organic compounds
Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368
1-Benzyl-3-[(trimethylsilyl)methyl]benzimidazolium chloride monohydrate
Mehmet Akkurt,a* Ísmail Çelik,b Hasan Küçükbay,c Nihat
Şirecid and Orhan Büyükgüngöre
a
Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039
Kayseri, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet
University, 58140 Sivas, Turkey, cDepartment of Chemistry, Faculty of Arts and
Sciences, Ínönü University, 44280 Malatya, Turkey, dDepartment of Chemistry,
Faculty of Arts and Sciences, Adıyaman University, 02040 Adıyaman, Turkey, and
e
Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University,
55139 Samsun, Turkey
Correspondence e-mail: akkurt@erciyes.edu.tr
Experimental
Received 14 June 2010; accepted 21 June 2010
Key indicators: single-crystal X-ray study; T = 296 K; mean (C–C) = 0.004 Å;
R factor = 0.049; wR factor = 0.135; data-to-parameter ratio = 18.9.
The title compound, C18H23N2Si+ClH2O, was synthesized
from 1-[(trimethylsilyl)methyl]benzimidazole and benzyl
chloride in dimethylformamide. The benzimidazole ring
system is approximately planar, with a maximum deviation
of 0.022 (2) Å, and makes an angle of 74.80 (12) with the
phenyl ring. The crystal packing is stabilized by O—H Cl,
C—H Cl, C—H O and C—H interactions between
symmetry-related molecules together with – stacking
interactions between the imidazolium and benzene rings
[centroid–centroid distance = 3.5690 (15) Å] and between the
benzene rings [centroid–centroid distance = 3.7223 (14) Å].
Related literature
For general background to benzimidazole compounds and for
the biological activity of related structures, see: Galal et al.
(2009); Huang et al. (2006); Küçükbay & Durmaz (1997);
Küçükbay et al. (1995, 2003, 2004, 2010); Lukevics et al. (2001);
Singh & Lown (2000); Tavman et al. (2005); Turner & Denny
(1996); Williams et al. (2002); Yılmaz & Küçükbay (2009);
Çetinkaya et al. (1996). For similar structures, see: Akkurt et
al. (2008, 2010).
Crystal data
C18H23N2Si+ClH2O
Mr = 348.94
Triclinic, P1
a = 9.3592 (7) Å
b = 10.9500 (9) Å
c = 11.0522 (8) Å
= 117.594 (6)
= 103.295 (6)
= 92.094 (6)
V = 963.39 (15) Å3
Z=2
Mo K radiation
= 0.27 mm1
T = 296 K
0.57 0.50 0.36 mm
Data collection
12149 measured reflections
3987 independent reflections
3241 reflections with I > 2(I)
Rint = 0.029
Stoe IPDS 2 diffractometer
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
Tmin = 0.859, Tmax = 0.909
Refinement
R[F 2 > 2(F 2)] = 0.049
wR(F 2) = 0.135
S = 1.07
3987 reflections
211 parameters
H-atom parameters constrained
max = 0.32 e Å3
min = 0.32 e Å3
Table 1
Hydrogen-bond geometry (Å, ).
Cg3 is the centroid of the C9–C14 ring.
D—H A
D—H
H A
D A
D—H A
O1—H1A Cl1
O1—H1B Cl1i
C7—H7 O1
C8—H8A Cl1
C3—H3 Cg3ii
0.86
0.85
0.93
0.97
0.93
2.45
2.45
2.51
2.81
2.69
3.257
3.250
3.170
3.703
3.526
157
158
128
153
151
(2)
(3)
(3)
(2)
(2)
Symmetry codes: (i) x þ 2; y þ 1; z þ 2; (ii) x 1; y; z.
Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: XAREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s)
used to solve structure: SIR97 (Altomare et al., 1999); program(s)
used to refine structure: SHELXL97 (Sheldrick, 2008); molecular
graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for
Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used
to prepare material for publication: WinGX (Farrugia, 1999).
o1770
Akkurt et al.
doi:10.1107/S1600536810024128
Acta Cryst. (2010). E66, o1770–o1771
organic compounds
The authors acknowledge the Faculty of Arts and Sciences,
Ondokuz Mayıs University, Turkey, for the use of the Stoe
IPDS 2 diffractometer (purchased under grant F.279 of the
University Research Fund). HK & NŞ also thank the İnönü
University Research Fund (BAPB-2008–60) for financial
support of this study.
Supplementary data and figures for this paper are available from the
IUCr electronic archives (Reference: DN2582).
References
Akkurt, M., Karaca, S., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2008).
Acta Cryst. E64, o809.
Akkurt, M., Yalçın, Ş. P., Şireci, N., Küçükbay, H. & Tahir, M. N. (2010). Acta
Cryst. E66, m253–m254.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C.,
Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J.
Appl. Cryst. 32, 115–119.
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak
Ridge National Laboratory, Tennessee, USA.
Çetinkaya, B., Çetinkaya, E., Küçükbay, H. & Durmaz, R. (1996). Arzneim.
Forsch. Drug Res. 46, 1154–1158.
Acta Cryst. (2010). E66, o1770–o1771
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
Galal, S. A., Hegab, K. H., Kassab, A. S., Rodriguez, M. L., Kerwin, S. M.,
El-Khamry, A. M. A. & El-Diwani, H. I. (2009). Eur. J. Med. Chem. 44,
1500–1508.
Huang, S. T., Hsei, I. J. & Chen, C. (2006). Bioorg. Med. Chem. 14, 6106–6119.
Küçükbay, H., Çetinkaya, E. & Durmaz, R. (1995). Arzneim. Forsch. Drug
Res. 45, 1331–1334.
Küçükbay, H. & Durmaz, B. (1997). Arzneim. Forsch. Drug Res. 47, 667–670.
Küçükbay, H., Durmaz, R., Okuyucu, N. & Günal, S. (2003). Fol. Microbiol. 48,
679–681.
Küçükbay, H., Durmaz, R., Okuyucu, N., Günal, S. & Kazaz, C. (2004).
Arzneim. Forsch./Drug Res. 54, 64–68.
Küçükbay, H., Durmaz, R., Şireci, N. & Günal, S. (2010). Asian J. Chem. 22,
2816–2824.
Lukevics, E., Arsenyan, P., Shestakova, I., Domracheva, I., Nesterova, A. &
Pudova, O. (2001). Eur. J. Med. Chem. 36, 507–515.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Singh, A. K. & Lown, J. W. (2000). Anticancer Drug Des. 15, 265–275.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
Tavman, A., Birteksöz, S. & Ötük, G. (2005). Folia Mirobiol., 50, 467–472.
Turner, P. R. & Denny, W. A. (1996). Mutat. Res. 355, 141–169.
Williams, D. A., Lemke, T. L. & Foye, O. (2002). Foye’s Principles of Medicinal
Chemistry, 5th ed. Philadelphia, USA: Lippincott Williams and Wilkins.
Yılmaz, Ü. & Küçükbay, H. (2009). Asian J. Chem. 21, 6149–6155.
Akkurt et al.
C18H23N2Si+ClH2O
o1771
supplementary materials
supplementary materials
Acta Cryst. (2010). E66, o1770-o1771
[ doi:10.1107/S1600536810024128 ]
1-Benzyl-3-[(trimethylsilyl)methyl]benzimidazolium chloride monohydrate
M. Akkurt, Í. Çelik, H. Küçükbay, N. Sireci and O. Büyükgüngör
Comment
Although there are different antibacterial and antifungal drugs used in the treatment of bacterial and fungal infections, some
of them have undesirable side effects. In addition, some of them become less effective due to the development of resistance
to these drugs (Williams et al., 2002). Therefore, many clinically effective antibacterial and antifungal drugs have become
less effective due to the development of resistance to these drugs. Since, benzimidazole compounds have been found to have
a broad range of pharmacological activity, many research groups as well as our group have been interested in these type of
heterocyclic compounds (Singh et al., 2000; Huang et al. 2006; Turner & Denny, 1996; Lukevics et al., 2001; Galal et al.
2009; Çetinkaya et al., 1996; Küçükbay et al., 1995, 1997, 2003, 2004, 2010; Yılmaz & Küçükbay, 2009; Tavman et al.,
2005). In recent years, considerable attention has been given to the synthesis of alkylsilyl substituted benzimidazole derivatives because of their properties in cancer therapy. For example, 1-(3-trimethylsilylpropyl)benzimidazole inhibits carcinoma
S-180 tumour growth in dose 1 mg.kg-1 by 62% (on ICR mice) (Lukevics et al., 2001). These properties of silylsubstituted
benzimidazole compounds, triggered us to synthesis novel trimethylsilyl substituted benzimidazole compounds. The objectives of this study were to synthesize and elucidate the crystal structure of the title compound, 1-benzyl-3-trimethylsilylmethylbenzimidazolium chloride monohydrate, (I).
In the title molecule, (Fig. 1), the benzimidazole ring system (N1/N2/C1–C7) is approximately planar, with maximum
deviations of -0.022 (2) Å for C6, -0.018 (2) for C1 and 0.015 (2) for C7. The benzimidazole (N1/N2/C1–C7) and phenyl
(C9–C14) systems make an angle of 74.80 (12)°. The values of the geometric parameters in (I) are comparable with those
observed for other similar compounds (Akkurt et al., 2008, 2010). The average value of the Si—C bond length is 1.854 (4)
Å. The angles around the Si atoms with a distorted tetrahedral geometry rang from 105.86 (16)° to 111.81 (16)°.
The crystal packing of (I) is stabilized by O—H···Cl, C—H···Cl and C—H···π interactions between symmetry-related
molecules (Fig. 2 and Table 1), together with π-π stacking interactions between imidazolium and benzene (Table 2).
Experimental
A mixture of 1-trimethylsilylmethylbenzimidazole (1.02 g, 5 mmol) and benzyl chloride (0.60 cm3, 5 mmol) in dimethylformamide (5 ml) was refluxed for 3 h. The mixture was then cooled and the volatiles were removed in vacuo. The residue
was crystallized from a dimethylformamide/ethanol (1:1). White crystals of the title compound (1.36 g, 82%) were obtained,
m.p. 425–426 K; ν(CN) = 1553 cm-1. Anal. Found: C 61.64, H 7.19, N 7.93%. Calculated for C18H25ClN2OSi: C 61.96,
H 7.22, N 8.03%. 1H NMR (δ, DMSO-d6): 10.21 (s, 1H, NCHN), 8.11 - 7.59 (m, 4H, C6H4), 7.56–7.33 (m, 5H, C6H5),
5.86 (s, 2H, CH2 benzyl), 4.30 (s, 2H, CH2Si) and 0.14 [s, 9H, (CH3)3Si]. 13C NMR (δ, DMSO-d6): 141.6 (NCHN), 134.6,
132.1, 130.8, 129.1, 128.8 and 128.3 (C6H4), 126.8, 126.5, 114.3 and 113.9 (C6H5), 49.8 (CH2 benzyl), 38.1(CH2Si) and
-2.5 [(CH3)3Si].
sup-1
supplementary materials
Refinement
All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.96 Å
(methyl) and 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl). H atoms of water molecule were located in
difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.83 (1)Å and H···H= 1.40 (2)Å)
with Uiso(H) = 1.5Ueq(O).In the last cycles of refinement, they were treated as riding on the O atoms.
Figures
Fig. 1. View of the title molecule in the asymmetric unit, with the atom numbering scheme.
Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. H atoms are
represented as small spheres of arbitrary radii and H bonds are shown as dashed lines.
Fig. 2. View of the packing and hydrogen bonding interactions of (I) down the b axis. All hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
1-Benzyl-3-[(trimethylsilyl)methyl]benzimidazolium chloride monohydrate
Crystal data
C18H23N2Si+·Cl−·H2O
Z=2
Mr = 348.94
F(000) = 372
Triclinic, P1
Dx = 1.203 Mg m−3
Hall symbol: -P 1
a = 9.3592 (7) Å
b = 10.9500 (9) Å
Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 28124 reflections
θ = 2.1–28.0°
c = 11.0522 (8) Å
µ = 0.27 mm−1
T = 296 K
Prism, colourless
0.57 × 0.50 × 0.36 mm
α = 117.594 (6)°
β = 103.295 (6)°
γ = 92.094 (6)°
V = 963.39 (15) Å3
sup-2
supplementary materials
Data collection
Stoe IPDS 2
diffractometer
Radiation source: sealed X-ray tube, 12 x 0.4 mm
long-fine focus
3987 independent reflections
3241 reflections with I > 2σ(I)
Rint = 0.029
plane graphite
-1
θmax = 26.5°, θmin = 2.1°
Detector resolution: 6.67 pixels mm
ω scans
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
Tmin = 0.859, Tmax = 0.909
h = −11→11
k = −13→12
l = −13→13
12149 measured reflections
Refinement
R[F2 > 2σ(F2)] = 0.049
Primary atom site location: structure-invariant direct
methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring
sites
wR(F2) = 0.135
H-atom parameters constrained
Refinement on F2
Least-squares matrix: full
w = 1/[σ2(Fo2) + (0.0637P)2 + 0.2683P]
S = 1.07
where P = (Fo2 + 2Fc2)/3
3987 reflections
(Δ/σ)max < 0.001
211 parameters
Δρmax = 0.32 e Å−3
0 restraints
Δρmin = −0.32 e Å−3
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The
cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds
in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used
for estimating esds involving l.s. planes.
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted Rfactors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The
observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even
larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
Si1
N1
N2
x
y
z
Uiso*/Ueq
0.53328 (7)
0.72385 (17)
0.59349 (17)
0.20172 (7)
0.36741 (17)
0.36730 (17)
0.79168 (6)
0.52896 (17)
0.66907 (17)
0.05705 (19)
0.0466 (4)
0.0466 (4)
sup-3
supplementary materials
C1
C2
H2
C3
H3
C4
H4
C5
H5
C6
C7
H7
C8
H8A
H8B
C9
C10
H10
C11
H11
C12
H12
C13
H13
C14
H14
C15
H15A
H15B
C16
H16A
H16B
H16C
C17
H17A
H17B
H17C
C18
H18A
H18B
H18C
O1
H1A
H1B
Cl1
sup-4
0.4923 (2)
0.3377 (2)
0.2816
0.2721 (2)
0.1688
0.3560 (2)
0.3071
0.5084 (2)
0.5641
0.57570 (19)
0.7293 (2)
0.8165
0.8534 (2)
0.9413
0.8371
0.8803 (2)
0.8520 (3)
0.8171
0.8748 (3)
0.8546
0.9272 (3)
0.9404
0.9600 (3)
0.9980
0.9372 (3)
0.9602
0.5549 (3)
0.4625
0.6320
0.3837 (3)
0.4063
0.2907
0.3767
0.4849 (4)
0.4744
0.3928
0.5624
0.7121 (3)
0.7028
0.7869
0.7403
0.9113 (3)
0.9910
0.9090
1.14370 (9)
0.33506 (19)
0.3101 (2)
0.3104
0.2847 (2)
0.2667
0.2853 (3)
0.2682
0.3104 (2)
0.3111
0.33479 (19)
0.3855 (2)
0.4079
0.3833 (2)
0.4273
0.4442
0.2461 (2)
0.2111 (3)
0.2741
0.0831 (4)
0.0600
−0.0100 (3)
−0.0970
0.0255 (3)
−0.0367
0.1527 (3)
0.1760
0.3754 (2)
0.4122
0.4406
0.0757 (3)
0.0662
0.1090
−0.0135
0.2374 (4)
0.1524
0.2732
0.3050
0.1391 (3)
0.0478
0.2023
0.1344
0.6314 (2)
0.6000
0.6350
0.44812 (10)
0.54087 (19)
0.4971 (2)
0.5566
0.3611 (2)
0.3276
0.2717 (2)
0.1806
0.3150 (2)
0.2555
0.4512 (2)
0.6574 (2)
0.7293
0.4794 (2)
0.5602
0.4377
0.3720 (2)
0.2308 (3)
0.2014
0.1329 (3)
0.0377
0.1753 (4)
0.1089
0.3158 (4)
0.3451
0.4141 (3)
0.5095
0.7947 (2)
0.8003
0.8796
0.6328 (3)
0.5487
0.6377
0.6297
0.9569 (3)
0.9619
0.9569
1.0376
0.7877 (3)
0.7796
0.8737
0.7076
0.9603 (2)
0.9420
1.0380
0.80296 (8)
0.0428 (4)
0.0521 (5)
0.063*
0.0587 (5)
0.070*
0.0592 (5)
0.071*
0.0532 (5)
0.064*
0.0432 (4)
0.0505 (5)
0.061*
0.0547 (5)
0.066*
0.066*
0.0510 (5)
0.0717 (7)
0.086*
0.0935 (10)
0.112*
0.0947 (10)
0.114*
0.0909 (10)
0.109*
0.0700 (7)
0.084*
0.0549 (5)
0.066*
0.066*
0.0812 (8)
0.122*
0.122*
0.122*
0.1001 (10)
0.150*
0.150*
0.150*
0.0899 (9)
0.135*
0.135*
0.135*
0.1024 (7)
0.154*
0.154*
0.0961 (3)
supplementary materials
Atomic displacement parameters (Å2)
Si1
N1
N2
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
O1
Cl1
U11
0.0616 (4)
0.0349 (8)
0.0448 (9)
0.0401 (9)
0.0404 (10)
0.0358 (10)
0.0471 (12)
0.0486 (11)
0.0343 (9)
0.0418 (10)
0.0360 (10)
0.0311 (9)
0.0529 (13)
0.0647 (17)
0.0684 (18)
0.087 (2)
0.0671 (15)
0.0599 (12)
0.0781 (18)
0.142 (3)
0.0818 (19)
0.1114 (17)
0.0818 (5)
U22
0.0668 (4)
0.0565 (9)
0.0524 (9)
0.0458 (9)
0.0611 (12)
0.0717 (14)
0.0770 (14)
0.0686 (13)
0.0484 (10)
0.0554 (11)
0.0667 (13)
0.0671 (12)
0.1023 (19)
0.126 (3)
0.0793 (19)
0.088 (2)
0.0864 (17)
0.0622 (12)
0.0771 (17)
0.111 (2)
0.093 (2)
0.0974 (15)
0.1278 (7)
U33
0.0477 (3)
0.0533 (9)
0.0460 (8)
0.0466 (9)
0.0632 (12)
0.0673 (13)
0.0527 (11)
0.0516 (11)
0.0507 (10)
0.0511 (11)
0.0736 (13)
0.0673 (12)
0.0737 (15)
0.0702 (17)
0.120 (3)
0.146 (3)
0.0943 (18)
0.0420 (10)
0.0790 (17)
0.0703 (17)
0.088 (2)
0.0822 (13)
0.0780 (5)
U12
0.0106 (3)
0.0048 (7)
0.0074 (7)
0.0086 (7)
0.0110 (9)
0.0081 (9)
0.0088 (10)
0.0106 (9)
0.0068 (7)
0.0031 (8)
0.0050 (9)
0.0090 (8)
0.0312 (13)
0.0308 (17)
0.0195 (15)
0.0402 (16)
0.0279 (13)
0.0129 (10)
−0.0077 (13)
0.022 (2)
0.0247 (16)
0.0288 (13)
0.0348 (4)
U13
0.0191 (3)
0.0145 (7)
0.0162 (7)
0.0162 (8)
0.0240 (9)
0.0120 (9)
0.0087 (9)
0.0193 (9)
0.0145 (8)
0.0079 (8)
0.0216 (9)
0.0197 (9)
0.0236 (12)
0.0212 (14)
0.0432 (18)
0.069 (2)
0.0444 (14)
0.0203 (9)
0.0151 (14)
0.0513 (19)
0.0135 (16)
0.0144 (12)
0.0259 (4)
U23
0.0301 (3)
0.0295 (8)
0.0251 (7)
0.0238 (8)
0.0324 (10)
0.0339 (11)
0.0333 (11)
0.0340 (10)
0.0260 (8)
0.0260 (9)
0.0412 (11)
0.0400 (10)
0.0498 (15)
0.0299 (17)
0.0266 (18)
0.077 (2)
0.0631 (15)
0.0217 (9)
0.0347 (14)
0.0526 (17)
0.0423 (17)
0.0355 (12)
0.0465 (4)
Geometric parameters (Å, °)
Si1—C18
Si1—C17
Si1—C16
Si1—C15
N1—C7
N1—C6
N1—C8
N2—C7
N2—C1
N2—C15
C1—C2
C1—C6
C2—C3
C2—H2
C3—C4
C3—H3
C4—C5
C4—H4
C5—C6
1.834 (3)
1.850 (3)
1.852 (3)
1.890 (2)
1.328 (3)
1.386 (2)
1.476 (2)
1.324 (2)
1.387 (2)
1.478 (2)
1.389 (3)
1.394 (2)
1.374 (3)
0.9300
1.398 (3)
0.9300
1.369 (3)
0.9300
1.384 (3)
C9—C10
C9—C14
C10—C11
C10—H10
C11—C12
C11—H11
C12—C13
C12—H12
C13—C14
C13—H13
C14—H14
C15—H15A
C15—H15B
C16—H16A
C16—H16B
C16—H16C
C17—H17A
C17—H17B
C17—H17C
1.378 (3)
1.383 (3)
1.380 (4)
0.9300
1.368 (5)
0.9300
1.367 (5)
0.9300
1.376 (4)
0.9300
0.9300
0.9700
0.9700
0.9600
0.9600
0.9600
0.9600
0.9600
0.9600
sup-5
supplementary materials
C5—H5
C7—H7
C8—C9
C8—H8A
C8—H8B
0.9300
0.9300
1.497 (3)
0.9700
0.9700
C18—H18A
C18—H18B
C18—H18C
O1—H1A
O1—H1B
0.9600
0.9600
0.9600
0.8598
0.8466
C18—Si1—C17
C18—Si1—C16
C17—Si1—C16
C18—Si1—C15
C17—Si1—C15
C16—Si1—C15
C7—N1—C6
C7—N1—C8
C6—N1—C8
C7—N2—C1
C7—N2—C15
C1—N2—C15
N2—C1—C2
N2—C1—C6
C2—C1—C6
C3—C2—C1
C3—C2—H2
C1—C2—H2
C2—C3—C4
C2—C3—H3
C4—C3—H3
C5—C4—C3
C5—C4—H4
C3—C4—H4
C4—C5—C6
C4—C5—H5
C6—C5—H5
C5—C6—N1
C5—C6—C1
N1—C6—C1
N2—C7—N1
N2—C7—H7
N1—C7—H7
N1—C8—C9
N1—C8—H8A
C9—C8—H8A
N1—C8—H8B
C9—C8—H8B
H8A—C8—H8B
C10—C9—C14
C10—C9—C8
111.82 (16)
110.58 (15)
110.93 (16)
107.44 (14)
105.86 (13)
110.04 (12)
108.20 (15)
125.70 (17)
126.08 (16)
108.16 (15)
126.39 (17)
125.43 (16)
131.97 (17)
106.56 (16)
121.45 (18)
116.40 (18)
121.8
121.8
122.03 (19)
119.0
119.0
121.6 (2)
119.2
119.2
116.92 (18)
121.5
121.5
131.92 (17)
121.62 (17)
106.41 (16)
110.68 (17)
124.7
124.7
112.22 (16)
109.2
109.2
109.2
109.2
107.9
118.7 (2)
121.3 (2)
C14—C9—C8
C9—C10—C11
C9—C10—H10
C11—C10—H10
C12—C11—C10
C12—C11—H11
C10—C11—H11
C13—C12—C11
C13—C12—H12
C11—C12—H12
C12—C13—C14
C12—C13—H13
C14—C13—H13
C13—C14—C9
C13—C14—H14
C9—C14—H14
N2—C15—Si1
N2—C15—H15A
Si1—C15—H15A
N2—C15—H15B
Si1—C15—H15B
H15A—C15—H15B
Si1—C16—H16A
Si1—C16—H16B
H16A—C16—H16B
Si1—C16—H16C
H16A—C16—H16C
H16B—C16—H16C
Si1—C17—H17A
Si1—C17—H17B
H17A—C17—H17B
Si1—C17—H17C
H17A—C17—H17C
H17B—C17—H17C
Si1—C18—H18A
Si1—C18—H18B
H18A—C18—H18B
Si1—C18—H18C
H18A—C18—H18C
H18B—C18—H18C
H1A—O1—H1B
120.0 (2)
120.5 (3)
119.8
119.8
120.2 (3)
119.9
119.9
119.7 (3)
120.1
120.1
120.4 (3)
119.8
119.8
120.4 (3)
119.8
119.8
113.64 (13)
108.8
108.8
108.8
108.8
107.7
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
107.0
C7—N2—C1—C2
C15—N2—C1—C2
−178.0 (2)
3.6 (3)
C15—N2—C7—N1
C6—N1—C7—N2
178.44 (17)
−0.3 (2)
sup-6
supplementary materials
C7—N2—C1—C6
C15—N2—C1—C6
N2—C1—C2—C3
C6—C1—C2—C3
C1—C2—C3—C4
C2—C3—C4—C5
C3—C4—C5—C6
C4—C5—C6—N1
C4—C5—C6—C1
C7—N1—C6—C5
C8—N1—C6—C5
C7—N1—C6—C1
C8—N1—C6—C1
N2—C1—C6—C5
C2—C1—C6—C5
N2—C1—C6—N1
C2—C1—C6—N1
C1—N2—C7—N1
0.1 (2)
−178.27 (17)
178.1 (2)
0.2 (3)
−0.6 (3)
0.4 (4)
0.2 (3)
−177.7 (2)
−0.6 (3)
177.7 (2)
−0.7 (3)
0.3 (2)
−178.13 (17)
−177.97 (18)
0.4 (3)
−0.2 (2)
178.10 (18)
0.1 (2)
C8—N1—C7—N2
C7—N1—C8—C9
C6—N1—C8—C9
N1—C8—C9—C10
N1—C8—C9—C14
C14—C9—C10—C11
C8—C9—C10—C11
C9—C10—C11—C12
C10—C11—C12—C13
C11—C12—C13—C14
C12—C13—C14—C9
C10—C9—C14—C13
C8—C9—C14—C13
C7—N2—C15—Si1
C1—N2—C15—Si1
C18—Si1—C15—N2
C17—Si1—C15—N2
C16—Si1—C15—N2
178.18 (18)
109.6 (2)
−72.2 (2)
108.7 (2)
−72.5 (2)
2.3 (4)
−178.8 (2)
−0.5 (4)
−1.5 (5)
1.7 (5)
0.2 (4)
−2.2 (3)
179.0 (2)
−91.7 (2)
86.4 (2)
60.61 (19)
−179.77 (18)
−59.84 (19)
Hydrogen-bond geometry (Å, °)
Cg3 is the centroid of the C9–C14 ring.
D—H···A
O1—H1A···Cl1
D—H
0.86
H···A
2.45
D···A
3.257 (2)
D—H···A
157
O1—H1B···Cl1i
C7—H7···O1
C8—H8A···Cl1
0.85
2.45
3.250 (3)
158
0.93
0.97
2.51
2.81
3.170 (3)
3.703 (2)
128
153
0.93
C3—H3···Cg3ii
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) x−1, y, z.
2.69
3.526 (2)
151
Table 2
π–π stacking in the title compound (Å, °).
Cg1 is the centroid of the N1, C6, C1, N2, C7 ring and Cg2 is the centroid of C1 to C6 ring. Offset is the angle between the centroidto-centroid and plane-to-plane vectors.
Centroid–centroid
plane–plane
offset
Cg1···Cg2i
3.5690 (15)
3.430 (1)
16.0
3.7223 (14)
Cg2···Cg2i
Symmetry code: (i) 1-x, 1-y, 1-z.
3.446 (1)
22.2
sup-7
supplementary materials
Fig. 1
sup-8
supplementary materials
Fig. 2
sup-9