Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

1Benzyl3-[(trimethylsilyl)methyl]benzimidazolium chloride monohydrate

2010, Acta Crystallographica Section E-structure Reports Online

organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 1-Benzyl-3-[(trimethylsilyl)methyl]benzimidazolium chloride monohydrate Mehmet Akkurt,a* Ísmail Çelik,b Hasan Küçükbay,c Nihat Şirecid and Orhan Büyükgüngöre a Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 58140 Sivas, Turkey, cDepartment of Chemistry, Faculty of Arts and Sciences, Ínönü University, 44280 Malatya, Turkey, dDepartment of Chemistry, Faculty of Arts and Sciences, Adıyaman University, 02040 Adıyaman, Turkey, and e Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr Experimental Received 14 June 2010; accepted 21 June 2010 Key indicators: single-crystal X-ray study; T = 296 K; mean (C–C) = 0.004 Å; R factor = 0.049; wR factor = 0.135; data-to-parameter ratio = 18.9. The title compound, C18H23N2Si+ClH2O, was synthesized from 1-[(trimethylsilyl)methyl]benzimidazole and benzyl chloride in dimethylformamide. The benzimidazole ring system is approximately planar, with a maximum deviation of 0.022 (2) Å, and makes an angle of 74.80 (12) with the phenyl ring. The crystal packing is stabilized by O—H  Cl, C—H  Cl, C—H  O and C—H   interactions between symmetry-related molecules together with – stacking interactions between the imidazolium and benzene rings [centroid–centroid distance = 3.5690 (15) Å] and between the benzene rings [centroid–centroid distance = 3.7223 (14) Å]. Related literature For general background to benzimidazole compounds and for the biological activity of related structures, see: Galal et al. (2009); Huang et al. (2006); Küçükbay & Durmaz (1997); Küçükbay et al. (1995, 2003, 2004, 2010); Lukevics et al. (2001); Singh & Lown (2000); Tavman et al. (2005); Turner & Denny (1996); Williams et al. (2002); Yılmaz & Küçükbay (2009); Çetinkaya et al. (1996). For similar structures, see: Akkurt et al. (2008, 2010). Crystal data C18H23N2Si+ClH2O Mr = 348.94 Triclinic, P1 a = 9.3592 (7) Å b = 10.9500 (9) Å c = 11.0522 (8) Å = 117.594 (6) = 103.295 (6) = 92.094 (6) V = 963.39 (15) Å3 Z=2 Mo K radiation  = 0.27 mm1 T = 296 K 0.57  0.50  0.36 mm Data collection 12149 measured reflections 3987 independent reflections 3241 reflections with I > 2(I) Rint = 0.029 Stoe IPDS 2 diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) Tmin = 0.859, Tmax = 0.909 Refinement R[F 2 > 2(F 2)] = 0.049 wR(F 2) = 0.135 S = 1.07 3987 reflections 211 parameters H-atom parameters constrained max = 0.32 e Å3 min = 0.32 e Å3 Table 1 Hydrogen-bond geometry (Å,  ). Cg3 is the centroid of the C9–C14 ring. D—H  A D—H H  A D  A D—H  A O1—H1A  Cl1 O1—H1B  Cl1i C7—H7  O1 C8—H8A  Cl1 C3—H3  Cg3ii 0.86 0.85 0.93 0.97 0.93 2.45 2.45 2.51 2.81 2.69 3.257 3.250 3.170 3.703 3.526 157 158 128 153 151 (2) (3) (3) (2) (2) Symmetry codes: (i) x þ 2; y þ 1; z þ 2; (ii) x  1; y; z. Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: XAREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999). o1770 Akkurt et al. doi:10.1107/S1600536810024128 Acta Cryst. (2010). E66, o1770–o1771 organic compounds The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). HK & NŞ also thank the İnönü University Research Fund (BAPB-2008–60) for financial support of this study. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2582). References Akkurt, M., Karaca, S., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2008). Acta Cryst. E64, o809. Akkurt, M., Yalçın, Ş. P., Şireci, N., Küçükbay, H. & Tahir, M. N. (2010). Acta Cryst. E66, m253–m254. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Çetinkaya, B., Çetinkaya, E., Küçükbay, H. & Durmaz, R. (1996). Arzneim. Forsch. Drug Res. 46, 1154–1158. Acta Cryst. (2010). E66, o1770–o1771 Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. Galal, S. A., Hegab, K. H., Kassab, A. S., Rodriguez, M. L., Kerwin, S. M., El-Khamry, A. M. A. & El-Diwani, H. I. (2009). Eur. J. Med. Chem. 44, 1500–1508. Huang, S. T., Hsei, I. J. & Chen, C. (2006). Bioorg. Med. Chem. 14, 6106–6119. Küçükbay, H., Çetinkaya, E. & Durmaz, R. (1995). Arzneim. Forsch. Drug Res. 45, 1331–1334. Küçükbay, H. & Durmaz, B. (1997). Arzneim. Forsch. Drug Res. 47, 667–670. Küçükbay, H., Durmaz, R., Okuyucu, N. & Günal, S. (2003). Fol. Microbiol. 48, 679–681. Küçükbay, H., Durmaz, R., Okuyucu, N., Günal, S. & Kazaz, C. (2004). Arzneim. Forsch./Drug Res. 54, 64–68. Küçükbay, H., Durmaz, R., Şireci, N. & Günal, S. (2010). Asian J. Chem. 22, 2816–2824. Lukevics, E., Arsenyan, P., Shestakova, I., Domracheva, I., Nesterova, A. & Pudova, O. (2001). Eur. J. Med. Chem. 36, 507–515. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Singh, A. K. & Lown, J. W. (2000). Anticancer Drug Des. 15, 265–275. Spek, A. L. (2009). Acta Cryst. D65, 148–155. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Tavman, A., Birteksöz, S. & Ötük, G. (2005). Folia Mirobiol., 50, 467–472. Turner, P. R. & Denny, W. A. (1996). Mutat. Res. 355, 141–169. Williams, D. A., Lemke, T. L. & Foye, O. (2002). Foye’s Principles of Medicinal Chemistry, 5th ed. Philadelphia, USA: Lippincott Williams and Wilkins. Yılmaz, Ü. & Küçükbay, H. (2009). Asian J. Chem. 21, 6149–6155. Akkurt et al.  C18H23N2Si+ClH2O o1771 supplementary materials supplementary materials Acta Cryst. (2010). E66, o1770-o1771 [ doi:10.1107/S1600536810024128 ] 1-Benzyl-3-[(trimethylsilyl)methyl]benzimidazolium chloride monohydrate M. Akkurt, Í. Çelik, H. Küçükbay, N. Sireci and O. Büyükgüngör Comment Although there are different antibacterial and antifungal drugs used in the treatment of bacterial and fungal infections, some of them have undesirable side effects. In addition, some of them become less effective due to the development of resistance to these drugs (Williams et al., 2002). Therefore, many clinically effective antibacterial and antifungal drugs have become less effective due to the development of resistance to these drugs. Since, benzimidazole compounds have been found to have a broad range of pharmacological activity, many research groups as well as our group have been interested in these type of heterocyclic compounds (Singh et al., 2000; Huang et al. 2006; Turner & Denny, 1996; Lukevics et al., 2001; Galal et al. 2009; Çetinkaya et al., 1996; Küçükbay et al., 1995, 1997, 2003, 2004, 2010; Yılmaz & Küçükbay, 2009; Tavman et al., 2005). In recent years, considerable attention has been given to the synthesis of alkylsilyl substituted benzimidazole derivatives because of their properties in cancer therapy. For example, 1-(3-trimethylsilylpropyl)benzimidazole inhibits carcinoma S-180 tumour growth in dose 1 mg.kg-1 by 62% (on ICR mice) (Lukevics et al., 2001). These properties of silylsubstituted benzimidazole compounds, triggered us to synthesis novel trimethylsilyl substituted benzimidazole compounds. The objectives of this study were to synthesize and elucidate the crystal structure of the title compound, 1-benzyl-3-trimethylsilylmethylbenzimidazolium chloride monohydrate, (I). In the title molecule, (Fig. 1), the benzimidazole ring system (N1/N2/C1–C7) is approximately planar, with maximum deviations of -0.022 (2) Å for C6, -0.018 (2) for C1 and 0.015 (2) for C7. The benzimidazole (N1/N2/C1–C7) and phenyl (C9–C14) systems make an angle of 74.80 (12)°. The values of the geometric parameters in (I) are comparable with those observed for other similar compounds (Akkurt et al., 2008, 2010). The average value of the Si—C bond length is 1.854 (4) Å. The angles around the Si atoms with a distorted tetrahedral geometry rang from 105.86 (16)° to 111.81 (16)°. The crystal packing of (I) is stabilized by O—H···Cl, C—H···Cl and C—H···π interactions between symmetry-related molecules (Fig. 2 and Table 1), together with π-π stacking interactions between imidazolium and benzene (Table 2). Experimental A mixture of 1-trimethylsilylmethylbenzimidazole (1.02 g, 5 mmol) and benzyl chloride (0.60 cm3, 5 mmol) in dimethylformamide (5 ml) was refluxed for 3 h. The mixture was then cooled and the volatiles were removed in vacuo. The residue was crystallized from a dimethylformamide/ethanol (1:1). White crystals of the title compound (1.36 g, 82%) were obtained, m.p. 425–426 K; ν(CN) = 1553 cm-1. Anal. Found: C 61.64, H 7.19, N 7.93%. Calculated for C18H25ClN2OSi: C 61.96, H 7.22, N 8.03%. 1H NMR (δ, DMSO-d6): 10.21 (s, 1H, NCHN), 8.11 - 7.59 (m, 4H, C6H4), 7.56–7.33 (m, 5H, C6H5), 5.86 (s, 2H, CH2 benzyl), 4.30 (s, 2H, CH2Si) and 0.14 [s, 9H, (CH3)3Si]. 13C NMR (δ, DMSO-d6): 141.6 (NCHN), 134.6, 132.1, 130.8, 129.1, 128.8 and 128.3 (C6H4), 126.8, 126.5, 114.3 and 113.9 (C6H5), 49.8 (CH2 benzyl), 38.1(CH2Si) and -2.5 [(CH3)3Si]. sup-1 supplementary materials Refinement All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.96 Å (methyl) and 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.83 (1)Å and H···H= 1.40 (2)Å) with Uiso(H) = 1.5Ueq(O).In the last cycles of refinement, they were treated as riding on the O atoms. Figures Fig. 1. View of the title molecule in the asymmetric unit, with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii and H bonds are shown as dashed lines. Fig. 2. View of the packing and hydrogen bonding interactions of (I) down the b axis. All hydrogen atoms not involved in hydrogen bonding have been omitted for clarity. 1-Benzyl-3-[(trimethylsilyl)methyl]benzimidazolium chloride monohydrate Crystal data C18H23N2Si+·Cl−·H2O Z=2 Mr = 348.94 F(000) = 372 Triclinic, P1 Dx = 1.203 Mg m−3 Hall symbol: -P 1 a = 9.3592 (7) Å b = 10.9500 (9) Å Mo Kα radiation, λ = 0.71073 Å Cell parameters from 28124 reflections θ = 2.1–28.0° c = 11.0522 (8) Å µ = 0.27 mm−1 T = 296 K Prism, colourless 0.57 × 0.50 × 0.36 mm α = 117.594 (6)° β = 103.295 (6)° γ = 92.094 (6)° V = 963.39 (15) Å3 sup-2 supplementary materials Data collection Stoe IPDS 2 diffractometer Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 3987 independent reflections 3241 reflections with I > 2σ(I) Rint = 0.029 plane graphite -1 θmax = 26.5°, θmin = 2.1° Detector resolution: 6.67 pixels mm ω scans Absorption correction: integration (X-RED32; Stoe & Cie, 2002) Tmin = 0.859, Tmax = 0.909 h = −11→11 k = −13→12 l = −13→13 12149 measured reflections Refinement R[F2 > 2σ(F2)] = 0.049 Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites wR(F2) = 0.135 H-atom parameters constrained Refinement on F2 Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0637P)2 + 0.2683P] S = 1.07 where P = (Fo2 + 2Fc2)/3 3987 reflections (Δ/σ)max < 0.001 211 parameters Δρmax = 0.32 e Å−3 0 restraints Δρmin = −0.32 e Å−3 Special details Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted Rfactors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) Si1 N1 N2 x y z Uiso*/Ueq 0.53328 (7) 0.72385 (17) 0.59349 (17) 0.20172 (7) 0.36741 (17) 0.36730 (17) 0.79168 (6) 0.52896 (17) 0.66907 (17) 0.05705 (19) 0.0466 (4) 0.0466 (4) sup-3 supplementary materials C1 C2 H2 C3 H3 C4 H4 C5 H5 C6 C7 H7 C8 H8A H8B C9 C10 H10 C11 H11 C12 H12 C13 H13 C14 H14 C15 H15A H15B C16 H16A H16B H16C C17 H17A H17B H17C C18 H18A H18B H18C O1 H1A H1B Cl1 sup-4 0.4923 (2) 0.3377 (2) 0.2816 0.2721 (2) 0.1688 0.3560 (2) 0.3071 0.5084 (2) 0.5641 0.57570 (19) 0.7293 (2) 0.8165 0.8534 (2) 0.9413 0.8371 0.8803 (2) 0.8520 (3) 0.8171 0.8748 (3) 0.8546 0.9272 (3) 0.9404 0.9600 (3) 0.9980 0.9372 (3) 0.9602 0.5549 (3) 0.4625 0.6320 0.3837 (3) 0.4063 0.2907 0.3767 0.4849 (4) 0.4744 0.3928 0.5624 0.7121 (3) 0.7028 0.7869 0.7403 0.9113 (3) 0.9910 0.9090 1.14370 (9) 0.33506 (19) 0.3101 (2) 0.3104 0.2847 (2) 0.2667 0.2853 (3) 0.2682 0.3104 (2) 0.3111 0.33479 (19) 0.3855 (2) 0.4079 0.3833 (2) 0.4273 0.4442 0.2461 (2) 0.2111 (3) 0.2741 0.0831 (4) 0.0600 −0.0100 (3) −0.0970 0.0255 (3) −0.0367 0.1527 (3) 0.1760 0.3754 (2) 0.4122 0.4406 0.0757 (3) 0.0662 0.1090 −0.0135 0.2374 (4) 0.1524 0.2732 0.3050 0.1391 (3) 0.0478 0.2023 0.1344 0.6314 (2) 0.6000 0.6350 0.44812 (10) 0.54087 (19) 0.4971 (2) 0.5566 0.3611 (2) 0.3276 0.2717 (2) 0.1806 0.3150 (2) 0.2555 0.4512 (2) 0.6574 (2) 0.7293 0.4794 (2) 0.5602 0.4377 0.3720 (2) 0.2308 (3) 0.2014 0.1329 (3) 0.0377 0.1753 (4) 0.1089 0.3158 (4) 0.3451 0.4141 (3) 0.5095 0.7947 (2) 0.8003 0.8796 0.6328 (3) 0.5487 0.6377 0.6297 0.9569 (3) 0.9619 0.9569 1.0376 0.7877 (3) 0.7796 0.8737 0.7076 0.9603 (2) 0.9420 1.0380 0.80296 (8) 0.0428 (4) 0.0521 (5) 0.063* 0.0587 (5) 0.070* 0.0592 (5) 0.071* 0.0532 (5) 0.064* 0.0432 (4) 0.0505 (5) 0.061* 0.0547 (5) 0.066* 0.066* 0.0510 (5) 0.0717 (7) 0.086* 0.0935 (10) 0.112* 0.0947 (10) 0.114* 0.0909 (10) 0.109* 0.0700 (7) 0.084* 0.0549 (5) 0.066* 0.066* 0.0812 (8) 0.122* 0.122* 0.122* 0.1001 (10) 0.150* 0.150* 0.150* 0.0899 (9) 0.135* 0.135* 0.135* 0.1024 (7) 0.154* 0.154* 0.0961 (3) supplementary materials Atomic displacement parameters (Å2) Si1 N1 N2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 O1 Cl1 U11 0.0616 (4) 0.0349 (8) 0.0448 (9) 0.0401 (9) 0.0404 (10) 0.0358 (10) 0.0471 (12) 0.0486 (11) 0.0343 (9) 0.0418 (10) 0.0360 (10) 0.0311 (9) 0.0529 (13) 0.0647 (17) 0.0684 (18) 0.087 (2) 0.0671 (15) 0.0599 (12) 0.0781 (18) 0.142 (3) 0.0818 (19) 0.1114 (17) 0.0818 (5) U22 0.0668 (4) 0.0565 (9) 0.0524 (9) 0.0458 (9) 0.0611 (12) 0.0717 (14) 0.0770 (14) 0.0686 (13) 0.0484 (10) 0.0554 (11) 0.0667 (13) 0.0671 (12) 0.1023 (19) 0.126 (3) 0.0793 (19) 0.088 (2) 0.0864 (17) 0.0622 (12) 0.0771 (17) 0.111 (2) 0.093 (2) 0.0974 (15) 0.1278 (7) U33 0.0477 (3) 0.0533 (9) 0.0460 (8) 0.0466 (9) 0.0632 (12) 0.0673 (13) 0.0527 (11) 0.0516 (11) 0.0507 (10) 0.0511 (11) 0.0736 (13) 0.0673 (12) 0.0737 (15) 0.0702 (17) 0.120 (3) 0.146 (3) 0.0943 (18) 0.0420 (10) 0.0790 (17) 0.0703 (17) 0.088 (2) 0.0822 (13) 0.0780 (5) U12 0.0106 (3) 0.0048 (7) 0.0074 (7) 0.0086 (7) 0.0110 (9) 0.0081 (9) 0.0088 (10) 0.0106 (9) 0.0068 (7) 0.0031 (8) 0.0050 (9) 0.0090 (8) 0.0312 (13) 0.0308 (17) 0.0195 (15) 0.0402 (16) 0.0279 (13) 0.0129 (10) −0.0077 (13) 0.022 (2) 0.0247 (16) 0.0288 (13) 0.0348 (4) U13 0.0191 (3) 0.0145 (7) 0.0162 (7) 0.0162 (8) 0.0240 (9) 0.0120 (9) 0.0087 (9) 0.0193 (9) 0.0145 (8) 0.0079 (8) 0.0216 (9) 0.0197 (9) 0.0236 (12) 0.0212 (14) 0.0432 (18) 0.069 (2) 0.0444 (14) 0.0203 (9) 0.0151 (14) 0.0513 (19) 0.0135 (16) 0.0144 (12) 0.0259 (4) U23 0.0301 (3) 0.0295 (8) 0.0251 (7) 0.0238 (8) 0.0324 (10) 0.0339 (11) 0.0333 (11) 0.0340 (10) 0.0260 (8) 0.0260 (9) 0.0412 (11) 0.0400 (10) 0.0498 (15) 0.0299 (17) 0.0266 (18) 0.077 (2) 0.0631 (15) 0.0217 (9) 0.0347 (14) 0.0526 (17) 0.0423 (17) 0.0355 (12) 0.0465 (4) Geometric parameters (Å, °) Si1—C18 Si1—C17 Si1—C16 Si1—C15 N1—C7 N1—C6 N1—C8 N2—C7 N2—C1 N2—C15 C1—C2 C1—C6 C2—C3 C2—H2 C3—C4 C3—H3 C4—C5 C4—H4 C5—C6 1.834 (3) 1.850 (3) 1.852 (3) 1.890 (2) 1.328 (3) 1.386 (2) 1.476 (2) 1.324 (2) 1.387 (2) 1.478 (2) 1.389 (3) 1.394 (2) 1.374 (3) 0.9300 1.398 (3) 0.9300 1.369 (3) 0.9300 1.384 (3) C9—C10 C9—C14 C10—C11 C10—H10 C11—C12 C11—H11 C12—C13 C12—H12 C13—C14 C13—H13 C14—H14 C15—H15A C15—H15B C16—H16A C16—H16B C16—H16C C17—H17A C17—H17B C17—H17C 1.378 (3) 1.383 (3) 1.380 (4) 0.9300 1.368 (5) 0.9300 1.367 (5) 0.9300 1.376 (4) 0.9300 0.9300 0.9700 0.9700 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 sup-5 supplementary materials C5—H5 C7—H7 C8—C9 C8—H8A C8—H8B 0.9300 0.9300 1.497 (3) 0.9700 0.9700 C18—H18A C18—H18B C18—H18C O1—H1A O1—H1B 0.9600 0.9600 0.9600 0.8598 0.8466 C18—Si1—C17 C18—Si1—C16 C17—Si1—C16 C18—Si1—C15 C17—Si1—C15 C16—Si1—C15 C7—N1—C6 C7—N1—C8 C6—N1—C8 C7—N2—C1 C7—N2—C15 C1—N2—C15 N2—C1—C2 N2—C1—C6 C2—C1—C6 C3—C2—C1 C3—C2—H2 C1—C2—H2 C2—C3—C4 C2—C3—H3 C4—C3—H3 C5—C4—C3 C5—C4—H4 C3—C4—H4 C4—C5—C6 C4—C5—H5 C6—C5—H5 C5—C6—N1 C5—C6—C1 N1—C6—C1 N2—C7—N1 N2—C7—H7 N1—C7—H7 N1—C8—C9 N1—C8—H8A C9—C8—H8A N1—C8—H8B C9—C8—H8B H8A—C8—H8B C10—C9—C14 C10—C9—C8 111.82 (16) 110.58 (15) 110.93 (16) 107.44 (14) 105.86 (13) 110.04 (12) 108.20 (15) 125.70 (17) 126.08 (16) 108.16 (15) 126.39 (17) 125.43 (16) 131.97 (17) 106.56 (16) 121.45 (18) 116.40 (18) 121.8 121.8 122.03 (19) 119.0 119.0 121.6 (2) 119.2 119.2 116.92 (18) 121.5 121.5 131.92 (17) 121.62 (17) 106.41 (16) 110.68 (17) 124.7 124.7 112.22 (16) 109.2 109.2 109.2 109.2 107.9 118.7 (2) 121.3 (2) C14—C9—C8 C9—C10—C11 C9—C10—H10 C11—C10—H10 C12—C11—C10 C12—C11—H11 C10—C11—H11 C13—C12—C11 C13—C12—H12 C11—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13 C13—C14—C9 C13—C14—H14 C9—C14—H14 N2—C15—Si1 N2—C15—H15A Si1—C15—H15A N2—C15—H15B Si1—C15—H15B H15A—C15—H15B Si1—C16—H16A Si1—C16—H16B H16A—C16—H16B Si1—C16—H16C H16A—C16—H16C H16B—C16—H16C Si1—C17—H17A Si1—C17—H17B H17A—C17—H17B Si1—C17—H17C H17A—C17—H17C H17B—C17—H17C Si1—C18—H18A Si1—C18—H18B H18A—C18—H18B Si1—C18—H18C H18A—C18—H18C H18B—C18—H18C H1A—O1—H1B 120.0 (2) 120.5 (3) 119.8 119.8 120.2 (3) 119.9 119.9 119.7 (3) 120.1 120.1 120.4 (3) 119.8 119.8 120.4 (3) 119.8 119.8 113.64 (13) 108.8 108.8 108.8 108.8 107.7 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 107.0 C7—N2—C1—C2 C15—N2—C1—C2 −178.0 (2) 3.6 (3) C15—N2—C7—N1 C6—N1—C7—N2 178.44 (17) −0.3 (2) sup-6 supplementary materials C7—N2—C1—C6 C15—N2—C1—C6 N2—C1—C2—C3 C6—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C5 C3—C4—C5—C6 C4—C5—C6—N1 C4—C5—C6—C1 C7—N1—C6—C5 C8—N1—C6—C5 C7—N1—C6—C1 C8—N1—C6—C1 N2—C1—C6—C5 C2—C1—C6—C5 N2—C1—C6—N1 C2—C1—C6—N1 C1—N2—C7—N1 0.1 (2) −178.27 (17) 178.1 (2) 0.2 (3) −0.6 (3) 0.4 (4) 0.2 (3) −177.7 (2) −0.6 (3) 177.7 (2) −0.7 (3) 0.3 (2) −178.13 (17) −177.97 (18) 0.4 (3) −0.2 (2) 178.10 (18) 0.1 (2) C8—N1—C7—N2 C7—N1—C8—C9 C6—N1—C8—C9 N1—C8—C9—C10 N1—C8—C9—C14 C14—C9—C10—C11 C8—C9—C10—C11 C9—C10—C11—C12 C10—C11—C12—C13 C11—C12—C13—C14 C12—C13—C14—C9 C10—C9—C14—C13 C8—C9—C14—C13 C7—N2—C15—Si1 C1—N2—C15—Si1 C18—Si1—C15—N2 C17—Si1—C15—N2 C16—Si1—C15—N2 178.18 (18) 109.6 (2) −72.2 (2) 108.7 (2) −72.5 (2) 2.3 (4) −178.8 (2) −0.5 (4) −1.5 (5) 1.7 (5) 0.2 (4) −2.2 (3) 179.0 (2) −91.7 (2) 86.4 (2) 60.61 (19) −179.77 (18) −59.84 (19) Hydrogen-bond geometry (Å, °) Cg3 is the centroid of the C9–C14 ring. D—H···A O1—H1A···Cl1 D—H 0.86 H···A 2.45 D···A 3.257 (2) D—H···A 157 O1—H1B···Cl1i C7—H7···O1 C8—H8A···Cl1 0.85 2.45 3.250 (3) 158 0.93 0.97 2.51 2.81 3.170 (3) 3.703 (2) 128 153 0.93 C3—H3···Cg3ii Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) x−1, y, z. 2.69 3.526 (2) 151 Table 2 π–π stacking in the title compound (Å, °). Cg1 is the centroid of the N1, C6, C1, N2, C7 ring and Cg2 is the centroid of C1 to C6 ring. Offset is the angle between the centroidto-centroid and plane-to-plane vectors. Centroid–centroid plane–plane offset Cg1···Cg2i 3.5690 (15) 3.430 (1) 16.0 3.7223 (14) Cg2···Cg2i Symmetry code: (i) 1-x, 1-y, 1-z. 3.446 (1) 22.2 sup-7 supplementary materials Fig. 1 sup-8 supplementary materials Fig. 2 sup-9