4.32 −4.32 −4.27 −4.20 bl. −4.20 −4.04 −4.20 −4.20 −4.20 −4.68 −4.43 −4.29 −4.18 −7.08 (ul) −7.08 (ul) −7.08 (ul) −7.08 (ul) −7.08 (ul) −7.08 (ul) −7.08 −7.08 −7.08 −7.08 −5.45 −5.15 −4.50 −5.00 −5.45 −5.15 −4.50 −5.00 −9.03 −9.03 −7.73 −7.73 −8.57 −8.73 −8.33 −8.33 −9.03 −7.73 −8.65 −8.33 −9.28 −9.28 −7.16 −7.16 −9.11 −9.11 −8.98 −8.98 −9.28 −7.16 −9.11 −8.98 bl. bl. −8.70 −9.40 −9.40 −9.40 −7.40 −7.40 −7.40 −7.50 −7.70 −7.32 bl. bl. bl. bl. −8.67 −8.67 −8.52 −8.52 −8.32 bl. −8.40 vw −9.22 −7.45 −8.67 −8.44 −9.02 −9.02 −6.93 −6.93 −9.02 −6.93 −8.50 −8.50 −8.50 −8.46 −8.87 −8.87 −8.76 −8.79 −9.02 −6.93 −8.49 −8.82 −10.83 (ul) −8.83 −9.49 −9.72 −10.83 −8.83 −9.49 −9.72 −10.42 (ul) −8.72 −9.34 −9.42 −10.42 −8.72 −9.34 −9.42 −9.29 −9.18 −11.29 (ul.) Average Gd II Tb II 4005.47 −7.08 (ul) −7.08 (ul) −9.59 −11.29 −9.59 −9.29 −9.18 −10.50 (ul.) −9.20 −9.10 bl. −10.5 −9.2 −9.10 −10.99 (ul.) −8.29 −8.99 −9.35 −10.99 −8.29 −8.99 −9.35 −9.61 −10.64 −10.79 −9.61 −10.64 −10.79 −10.88 (ul.) −8.18 −9.58 −9.48 −10.88 −8.18 −9.58 −9.48 bl. bl. bl. bl. 4129.70 4037.32 log (X H)HD72660 bl. −4.50 −4.42 −4.42 −4.42 −4.42 Average Eu II Gd II log (X H)Sirius −4.68 −4.72 −4.68 −4.68 −4.68 −4.68 24 The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 7 (Continued) Element λ (Å) Tb II 4033.027 Dy II Dy II 4000.45 4077.97 Average Dy II Ho II Ho II log (X H)n Cnc bl. −10.86 (ul.) bl. 4045.45 4152.62 bl. −11.74 (ul.) Average Er II Tm II bl. bl. bl. −9.38 bl. −9.68 −9.68 −9.38 −9.68 bl. −10.26 −9.74 −9.48 −10.26 −9.61 −8.17 −9.59 −9.99 −8.17 −9.59 −9.99 bl. bl. −10.0 bl. bl. bl. 4242.15 bl. Average Tm II Yb II −10.0 4135.095 Average Yb II Hf II Hf II 4417.36 3918.08 −10.92 (ul.) −7.44 −10.92 (ul) −8.62 −10.92 −7.44 −10.92 −8.62 bl. bl. bl. bl. −9.42 Average Hf II Os II −9.42 4158.44 Average Os II Pt II 4514.17 Average Pt II Hg II Average Hg II log (X H)HD72660 bl. −11.74 4142.91 log (X H)Sirius bl. −10.86 Average Ho II Er II log (X H)n Cap 3983.931 −10.55 −6.85 −10.55 −7.55 −10.55 −6.85 −10.55 −7.55 −10.20 (ul.) −7.20 −8.17 bl. −10.20 −7.20 −8.17 −10.91 (ul.) −7.82 −9.71 −9.20 −10.91 −7.82 −9.71 −9.20 agreement (i.e., within ±0.20 dex) with Landstreet’s (2011) abundances for O, Ca, Cr, Mn, Fe, Ni, Sr, and Ba. For elements heavier than barium, we find a fair agreement with Cowley et al. (2016) abundances for La, Pr, Nd, Sm, and Hf within±0.20 dex of their determinations. For HD 72660, we have compared our abundances with those of Golriz & Landstreet (2016) as we have used similar effective temperature, surface gravity, projected equatorial velocity, and microturbulent velocity. We find a fair agreement with Golriz & Landstreet (2016) for the abundances of several elements: C, Mg, Al, Si, S, Sc, Ti, V, Cr, Ni, and Zr. In Figure 9, we compare the found abundances for HR 8844 with our new determinations for the four comparison stars. As ν Cnc, and Sirius A, HR 8844 displays the characteristic underabundances for most elements lighter than titanium and pronounced overabundances for elements heavier which CP stars harbour. The overabundances of HR 8844 are modest for the iron-peak elements, but increase for the Sr–Y–Zr triad and barium (of the order of 10 times solar) and for the Lanthanides and of the order of 104 solar for mercury. The overabundance of manganese and mercury; the underabundances of calcium and scandium and of the lightest elements; the mild overabundances of the iron-peak elements, of the Sr–Y–Zr triad; of barium and several Rare Earths, show that HR 8844 is a new hot Am star which also Figure 9. Comparison of the abundance pattern of HR 8844, to those of ν Cap, ν Cnc, Sirius A, and HD 72660. displays characteristic enhancements of the coolest HgMn stars (as HD 72660 and Sirius A do). We therefore propose that HR 8844 be a new transition object between the Am stars and the coolest HgMn stars and as such is a very interesting star. 25 The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 8 Comparison of the Derived Abundances for ν Cap, ν Cnc, Sirius A, and HD72660 with Previous Analyses Element He C N O Na Mg Al Si P S Ca Sc Ti V Cr Mn Fe Co Ni Sr Y Zr Ba La Ce Pr Nd Sm Eu Gd Dy Ho Er Yb Os Pt Hg log (X H)n Cap A91 and SD93 log (X H)n Cnc A89 log (X H)Sirius L11 and C16 −1.07 −3.48 −4.02 −3.02 −1.19 −3.69, −3.39 −4.26 −3.33 −1.47 −3.78 −1.57 −3.88 −4.42 −5.53 −4.27 −4.61 −6.03 −4.69 −4.53 −5.68 −4.30 −4.71 −6.38 −4.59 −4.67 −5.74 −8.95 −6.91 −7.40 −6.15 −6.31 −4.68 −7.08 −5.45 −9.03 −4.85 −5.55 −9.34 −7.05 −7.64 −6.4; −6.13 −6.80; −6.69 −4.60; −4.47 −6.7 −5.80; −5.67 −8.77 −9.22 −9.02 −9.36 −9.29 −4.67 −5.86 −7.68 −6.05 −7.30 −5.56 −5.83 −4.43 −7.08 −5.15 −7.73 −7.16 −7.45 −6.93 −5.05 −6.06 −8.19 −6.38 −8.20 −5.88 −5.88 −4.60 −6.23 −5.62 −8.01 −7.76 −7.60 −6.97 −8.18 −9.29 −1.77 −4.04 −4.02 −3.63 −5.13 −4.49 −5.72 −4.15 −6.55 −4.55 −6.10 −10.68 −6.72 −7.58 −5.74 −6.09 −4.29 −7.08 −4.50 −8.65 −9.11 −8.67 −8.49 −9.49 −9.34 −9.29 −9.10 −8.99 −10.64 −9.58 −9.38 −10.26 −9.59 −10.92 −10.55 −8.17 −9.71 −1.24 −4.55 −4.08 −3.60 −4.7 −4.70 −5.65 −4.40 −6.70 −4.80 −6.00 −10.03 −6.90 −7.27 −5.75 −6.05 −4.20 −6.6 −5.15 −8.57 −9.14 −8.75 −8.40; −8.47 −9.33 −8.92 −9.09 −9.10 8.99 −10.19 −9.28 −9.16 −9.94 −9.27 −9.12 −9.55 −8.60 −9.71 −7.82 −7.82 log (X H)HD72660 GL16 −4.15 −4.02 −3.57 −4.10 −4.70 −2.50 −4.38 −4.90 −4.13 −6.55 −4.29 −5.64 −10.65 −6.51 −7.32 −5.76 −6.22 −4.18 −7.08 −5.00 −4.20 −4.90 −4.20 −7.10 −4.50 −5.40 −9.50 −6.60 −7.20 −5.65 −5.90 −3.75 −6.50 −5.15 −8.98 −8.44 −8.82 −7.90 −8.30 −9.65 −8.62 −7.55 −9.00 −12 −9.20 −9.20 Note. A91 refers to Adelman (1991), SD93 to Smith & Dworetsky (1993), A89 to Adelman (1989), L11 to Landstreet (2011), C16 to Cowley et al. (2016), and GL16 to Golriz & Landstreet (2016). Moscow, and the University of Vienna We have also used the NIST Atomic Spectra Database (version 5.4) available http://physics.nist.gov/asd. We also acknowledge the use of the ELODIE archive at OHP available athttp://atlas.obs-hp. fr/elodie/. 5. Conclusion We report here on detailed abundance determinations of the A0V star HR 8844, hitherto considered as a “normal star.” Our analysis definitely establishes that HR 8844 is a new CP star, probably a hot Am star (as Sirius A and HD 72660 are), extending the realm of Am stars to significantly higher temperatures. As HD 72660 and Sirius A, HR 8844 may well be a transition object between the Am stars and the coolest HgMn star and as such is a very interesting object. We are undertaking a monitoring of HR 8844 over its rotation period (which must be smaller than 5 days assuming a radius of about 2 solar radii for an A0V star) to search for variability due to the presence of spots or a companion. Appendix Determination of Uncertainties For a representative line of a given element, six major sources are included in the uncertainty determinations: the uncertainty on the effective temperature (sTeff ), on the surface gravity (slog g ), on the microturbulent velocity (sxt ), on the apparent rotational velocity (sve sin i ), the oscillator strength (slog gf ), and the continuum placement (scont ). These uncertainties are supposed to be independent, so that the total uncertainty stoti for a given transition (i) is We thank the OHP night assistants for their helpful support during the three observing runs. This work has made use of the VALD database (Ryabchikova et al. 2011), operated at Uppsala University, the Institute of Astronomy RAS in s 2tot i = s T2eff + s 2log g + s 2xt + s 2ve sin i + s 2log gf + s 2cont. 26 (1 ) The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Table 9 Abundance Uncertainties for the Elements Analyzed in HR 8844 Δ Teff D log g Dxt D log gf Dcontinuum s[X He I C II OI Mg II Al II Si II S II −0.30 0.079 0.00 −0.30 −0.12 0.00 0.24 0.00 −0.12 0.21 0.05 −0.06 0.00 −0.16 0.075 0.047 −0.052 0.00 −0.25 0.13 0.075 0.118 0.075 −0.028 0.25 −0.017 −0.017 −0.035 −0.053 0.062 0.00 −0.12 −0.046 −0.071 0.061 +200 K 0.15 dex +0.20 kms−1 +0.10 Δ Teff D log g Dxt D log gf Dcontinuum s[X H] +200 K 0.15 dex +0.20 kms−1 +0.10 0.19 0.29 0.20 0.092 0.159 Sc II Ti II V II Cr II Mn II Fe II Ni II Sr II 0.22 −0.079 −0.038 −0.13 0.067 0.041 0.015 −0.016 −0.23 0.03 0.028 −0.014 0.00 −0.046 0.014 0.057 0.03 0.00 −0.15 0.046 0.00 0.007 0.00 −0.015 0.014 0.079 0.041 −0.095 −0.095 0.0126 0.176 0.114 0.00 −0.155 0.079 0.138 −0.058 −0.058 −0.058 0.051 0.276 0.064 0.23 0.169 0.076 0.162 0.273 Y II Zr II Ba II La II Ce II Pr II Nd II Sm II 0.00 −0.05 0.041 0.165 0.058 0.046 0.00 −0.066 0.146 0.173 0.114 −0.032 −0.097 −0.125 −0.097 0.251 0.11 −0.125 −0.09 −0.13 −0.09 0.25 0.11 −0.13 −0.09 −0.13 −0.09 0.25 0.11 −0.13 −0.09 −0.13 −0.09 0.25 0.11 −0.13 −0.09 −0.13 −0.09 0.25 0.11 −0.13 −0.09 −0.13 −0.09 0.25 Eu II Gd II Dy II Tb II Ho II Er II Hg II 0.11 −0.13 −0.09 −0.13 −0.09 0.25 0.11 −0.13 −0.09 −0.13 −0.09 0.25 0.11 −0.13 −0.09 −0.13 −0.09 0.25 0.11 −0.13 −0.09 −0.13 −0.09 0.25 0.11 −0.13 −0.09 −0.13 −0.09 0.25 0.11 −0.13 −0.09 −0.13 −0.09 0.25 0.146 +200 K 0.15 dex +0.20 kms−1 +0.10 X The mean abundance, ⎡⎣ H ⎤⎦ , is then computed as a weighted mean of the individual abundances [X/H]i derived for each transition (i): ⎡X⎤ ⎢⎣ ⎥⎦ H = ( X 2 åi ⎡⎣ H ⎤⎦ stot i i å i (1 ) s 2tot i ) N å (1 i=1 s 2tot i ) , (2 ) (3 ) where N is the number of lines per element. The uncertainties σ for each element are collected in Table 9. ORCID iDs R. Monier M. Gebran 0.165 0.178 −0.155 0.041 −0.097 −0.108 0.079 0.23 Biémont, É, Blagoev, K., Engström, L., et al. 2011, MNRAS, 414, 3350 Butler, K., & Zeippen, C. J. 1991, JPhy4, 01, C1 Cowley, A., Cowley, C., Jaschek, M., & Jaschek, C. 1969, AJ, 74, 375 Cowley, C. R., Ayres, T. R., Castelli, F., et al. 2016, ApJ, 826, 158 Davidson, M. D., Snoek, L. C., Volten, H., & Doenszelmann, A. 1992, A&A, 255, 457 Den Hartog, E. A., Lawler, J. E., Sneden, C., & Cowan, J. J. 2006, ApJS, 167, 292 Dolk, L., Wahlgren, G. M., & Hubrig, S. 2003, A&A, 402, 299 Drake, G. 2006, in Springer Handbook of Atomic, Molecular, and Optical Physics, ed. G. Drake (New York: Springer) Eggen, O. J. 1984, ApJS, 55, 597 Eggleton, P. P., & Tokovinin, A. A. 2008, MNRAS, 389, 869 Gebran, M., Farah, W., Paletou, F., Monier, R., & Watson, V. 2016, A&A, 589, A83 Golriz, S. S., & Landstreet, J. D. 2016, MNRAS, 456, 3318 Grevesse, N., & Sauval, A. J. 1998, SSRv, 85, 161 Hubeny, I., & Lanz, T. 1992, A&A, 262, 501 Kling, R., Schnabel, R., & Griesmann, U. 2001, ApJS, 134, 173 Kramida, A., Ralchenko, Y., Reader, J. & NIST ASD Team 2017, Atomic Spectra Database, v.5, http://physics.nist.gov/asd Kurucz, R. L. 1992, RMxAA, 23, 45 Kurucz, R. L. 2003, Robert L. Kurucz Online Database of Observed and Predicted Atomic Transitions, http://kurucz.harvard.edu Kurucz, R. L. 2010, Robert L. Kurucz Online Database of Observed and Predicted Atomic Transitions, http://kurucz.harvard.edu Kurucz, R. L., & Peytremann, E. 1975, SAOSR, 362, 1 Landstreet, J. D. 2011, A&A, 528, A132 Lawler, J. E., Den Hartog, E. A., Sneden, C., & Cowan, J. J. 2006, ApJS, 162, 227 Lawler, J. E., Sneden, C., & Cowan, J. J. 2004, ApJ, 604, 850 and the total error, σ is given by 1 = s2 0.109 −0/032 0.00 −0.105 0.058 0.34 H] Δ Teff D log g Dxt D log gf Dcontinuum s[X H] Ca II 0.45 H] Δ Teff D log g Dxt D log gf Dcontinuum s[X +200 K 0.15 dex +0.20 kms−1 +0.10 https://orcid.org/0000-0002-0735-5512 https://orcid.org/0000-0002-8675-4000 References Adelman, S. J. 1989, MNRAS, 239, 487 Adelman, S. J. 1991, MNRAS, 252, 116 Biemont, E., Grevesse, N., Faires, L. M., Marsden, G., & Lawler, J. E. 1989, A&A, 209, 391 27 The Astrophysical Journal, 854:50 (28pp), 2018 February 10 Monier et al. Lawler, J. E., Sneden, C., Cowan, J. J., et al. 2008, ApJS, 178, 71 Lawler, J. E., Sneden, C., Cowan, J. J., Ivans, I. I., & Den Hartog, E. A. 2009, ApJS, 182, 51 Lawler, J. E., Wickliffe, M. E., Cowley, C. R., & Sneden, C. 2001a, ApJS, 137, 341 Lawler, J. E., Wickliffe, M. E., den Hartog, E. A., & Sneden, C. 2001b, ApJ, 563, 1075 Lemke, M. 1989, A&A, 225, 125 Ljung, G., Nilsson, H., Asplund, M., & Johansson, S. 2006, A&A, 456, 1181 Martin, W. C. 1960, JOSA, 50, 174 Meggers, W. F., Corliss, C. H., & Scribner, B. F. 1975a, Tables of Spectral-line Intensities, Part II: Arranged by Elements (Washington, D.C.: NIST) Meggers, W. F., Corliss, C. H., & Scribner, B. F. 1975b, Tables of Spectral-line Intensities, Part II: Arranged by Wavelengths (Washington, D.C.: NIST) Miles, B. M., & Wiese, W. L. 1969, AD, 1, 1 Miller, M. H., Wilkerson, T. D., Roig, R. A., & Bengtson, R. D. 1974, PhRvA, 9, 2312 Monier, R., Gebran, M., & Royer, F. 2015, A&A, 577, A96 Monier, R., Gebran, M., & Royer, F. 2016, Ap&SS, 361, 139 Napiwotzki, R., Schoenberner, D., & Wenske, V. 1993, A&A, 268, 653 Palacios, A., Gebran, M., Josselin, E., et al. 2010, A&A, 516, A13 Palmeri, P., Quinet, P., Wyart, J., & Biémont, E. 2000, PhyS, 61, 323 Perruchot, S., Kohler, D., Bouchy, F., et al. 2008, Proc. SPIE, 7014, 70140J Pinnington, E. H., Berends, R. W., & Lumsden, M. 1995, JPhB, 28, 2095 Raassen, A. J. J., & Uylings, P. H. M. 1998, JPhB, 31, 3137 Raskin, G., van Winckel, H., Hensberge, H., et al. 2011, A&A, 526, A69 Royer, F., Gebran, M., Monier, R., et al. 2014, A&A, 562, A84 Royer, F., Grenier, S., Baylac, M.-O., Gómez, A. E., & Zorec, J. 2002, A&A, 393, 897 Ryabchikova, T., Ryabtsev, A., Kochukhov, O., & Bagnulo, S. 2006, A&A, 456, 329 Ryabchikova, T. A., Pakhomov, Y. V., & Piskunov, N. E. 2011, KIzKU, 153, 61 Sansonetti, C. J., & Nave, G. 2014, ApJS, 213, 28 Sansonetti, C. J., & Reader, J. 2001, PhyS, 63, 219 Shenstone, A. G. 1961, RSPSA, 261, 153 Smith, K. C., & Dworetsky, M. M. 1993, A&A, 274, 335 Theodosiou, C. E. 1989, PhRvA, 39, 4880 Wickliffe, M. E., Lawler, J. E., & Nave, G. 2000, JQSRT, 66, 363 Wiese, W. L., Fuhr, J. R., & Deters, T. M 1996, JPCRD, M7 Wood, M. P., Lawler, J. E., Den Hartog, E. A., Sneden, C., & Cowan, J. J. 2014, ApJS, 214, 18 Zhiguo, Z., Li, Z. S., Lundberg, H., et al. 2000, JPhB, 33, 521 Zhiguo, Z., Zhongshan, L., & Zhankui, J. 1999, EPJD, 7, 499 28