A Composi t i onal Model i ng Language
Dani el Bobr ow* , Br i an Fal kenhai ner * * , AdamFar quhar #, Ri char d Fakes* , Kennet h For bus,
Thomas Gr uber &, Yumi I wasaki
* Xer ox Cor por at i on Pal o Al t o Resear ch Cent er
3333 Coyot e Hi l l Road
Pal o Al t o, CA 94304
bobr ow@par c . xer ox . com
* * Xer ox Wi l son Cent er
800 Phi l i ps Rd . , M/ S 128- 51E
Webst er , NY 14580
f al ken @wr c . xer ox . co m
* Knowl edge Syst ems Labor at or y
Gat es Bl dg . 2A, M/ C 9020
Depar t ment of Comput er Sci ence
St anf or d Uni ver si t y
St anf or d, CA 94305
{ axf , f akes, i wasaki ) @ksl . st anf or d. ed u
$Qual i t at i ve Reasoni ng Gr oup
The I nst i t ut e f or t he Lear ni ng Sci ences
Nor t hwest er n Uni ver si t y
1890 Mapl e Avenue
Evanst on, I L 60201
f or bus @il s . nwu . ed u
8- ' Col l oquy Syst ems I nc .
5150 El Cami no Real , Sui t e D- 21
Los Al t os, CA 94022
gr uber @col l oquy . com
%Uni ver si t y of Texas at Aust i n
Depar t ment of Comput er Sci ence
Aust i n, TX 78712
kui per s @cs . ut exas . edu
Abst r act
Thi s document descr i bes a composi t i onal model i ng
l anguage, CML, whi ch i s a gener al decl ar at i ve model i ng
l anguage f or l ogi cal l y speci f yi ng t he symbol i c and
mat hemat i cal pr oper t i es of t he st r uct ur e and behavi or of
physi cal syst ems . CML i s i nt ended t o f aci l i t at e model
shar i ng bet ween r esear ch gr oups, many of whi ch have l ong
been usi ng si mi l ar l anguages . These l anguages ar e based
pr i mar i l y on t he l anguage or i gi nal l y def i ned by Qual i t at i ve
Pr ocess t heor y [ For bus 1984] and i ncl ude t he l anguages
used f or t he Qual i t at i ve Physi cs Compi l er ( QPC)
[ Cr awf or d 1990 ; Far quhar 1993 ; Far quhar 1994] ,
composi t i onal model f or mul at i on [ Fal kenhai ner 1991 ] , and
t he Devi ce Model i ng Envi r onment ( DME) [ Low and
I wasaki 1993] . CML i s an at t empt t o synt hesi ze and
pr ovi de a cl ean r edesi gn of t hese l anguages .
1 . I nt r oduct i on
Composi t i onal model i ng i s an ef f ect i ve par adi gm f or
f or mul at i ng a behavi or model of physi cal syst em by
composi ng descr i pt i ons of symbol i c and mat hemat i cal
pr oper t i es of i ndi vi dual syst em component s . Thi s paper
descr i bes Composi t i onal Model i ng Language ( CML) ,
whi ch i s a gener al decl ar at i ve model i ng l anguage f or
r epr esent i ng physi cal
knowl edge r equi r ed f or
composi t i onal model i ng .
CML i s i nt ended t o f aci l i t at e model shar i ng bet ween
r esear ch gr oups, many of whi ch has l ong been usi ng
12
0 , Benj ami n Kui per s%
QR- 96
si mi l ar l anguages . These l anguages ar e based pr i mar i l y on
t he l anguage or i gi nal l y def i ned by Qual i t at i ve Pr ocess
Theor y [ For bus 1984] and i ncl ude t he l anguages used f or
t he Qual i t at i ve Physi cs Compi l er [ Far quhar 1994] ,
composi t i onal model f or mul at i on [ Fal kenhai ner 1991] , and
t he Devi ce Model i ng Envi r onment [ Low and I wasaki
1993] . CML i s an at t empt t o synt hesi ze and pr ovi de a
cl ean r edesi gn of t hese l anguages . The speci f i cat i on of
CML has been f or mul at ed by r esear cher s i nvol ved i n t hose
pr oj ect s .
CML was desi gned wi t h ef f i ci ency, expr essi veness and
ease of use i n mi nd . The l anguage i s r est r i ct ed enough t o
al l ow ef f i ci ent i mpl ement at i on of pr ocedur es t o pr edi ct
behavi or . The synt ax i s si mpl e and r eadabl e so t hat a
per son f ami l i ar wi t h t he domai n wi l l be abl e t o r ead and
easi l y under st and an expr essi on of knowl edge of t he
domai n i n t he l anguage . The l anguage suppor t s l umped
par amet er or di nar y di f f er ent i al equat i ons t hat ar e common
i n engi neer i ng model i ng. Fi nal l y, t he l anguage suppor t s a
var i et y of di f f er ent appr oaches t o r epr esent i ng physi cal
phenomena ; i t al l ows t he def i ni t i on and use of domai n
t heor i es t hat use component s, pr ocess, bond gr aphs,
ki nemat i c pai r s, et c . , and al so suppor t s bot h r el at i onal and
obj ect - or i ent ed speci f i cat i on st yl es .
CML speci f i es a set of t op- l evel f or ms f or def i ni ng
model s and an ont ol ogy of pr i mi t i ve f unct i ons, r el at i ons,
and const ant s . CML i s i nt ended t o be an open, evol vi ng
l anguage, of whi ch t hi s document descr i bes t he base
l anguage . Var i ous ext ensi ons wi l l undoubt edl y be def i ned
di f f er ent
as t hey nat ur al l y ar i se i n t he cour se of i t s use by
peopl e . An i mpor t ant goal i n desi gni ng t he base l anguage
r easonabl y possi bl e .
i s t o suppor t as much shar i ng as i s
shar
i
ng
t
he
cont
ent
of CML knowl edge
f
aci
l
i
t
at
e
Al so, t o
f
i
l
l
y
t
r
ansl
at
abl
e
t o t he knowl edge
C
M
L
i
s
bases,
(
KI
F)
[
Geneser
et
h
and Fi kes 1992] ,
f
or
m
at
i nt er change
convent
i
ons
est
abl i shed by KI F
have
adopt
ed
we
and
wher ever possi bl e.
1. 1.
Pat t er ns of Use
A t ypi cal i mpl ement at i on suppor t i ng CML mi ght be used
as f ol l ows : To pr edi ct t he behavi or of a physi cal syst em i n
some domai n, knowl edge about t he physi cs of t he domai n
i s capt ur ed i n a gener al pur pose domai n t heor y t hat
descr i bes cl asses of r el evant obj ect s, phenomena and
syst ems . The domai n t heor y of chemi cal pr ocessi ng pl ant s,
f or exampl e, mi ght i ncl ude physi cal phenomena such as
mass and heat f l ows, boi l i ng, evapor at i on, and
condensat i on ; i t woul d al so i ncl ude chemi cal r eact i ons, t he
ef f ect s of cat al yst s, and model s of component s such as
r eact i on vessel s, pumps, cont r ol l er s, and f i l t er s . A domai n
t heor y i n CML consi st s of a set of quant i f i ed def i ni t i ons,
cal l ed model f r agment s, each of whi ch descr i bes some
par t i al pi ece of t he domai n' s physi cs, such as pr ocesses
( e . g . , l i qui d f l ows) , devi ces ( e . g . , t r ansi st or s) , and obj ect s
( e . g . , cont ai ner s) . Each def i ni t i on appl i es whenever t her e
exi st s a set of par t i ci pant s f or whom t he st at ed condi t i ons
ar e sat i sf i ed . A speci f i c syst em or si t uat i on bei ng model ed
i s cal l ed a scenar i o . A model of t he scenar i o consi st s of
f r agment s t hat l ogi cal l y f ol l ow f r om t he domai n t heor y and
t he scenar i o def i ni t i on .
For exampl e, consi der t he si t uat i on depi ct ed i n Fi gur e 1 .
A scenar i o r epr esent i ng t hi s si t uat i on woul d st at e t hat t her e
i s a can cont ai ni ng some wat er pl aced over a gas heat er . I n
addi t i on, t he scenar i o may al so st at e whet her or not t he gas
heat er i s i ni t i al l y on, t he i ni t i al t emper at ur e and vol ume of
t he wat er and so on . I n or der t o r eason about t hi s si t uat i on,
t he domai n t heor y must cont ai n t he def i ni t i ons of a can,
cont ai ned wat er , a gas heat er , as wel l as t he def i ni t i ons of
r el evant physi cal pr ocesses such as heat f l ow and
evapor at i on . The def i ni t i ons of t hese obj ect s and pr ocesses
must speci f y t hei r numer i c and non- numer i c at t r i but es,
such as wat er - l evel and f ame- l i t - p . The t ypes of val ues
such at t r i but es t ake, f or exampl e " a numer i c, t i medependent quant i t y whose di mensi on i s l engt h" must al so
be speci f i ed i n t he domai n t heor y .
Once t he domai n t heor y has been const r uct ed, i t can be
used t o model many di f f er ent physi cal devi ces under a
var i et y of di f f er ent condi t i ons . The user speci f i es a
scenar i o t hat def i nes an i ni t i al conf i gur at i on of t he devi ce,
t he i ni t i al val ues of some of t he par amet er s t hat ar e r el evant
t o model i ng i t , and per haps condi t i ons t hat f ur t her
1 KI F pr ovi des a st andar d encodi ng and semant i cs f or a
f i r st or der l ogi c wi t h set t heor y and some mi nor ext ensi ons
such as a r est r i ct ed quot e and t he abi l i t y t o r ef er t o r el at i ons
di r ect l y .
char act er i ze t he syst em. The CML i mpl ement at i on woul d
aut omat i cal l y i dent i f y model f r agment s t hat ar e appl i cabl e
i n t he scenar i o .
These model f r agment s woul d be
composed i nt o a si ngl e model t hat compr i ses bot h a
symbol i c descr i pt i on as wel l as a set of gover ni ng
equat i ons . The equat i ons may be sol ved or si mul at ed t o
pr oduce a behavi or al descr i pt i on . Because t he condi t i ons
under whi ch t he model f r agment s hol d ar e expl i ci t i n t he
domai n t heor y, t he syst em woul d be abl e t o const r uct
aut omat i cal l y addi t i onal model s t hat descr i be t he devi ce as
i t moves i nt o new oper at i ng r egi ons .
Fi gur e 1 : An exampl e si t uat i on
wi t h a can of wat er and a heat er
1. 2.
Not at i on and Synt ax
The CML synt ax i s based on t he Common Li sp st andar d
[ St eel e 1990] ; a sequence of char act er s i s a l egal CML
expr essi on onl y i f i t i s accept abl e t o t he Common Li sp
r eader wi t h st andar d set t i ngs . I n t hi s document , we wi l l
adopt t he f ol l owi ng not at i onal convent i ons : Var i abl es ar e
mar ked wi t h a ? pr ef i x, t o di st i ngui sh t hem f r om obj ect and
r el at i on const ant s . Wher e t he synt ax al l ows f or a f i ni t e
ser i es of i t ems i ndexed f r om 1 t o n, t he f i r st i t em of t he
sequence i s gi ven wi t h t he subscr i pt 1 and t he r emai ni ng n1 i t ems ar e abbr evi at ed by " . . . n " . For exampl e,
(
( par t i ci pant L
: t ype t
1) . . . n)
i s t he not at i on f or
( ( par t i ci pant s : t ype t ype, )
. . .
( par t i ci pant n : t ype t ypezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLK
) ) .
2.
Gener al Semant i cs
The goal of CML i s t o pr ovi de a common synt ax wi t h a
wel l - def i ned semant i cs so t hat di f f er ent i mpl ement at i ons,
wi t h di f f er ent i nt er nal r epr esent at i ons and i nf er ence
pr ocedur es, wi l l be abl e t o accur at el y par se t he same
domai n t heor y . The synt ax and semant i cs of CML t opl evel f or ms i s pr esent ed i n Sect i on 3 . The semant i cs of a
set of CML t op - l evel f or ms i s pr ovi ded by t r ansl at i ng t hem
i nt o f i r st or der l ogi c such as def i ned i n KI F, and CML
i nher i t s t he l ogi c' s model - t heor et i c semant i cs . I n t hi s
sect i on, we descr i be t he gener al semant i cs of r el at i ons,
i ndi vi dual s and quant i t i es under l yi ng t he def i ni t i ons of t he
t op- l evel f or ms .
Bobr ow
13
CML suppor t s ever ywher e cont i nuous
2. 1.
Quant i t i es
CML i s desi gned t o model t i me- var yi ng physi cal syst ems,
such as t he movement of a mechani cal devi ce or t he
pr ocess of a chemi cal r eact i on . I n engi neer i ng model s, t he
pr oper t i es and st at e of such syst ems ar e descr i bed by
var i abl es, par amet er s, coef f i ci ent s, and const ant s . I n CML,
t he t er m quant i t y encompasses t hese not i ons . A quant i t y i s
ei t her a const ant or a unar y f unct i on whose ar gument i s a
t i me .
I n t he synt ax of CML, t i me i s l ef t as an i mpl i ci t
par amet er t o t i me- dependent quant i t i es, f unct i ons, and
r el at i ons . Al l non- const ant quant i t i es ar e r est r i ct ed t o have
a f i ni t e number of cr i t i cal poi nt s or di scont i nuous changes
over any f i ni t e i nt er val . Thi s r est r i ct i on r ul es out cer t ai n
cl asses of poor l y behaved syst ems, such as osci l l at or s wi t h
i nf i ni t e f r equency, t hat pose pr obl ems f or numer i c
i nt egr at i on and qual i t at i ve si mul at i on t echni ques .
Quant i t i es may be numer i c or non- numer i c . Nonnumer i c quant i t i es ar e si mpl y const ant s or unar y f unct i ons
of t i me sat i sf yi ng t he above f i ni t e- change r equi r ement .
Thei r val ues ar e unr est r i ct ed . A numer i c quant i t y i s
associ at ed wi t h a si ngl e physi cal di mensi on, gi ven by t he
f unct i on di mens i on.
CML speci f i es a cor e set of f undament al physi cal
di mensi ons : t he seven def i ned by t he Syst em I nt er nat i onal e
( mass, l engt h, t i me, char ge, t emper at ur e, amount , and
l umi nosi t y) pl us a di mensi on f or di mensi onl ess number s .
Real number s ar e di mensi onl ess const ant quant i t i es . CML
al so pr ovi des a t op- l evel f or m t o al l ow def i ni t i on of any
ot her di mensi ons . A di mensi on i s a pr oper t y t hat i s used t o
di st i ngui sh i ncompat i bl e quant i t i es . Quant i t i es of t he same
di mensi on can be compar ed, added, and so on . These
oper at i ons ar e not def i ned f or quant i t i es of di f f er ent
di mensi ons .
A mat hemat i cal r el at i on hol ds on non- const ant quant i t i es
i f i t hol ds on t hei r val ues at each t i me t hat t hey ar e def i ned .
A numer i c t i me- dependent quant i t y i s a f unct i on of t i me
whose val ues al l have t he same di mensi on . The val ue of a
numer i c t i me- dependent quant i t y i s a numer i c const ant
quant i t y .
The magni t ude of a numer i c const ant quant i t y i s
speci f i ed i n uni t s of measur e . A uni t of measur e i s i t sel f a
const ant quant i t y used as a r ef er ence f or a gi ven di mensi on .
For exampl e, t he met er i s a uni t of measur e f or t he l engt h
di mensi on and t he second i s a uni t of measur e f or t he t i me
di mensi on . The magni t ude of a const ant quant i t y depends
on t he uni t i n whi ch i t i s r equest ed. The bi nar y f unct i on
magni t ude maps a const ant quant i t y and a uni t of t he same
di mensi on t o a r eal number . For exampl e, t he magni t ude
of 12g i n gr ams i s 12 and i t s magni t ude i n ounces i s about
4 . 23 . A uni t of measur e def i nes an absol ut e scal e wi t h a 0
val ue f or quant i t i es of a par t i cul ar di mensi on . The r eal
number 0 i s di mensi onl ess and t her ef or e i s di f f er ent f r om
ot her quant i t i es whose magni t ude i s 0, such as 0 Newt ons
or Of eet .
14
QR- 96
pi ecewi se cont i nuous quant i t i es,
quant i t i es,
st ep quant i t i esl , and
count quant i t i esl .
2.1 .1 .
Handl i ng i mpl i ci t dependence on t i me
One i mpor t ant aspect of t r ansl at i ng t he semant i cs of
quant i t i es i nt o l ogi c i s t he r epr esent at i on of t i me . A t i mequant i t y i s a numer i c, ever ywher e cont i nuous quant i t y
whose di mensi on i s t he t i me- di mensi on .
Al l t i medependent quant i t i es and r el at i ons i n CML have a t i mequant i t y as an i mpl i ci t ar gument . I n t he t r ansl at i on of
CML i nt o l ogi c, t i me i s handl ed i n t hr ee st eps :
1 . Ever y t i me- dependent r el at i on i s augment ed wi t h a
f i r st ar gument , whi ch must be a t i me- quant i t y .
2. Ever y t i me- dependent quant i t y, q, i s uni f or ml y
t r ansl at ed wi t h t he f ol l owi ng f or m, wher e val ue- at i s
a f unct i on of t wo ar gument s, a quant i t y and a t i me,
and r et ur ns t he val ue of t he quant i t y at t he t i me :
( l ambda ( ?t l ) ( i f ( = ?t l ?t ) ( val ue- at q ?t i ) ) .
3 . Ever y mat hemat i cal
number s ( const ant
ext ended t o appl y
Ever y mat hemat i cal
f unct i on t hat t ypi cal l y appl i es t o
quant i t i es) i s pol ymor phi cal l y
t o f unct i on quant i t i es as wel l .
oper at i on t hat t ypi cal l y appl i es t o
number s must be ext ended si mi l ar l y .
3.
Language Def i ni t i on
A domai n t heor y i n CML i s a f i ni t e set ` } of t he f ol l owi ng
t op- l evel f or ms :
def Rel at i on f or def i ni ng l ogi cal r el at i ons .
def Quant i t yFunct i on f or def i ni ng quant i t i es used i n t he
domai n t heor y .
def Model Fr agment f or descr i bi ng t he behavi or of
model ed ent i t i es under expl i ci t l y speci f i ed condi t i ons .
Model f r agment s ar e used t o descr i be phenomena t hat
ar i se out of t he i nt er act i ons of a composi t e set of
obj ect s ( e . g . , col l i si ons or f l ows) , or t he behavi or of a
si ngl e obj ect ( e . g ., a r esi st or , pump, or val ve) .
def Ent i t y f or def i ni ng pr oper t i es of per si st ent obj ect s
( e . g . , r esi st or s, cont ai ner s) .
def Scenar i o f or def i ni ng i ni t i al val ue pr obl ems
consi st i ng of a set of obj ect s, t hei r conf i gur at i on, and
i ni t i al val ues f or t he quant i t i es t hat descr i be t hem.
I n addi t i on, t he f or ms def Di mensi on, def Uni t , and
def Const ant Quant i t y ar e pr ovi ded f or def i ni ng new or
St ep quant i t i es ar e pi ecewi se cont i nuous quant i t i es t hat
ar e const ant over ever y cont i nuous i nt er val .
2 Count quant i t i es ar e st ep quant i t i es t hat have nonnegat i ve i nt eger val ues and ar e di mensi onl ess .
3 Not e t hat such a mat hemat i cal r el at i on i s f al se when any
of i t s ar gument s i s undef i ned .
a Thus, i mpl ement at i ons must al l ow f or use bef or e
def i ni t i on .
der i ved di mensi ons, new or der i ved uni t s, and uni ver sal
const ant s, r espect i vel y .
The gener al synt ax of a f or m i s t he f or m i dent i f i er ( e . g .,
def Quant i t yFunct i on) , f ol l owed by i t s name, f ol l owed by
a ser i es of keywor d/ val ue pai r s . Some keywor ds ar e
opt i onal , as i ndi cat ed by t he sur r oundi ng br acket s i n t he
gr ammar ( i . e . , [ : di mensi on] ) .
Wher ever a keywor d/ val ue pai r appear s, an ar bi t r ar y
number of ot her , i mpl ement at i on speci f i c, keywor ds ar e
al l owed . I f t he domai n t heor i es empl oyi ng such keywor ds
ar e t o be por t abl e, however , t he f ol l owi ng r est r i ct i on must
be sat i sf i ed . I f t he keywor ds af f ect t he behavi or al
i nf er ences ent ai l ed by t he domai n t heor y, t hen t hey shoul d
onl y st r engt hen or annot at e t he behavi or al i nf er ences .
Thi s al l ows ot her i mpl ement at i ons t o i gnor e t he addi t i onal
keywor ds and st i l l dr aw cor r ect , i f weaker concl usi ons .
Domai n t heor i es t hat empl oy an ext ensi on t hat sat i sf i es t hi s
cr i t er i on wi l l be shar abl e acr oss i mpl ement at i ons .
The r at i onal e i s t hat var i ous gr oups wi l l want t o add
f i el ds t hat f aci l i t at e expl anat i on t ool s or suppor t sof t war e
engi neer i ng of l ar ge knowl edge bases ( e . g . , shor t names,
aut hor s, poi nt er s t o ext ended document at i on, et c . ) . A
secondar y pur pose i s t o al l ow f or l ocal ext ensi ons t o t he
l anguage as t he need ar i ses, wi t hout havi ng t o change t he
The i mpact such
common l anguage speci f i cat i on .
ext ensi ons may have on shar abi l i t y and t he semant i cs of a
gi ven domai n t heor y i s not addr essed her e . I n some cases,
par t i cul ar l y qual i t at i ve si mul at i on, t he added i nf or mat i on
may si mpl y pr ovi de monot oni c r educt i ons i n ambi gui t y . I n
ot her cases, par t i cul ar l y i n t he pr esence of a cl osed wor l d
assumpt i on, t he nat ur e of t he pr edi ct ed behavi or may be
f undament al l y af f ect ed .
Tabl e 1 shows t he synt ax f or t he t op- l evel f or ms wi t h
some exampl es . The def i ni t i ons f or t he i nt er medi at e f or ms
used i n t hi s t abl e ar e gi ven i n Tabl e 2 . The f ol l owi ng
sect i ons di scuss each f or m i n det ai l .
3 . 2.
Quant i t y Funct i ons
The def Quant i t yFunct i on f or m def i nes a f unct i on t hat
maps a t upl e of obj ect s t o a quant i t y . The quant i t y i s i t sel f
a f unct i on of t i me . I n addi t i on t o bei ng gl obal l y def i ned
vi a def Quant i t yFunct i on, quant i t y f unct i ons may al so be
def i ned wi t hi n model f r agment and ent i t y def i ni t i ons i n t he
quant i t i es cl ause.
The name i s a f unct i on const ant nami ng an n- ar y
f unct i on t hat r et ur ns a t i me- dependent quant i t y . The xt . . .
x ar e l ogi cal var i abl es .
=> The asent ence i s a l ogi cal sent ence t hat may ment i on
t he var i abl es x i. I t may be used t o pl ace r est r i ct i ons
on t he quant i t y' s val ues, or asser t t hi ngs, such as t ype
i nf or mat i on, about t he xi .
Di mensi on The di mens i on
ex pr es s i on
( see
def Di mensi on f or t he compl et e synt ax) speci f i es t he
di mensi on of t he quant i t i es r et ur ned by t he quant i t y
f unct i on .
Non- numer i c I f non- numer i c i s t r ue, t hen t he
quant i t i es r et ur ned by t he f unct i on ar e non- numer i c,
ot her wi se t hey ar e numer i c .
Pi ecewi se- cont i nuous I f pi ecewi se- cont i nuous i s t r ue,
t hen t he quant i t i es r et ur ned by t he f unct i on ar e
pi ecewi se- cont i nuous .
St ep- quant i t y I f st ep- quant i t y i s t r ue, t hen t he
quant i t i es r et ur ned by t he f unct i on ar e st ep- quant i t i es .
Count - quant i t y I f count - quant i t y i s t r ue, t hen t he
quant i t i es r et ur ned by t he f unct i on ar e di mensi onl ess
count - quant i t i es .
3. 3.
Model Fr agment s and Ent i t i es
Thi s sect i on def i nes t he synt ax and semant i cs f or t he key
CML f or ms def Model Fr agment and i t s r est r i ct ed ver si on
def Ent i t y .
The def Model Fr agment f or m def i nes a cl ass of
3 . 1 Rel at i ons and Funct i ons
phenomena, whi ch ar e descr i bed by a set of obj ect s
I n t he def Rel at i on f or m, t he symbol Name i s a gl obal
i nvol ved, st at i c at t r i but es and t i me- dependent quant i t i es . I t
r el at i on const ant nami ng a r el at i on of ar i t y n ; t he xi ar e
al so def i nes consequences t hat hol d onl y when an i nst ance
l ogi cal var i abl es, one f or each ar gument of Name. Al l uses
of t he cl ass i s act i ve . The def Model Fr agment f or m may
of Name i n t he domai n t heor y shoul d be consi st ent wi t h t he
def i ne condi t i ons suf f i ci ent t o i mpl y t he exi st ence of an
i nst ance, i n addi t i on t o t he necessar y consequences t her eof .
speci f i ed const r ai nt s .
The def Ent i t y f or m i s a r est r i ct ed ver si on of
=> The asent ence i s a l ogi cal sent ence t hat may ment i on
def Model Fr agment t hat i s used f or def i ni ng pr oper t i es of
t he var i abl es xi . I f pr esent , t he sent ence ( => ( Name
a per si st ent obj ect t hat ar e al ways t r ue . The def Ent i t y
xi . . . xn) asent ence ) i s t r ue .
f or m def i nes onl y necessar y consequences of an obj ect
<_> The asent ence i s a l ogi cal sent ence t hat may
bei ng an i nst ance of t he cl ass, not condi t i ons suf f i ci ent t o
ment i on t he var i abl es xi . I f pr esent , t he sent ence
i mpl y t he exi st ence of an i nst ance .
( <=> ( Name . X( . . . xn) asent ence ) i s t r ue .
The def Ent i t y and def Model Fr agment f or ms have been
Funct i on I f f unct i on i s t r ue, t hen t he r el at i on Name i s a
desi gned t o suppor t an obj ect - or i ent ed st yl e of def i ni ng
f unct i on . That i s, t he f i r st n- 1 ar gument s t o Name
domai n t heor i es . Each f or m def i nes a cl ass of obj ect s
uni quel y det er mi nes t he nt h and ( Name xt . . . x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
_1)
speci f i ed by set s of st at i c at t r i but es and t i me dependent
may be used as a t er m denot i ng xn.
quant i t i es . These at t r i but es and quant i t i es ar e ef f ect i vel y
t i me- dependent I f t i me- dependent i s t r ue, t hen Name
sl ot s def i ned on i nst ances of t he cl ass . Fur t her mor e, t hese
i s a t i me- dependent r el at i on and appear ances of Name
cl asses may be ar r anged i n a hi er ar chy vi a t he subcl ass- of
i n a CML f or m must be handl ed speci al l y .
cl ause .
Bobr ow
15
Synt ax
Ex ampl es
( def Rel at i on Name ( XI . . . xn)
[ : document at i on st r i ng ]
( def Rel at i on cont ent s ( ?x ?y)
: => ( and ( cont ai ner ?x)
( cont ai ned- st uf f ?y) )
: <=> ( cont ai ned- i n ?y ?x) )
( def Rel at i on f ahr enhei t ( ?t ?f )
: <=> ( == ?f
( : => asent ence ]
( : <_> asent ence ]
[ : f unct i on bool ean ]
( - ( magni t ude ?t r anki ne) 459 . 7) )
: f unct i on t r ue)
( def Rel at i on above ( ?x ?y)
: t i me- dependent t r ue
( def Quant i t yFunct i on mass ( ?x)
: => ( physi cal - obj ect ?x)
: di mensi on mass- di mensi on)
( def Quant i t yFunct i on densi t y ( ?x)
: => ( physi cal - obj ect ?x)
: di mensi on ( / mass- di mensi on
( expt l engt h- di mensi on 3) ) )
[ di me- dependent bool ean ] )
( def Quant i t yFunct i on Name ( xI . . . xn)
[ : document at i on st r i ng ]
[ : => asent ence ]
[ : di mensi on di mensi on expr essi on ]
( : pi ecewi se- cont i nuous bool ean ]
[ : st ep- quant i t y bool ean ]
[ : count - quant i t y
l ean ]
[ : non- numer i c bool ean ] 1
( def Model Fr agment Name
[ : document at i on st r i ng ]
[ : subcl ass- of
l
sl . . . s]
[ : par(tpi ci pant sanq
( ar t i c ant
[ : t ype
W
e. ] ) . . . ) ]
e
p
[ : condi t i ons condi t i ons ]
[ : quant i t i es ( ( quant i t y I keywor ds 1) . . . q) ]
[ : at t r i but es
( ( at t r i ut
[ ape
ttr
el ] ) . . .
[ : consequences consequences ] )
a]
( def Ent i t y Name
[ : document at i on st r i ng ]
[ : subcl ass- of cl ass ) . . . s]
[ : quant i t i es ( ( uant i
l keywor ds 1) . . . q) ]
[ : at t r i but es
( ( at t r i but e) [ : t ype
at t r
el ] ) . . . a) ]
[ : consequences consequences ] )
( def Model Fr agment Cont ai ned- St uf f
: subcl ass- of ( physi cal - obj ect )
: par t i ci pant s
( ( sub : t ype subst ance)
( ct nr : t ype f l ui d- cont ai ner ) )
: condi t i ons
( ( > ( amount - of - i n sub ct nr )
( * 0 gr ams) ) )
: quant i t i es
( ( pr essur e
: di mensi on pr essur e- di mensi on)
( mass
: di mensi on mass- di mensi on) )
: consequences
( ( == mass
amount - of - i n sub ct nr )
( def Ent i t y Can
: subcl ass- of ( physi cal - obj ect Cont ai ner )
: quant i t i es
( ( hei ght
: di mensi on l engt h- di mensi on)
( di amet er
: di mensi on l engt h- di mensi on)
( vol ume
: di mensi on vol ume- di mensi on) )
: consequences
( ( == ( vol ume : sel f )
( * PI ( expt ( / di amet er 2) 2)
hei ght ) ) ) )
Tabl e 1 : Synt ax and exampl es of t op- l evel f or ms
Synt ax
Ex am l es
( def i mensi on Name
: document at i on " i n
[ : = di mensi on expr essi on ] ~
( def Di mensi on ener gy- di mensi on
( * mass- di mensi on l engt h- di mensi on
( expt t i me- di mensi on - 2) ) )
( def Uni C i nch
( def Uni t Name
: _ ( * 2 . 54 ( * met er 0 . 01) ) )
[ : document at i on st r i ng ]
[ : = quant i t y exnr essi on ]
[ : di mensi on di mensi on expr essi on ] )
( def Const ant Quant i t y Pi
( def Const ant Quant i t y Name
: = ( acos - 1) )
[ : document at i on t r i n ]
( def Const ant Quant i t y Bol t zman- Const ant
[ : =, ?ent i t y ex . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
" ' on ]
: = ( * 1 . 380658 ( / Joul e Kel vi n) ) )
[ : di mensi on di mensi on expr essi on ] )
( def Scenar i o wat er - heat i ng- exampl e
: document at i on
" A can cont ai ni ng wat er i s pl aced di r ect l y above a
gas- heat er , whi ch i s i ni t i al l y l i t . "
: I ndi vi dual s
( ( C : t ype Can)
( H : t ype Gas- heat er )
( W: t ype Cont ai ned- wat er ) )
: i ni t i al l y
( ( > ( amount - of - i n WC) ( * 0 gr ams) ) )
: t hr oughout
( ( _ ( hei ght A) ( * 0 . 2 met er ) )
( _ ( di amet er A) ( * 0. 15 met er ) )
( f l ame- l i t - p H t r ue)
( di r ect l y- above C H
( def Scenar i o Name
[ : document at i on st r i ng ]
[ : i ndi vi dual s ( ( i ndi vi dual [ : t ype t yke] ) * ) ]
[ : i ni t i al l y asent ences ]
[ : t hr oughout asent ences ]
Tabl e 1 : cont .
Addi t i onal Synt ax
di mensi on expr essi on
di mensi on I
( * di mensi on expr essi on +) I
( expt di mensi on expr essi on number ) I
( l di mensi on expr essi on di mensi on expr essi on)
quant i t y expr essi on
uni t I quant i t y I
( mat hon quant i t y expr essi on +)
asent ence : : = ( and l i t er al * )
l i t er al : : =
( r el const t er m* ) I
- ( ' not ( r el const t er m * ) )
Tabl e 2 : Some Addi t i onal Synt ax
Name The name of t he model f r agment or ent i t y, name ,
i s a r el at i on const ant nami ng t he cl ass of i nst ances .
Subcl ass- of The subcl ass- of cl ause al l ows a hi er ar chy
t o be def i ned . Each cl ass i s t he name of a model
f r agment or ent i t y def i ni t i on . An i nst ance of name i s
al so an i nst ance of each super cl ass .
As a
consequence, al l of t he par t i ci pant , quant i t y, and
at t r i but e f unct i ons def i ned f or each st eer ar e al so
def i ned f or name .
Par t i ci pant s The par t i ci pant s cl ause i dent i f i es t he
obj ect s t hat par t i ci pat e i n t he model f r agment
i nst ance . Each par t i ci pant i s a f unct i on const ant t hat
names a unar y f unct i on whi ch may be appl i ed t o an
i nst ance t o access t he cor r espondi ng par t i ci pant ; each
I f i s a r el at i on const ant t hat names a cl ass ( unar y
r el at i on) of whi ch t he par t i ci pant i s an i nst ance.
Condi t i ons The condi t i ons cl ause speci f i es t he
condi t i ons under whi ch an i nst ance of a model
f r agment i s act i ve . I f t he condi t i ons hol d over t he
speci f i ed par t i ci pant s, t hen an i nst ance of t he model
f r agment exi st s wi t h t he speci f i ed quant i t i es and
at t r i but es . Condi t i ons i s an i mpl i ci t conj unct i on of
l i t er al s . The bi nar y r el at i ons same and di f f er ent may
be used i n t he condi t i ons t o st at e t hat t wo par t i ci pant s
ar e t he same or di f f er ent f r om each ot her .
At t r i but es The at t r i but es cl ause may be used t o def i ne
st at i c at t r i but es of an i nst ance . Each at t r i but e i s a
symbol nami ng a f unct i on t hat i s t ot al l y def i ned f or
i nst ances of name . The at t r i but es ar e pol ymor phi c,
t hat i s, an at t r i but e of t he same name may be def i ned
f or anot her unr el at ed f or m wi t h a di f f er ent t ype .
Bobr ow
17
Quant i t i es The quant i t i es cl ause may be used t o l ocal l y
def i ne quant i t i es t hat descr i be an i nst ance . The
keywor ds ar e t he keywor d opt i ons def i ned f or
def Quant i t yFunct i on, except t hat => i s not al l owed .
Such i mpl i cat i ons may be pl aced i n t he consequences
cl ause . The quant i t i es ar e pol ymor phi c, t hat i s, a
quant i t y of t he same name may be def i ned f or anot her
unr el at ed model f r agment , but have di f f er ent
pr oper t i es . Nonet hel ess, quant i t y f unct i ons def i ned i n
a quant i t i es cl ause must be consi st ent wi t h any of t he
const r ai nt s i mposed by a def Quant i t yFunct i on
def i ni t i on of t he same name . For exampl e, ent i t y
def i ni t i ons Li qui d and Sand can bot h def i ne a
quant i t y cal l ed Amount - of wi t h di mensi ons vol umedi mensi on and mass- di mensi on, r espect i vel y .
However , i f t her e i s a separ at e gl obal def i ni t i on of
Amount - of usi ng t he def Quant i t yFunct i on f or m,
whi ch speci f i es t he di mensi on t o be vol umedi mensi on, t he quant i t y def i ni t i on of Amount - of i n
Sand i s di sal l owed si nce i t i s i nconsi st ent wi t h t he
gl obal def i ni t i on
Consequences
The consequences cl ause hol ds
whenever an i nst ance i s act i ve . The consequences i s
an i mpl i ci t conj unct i on of l i t er al s . The pr i mar y r ol e
of t he consequences i s t o est abl i sh equat i ons t hat hel p
t o def i ne t he behavi or of t he par t i ci pant s . I n addi t i on
t o equat i ons, ot her l ogi cal r el at i ons may al so be
asser t ed .
3 . 3 . 1 Synt act i c Sugar
I n or der t o al l ow f or mor e conci se and r eadabl e def i ni t i ons,
t he def Ent i t y and def Model Fr agment f or ms pr ovi de some
synt act i c sugar .
Sel f The symbol sel f may be used t o r ef er t o t he cur r ent
i nst ance . Not e t hat i t may not be used i n t he
condi t i ons cl ause of a model - f r agment def i ni t i on
wi t h no super cl asses, as t hi s woul d pl ace i t out si de of
t he scope wi t hi n whi ch t he i nst ance exi st s .
Nam
The user pr ovi ded symbol f or t he name of a
model f r agment or ent i t y may be used i nst ead of sel f
and i s compl et el y equi val ent .
uant '
The symbol f or any
nt i
may be used t o
r ef er t o t he appr opr i at e quant i t y wi t hi n t he
consequences cl ause . Thi s i s compl et el y equi val ent
t o t he mor e ver bose f or m ( uant i
sel f ) , whi ch
may al so be used .
At t r i but e The symbol f or any at t r i but e may be used t o
r ef er t o t he appr opr i at e at t r i but e wi t hi n t he
consequences cl ause . Thi s i s compl et el y equi val ent
t o t he mor e ver bose f or m ( at t r i but e sel f ) , whi ch
may al so be used .
Par t i ci pant
I n a model f r agment def i ni t i on, t he user
pr ovi ded symbol f or each par t i ci pant may be used t o
r ef er t o t hat par t i ci pant . Out si de of t he condi t i ons ,
t he mor e ver bose f or m ( par t i ci pant sel f ) may al so
be used .
18
QR- 96
3. 4.
Semant i cs
The f ul l semant i cs of t he CML f or ms ar e def i ned i n
e pr ovi de an
[ Fal kenhai ner , Far quhar et al . 1994] . W
i nf or mal account of t hem her e, st ar t i ng wi t h t he si mpl er
def Ent i t y f or m.
The def Ent i t y f or m def i nes a cl ass of obj ect s . I f any
obj ect i s a member of t he cl ass, t hen t he quant i t i es and
at t r i but es def i ned i n t he f or m appl y t o i t , and t he
consequences ar e t r ue f or t hem. Ent i t i es may be st r uct ur ed
i nt o a hi er ar chy usi ng t he subcl ass- of cl ause ; al l quant i t i es,
at t r i but es, and consequences t hat appl y t o a super cl ass al so
appl y t o t he subcl ass . That i s, al l i nher i t ance i s monot oni c
- t her e i s no way t o over - r i de def aul t val ues t hat ar e
i nher i t ed .
A def Model Fr agment f or m wi t hout any super cl asses i s
al so si mpl e t o under st and . I f t he par t i ci pant s exi st and
sat i sf y t he t i me- i ndependent condi t i ons, t hen an i nst ance of
t he model f r agment exi st s . At any moment t hat t he t i medependent condi t i ons hol d, t he model i nst ance i s act i ve and
t he consequences hol d . I f t he t i me- dependent condi t i ons
do not hol d, t he consequences ar e not i mpl i ed .
A
def Model Fr agment f or m wi t hout super cl asses def i nes
suf f i ci ent condi t i ons f or an i nst ance t o exi st .
A def Model Fr agment f or m wi t h super cl asses i s
somewhat mor e compl ex . I f t her e i s some obj ect t hat i s an
i nst ance of al l of t he def i ni t i on' s super cl asses and t he
def i ni t i on' s par t i ci pant s exi st and i t s t i me- i ndependent
condi t i ons hol d, t hen t hat obj ect i s al so an i nst ance of t he
def i ni t i on . Act i vi t y and consequences ar e handl ed j ust as
A
f or model
f r agment s wi t hout super cl asses .
def Model Fr agment f or m wi t h super cl asses def i nes
necessar y condi t i ons f or an obj ect t o be an i nst ance .
The pr evi ous par agr aphs descr i be CML as i t has been
def i ned and i s consi st ent wi t h i t s pr edecessor l anguages .
Thi s scheme i s ext r emel y usef ul f or pr ovi di ng addi t i onal
i nf or mat i on about concr et e physi cal phenomena i n a
l i br ar y . For i nst ance, a l i br ar y mi ght i ncl ude one def i ni t i on
f or f l ui d- f l ow t hat hel d whenever t her e wer e t wo cont ai ner s
connect ed by a por t . Subcl asses of f l ui d- f l ow mi ght
i ncl ude l ami nar f l ow, t ur bul ent f l ow, and so on .
Thi s scheme, however , has an i mpor t ant shor t comi ng
t hat i t does not al l ow abst r act model f r agment s t o be
def i ned . To under st and t hi s di f f i cul t y, consi der an exampl e
of a l i br ar y of chemi cal r eact i ons . Such a l i br ar y mi ght
i ncl ude model f r agment s f or bi nar y chemi cal r eact i ons,
such as oxi dat i on, bet ween subst ances . Ther e ar e a f ew
t hi ngs t hat can be sai d about al l bi nar y chemi cal r eact i ons
such as " t her e ar e t wo di st i nct r eact ant s" . Thus, Bi nar yr eact i on, t he cl ass of al l bi nar y r eact i ons, may have t wo
par t i ci pant s, React ant - 1 and React ant - 2 and a condi t i on t hat
t hey ar e di st i nct . I t i s not nat ur al , however , t o speci f y
f ur t her e condi t i ons under whi ch a gener i c bi nar y r eact i on
occur s . Thi s i s much easi er t o say about a speci f i c
chemi cal r eact i on .
Oxi dat i on, a subcl ass of Bi nar yr eact i on, may have t he condi t i on t hat React ant - 1 i s an
oxi dant , and React ant - 1 and React ant - 2 ar e i n cont act .
Gi ven a si t uat i on i nvol vi ng t hr ee chemi cal subst ances, A,
B, and C, such t hat onl y A i s an oxi dant , and A and B ar e
i n cont act wi t h each ot her , one woul d expect exi st ance of
onl y one bi nar y chemi cal r eact i on, whi ch i s al so an
oxi dat i on r eact i on, t o be i nf er r ed . However , f r om t he
semant i cs of t he model f r agment s descr i bed above, t her e
woul d be si x i nst ances of abst r act bi nar y r eact i ons, one f or
each possi bl e combi nar i on of A, B, and C. Al t hough t he
cur r ent i nt er pr et at i on i s coher ent and l ogi cal l y consi st ent , i t
poses a pr act i cal pr obl em t hat i t enabl es a l ar ge number of
uni nt er est i ng model f r agment i nst ances t o be i nf er r ed . We
ar e cur r ent l y consi der i ng an al t er nat e scheme t hat suppor t s
abst r act model f r agment s wi t h or wi t hout super cl asses .
3. 5 .
Di mensi ons, Uni t s, and Const ant s
The vocabul ar y used t o descr i be quant i t i es var i es f r om one
domai n t o anot her . For t hi s r eason, i t i s essent i al t o be abl e
t o def i ne new di mensi ons and uni t s . Of t en, t hese wi l l be
der i ved f r om t he base set of SI di mensi ons and uni t s ( e . g . ,
an el ect r o- magnet i c domai n t heor y mi ght def i ne a
di mensi on f or magnet i c- f l ux and i t s SI der i ved uni t , t he
Weber ) . I f t he new di mensi on i s r educi bl e t o ot her
di mensi ons, t he di mensi on expr essi on must be pr ovi ded .
The t op- l evel f or ms def Di mensi on and def Uni t pr ovi de
t hi s f aci l i t y . The f or m def Const ant Quant i t y i s al so
pr ovi ded f or def i ni ng gl obal named const ant s .
Ever y CML i mpl ement at i on shoul d have a bui l t - i n
l i br ar y of def i ni t i ons f or t he basi c SI di mensi ons and uni t s :
t i me- di mensi on, l engt h- di mensi on,
t emper at ur e
di mensi on,
mass- di mensi on, l umi nosi t y- di mensi on,
char ge- di mensi on, amount - di mensi on ( usual l y measur ed
i n mol es) , and di mensi onl ess . The l i br ar y shoul d al so
i ncl ude t he def i ni t i ons f or t he common SI uni t s i ncl udi ng
t he base uni t s, met er , ki l ogr am, second, amper e, Kel vi n,
mol e, as wel l as t he der i ved uni t s Her t z, Newt on, Pascal ,
Joul e, Wat t , Coul omb, vol t , Far ad, ohm, Si emens,
Weber , Tesl a, and Henr y .
Except f or di mensi onl ess,
di mensi ons ar e, by
convent i on, named by af f i xi ng - di mensi on t o t he st andar d
Engl i sh wor d . Thi s makes i t st r ai ght f or war d t o di st i ngui sh
bet ween di mensi ons and si mi l ar l y named quant i t y
f unct i ons .
I f a def Uni t l acks t he = ar gument , t hen i t def i nes a
f undament al uni t . A f undament al uni t def i ni t i on must have
ei t her a di mensi on ( as i n t he met er exampl e) or a uant i
eMr essi on , i n whi ch case t he di mensi on i s i nf er r ed f r om
t hat of t he guant i t y expr essi on . I f t he expr essi on i s
compl ex, i t may be mor e i nf or mat i ve t o pr ovi de t he
di mensi on expl i ci t l y .
The def Const ant Quant i t y f or m i s i dent i cal t o def Uni t ,
except t hat = must be pr ovi ded .
3. 6 .
I ndi vi dual s The i ndi vi dual s cl ause speci f i es a set of
named obj ect s t hat ar e assumed t o exi st i ni t i al l y . The
domai n t heor y may i mpl y t he exi st ence of ot her
i ndi vi dual s . The i ndi vi dual i s an obj ect const ant
denot i ng an obj ect , not a r el at i on or f unct i on .
I ni t i al l y The i ni t i al l y cl ause speci f i es condi t i ons t hat
i ni t i al l y hol d i n t he scenar i o . I t i s an i mpl i ci t
conj unct i on of l i t er al s . I t may speci f y r el at i ons
bet ween quant i t i es, t i me- dependent r el at i ons, and
per haps an assi gnment f or t he quant i t y t i me .
Thr oughout
The t hr oughout cl ause speci f i es
condi t i ons t hat hol d t hr oughout t he scenar i o . I t i s a
l i st of l i t er al s under an i mpl i ci t conj unct i on .
Scenar i os
The def Scenar i o f or m i s used f or set t i ng up pr obl ems i n
whi ch t he behavi or of a syst em i s t o be pr edi ct ed f r om a set
of i ni t i al condi t i ons .
4.
Equat i ons
CML pr ovi des a base set of mat hemat i cal f unct i ons and
oper at or s t hat can be used i n t he consequences and
condi t i ons of model f r agment and ent i t y def i ni t i ons as wel l
as i ni t i al l y and t hr oughout cl auses of scenar i o def i ni t i ons .
The mat hemat i cal f unct i ons and r el at i ons can be appl i ed t o
t i me dependent var i abl es as wel l as t i me i ndependent ones .
The r el at i ons on quant i t i es i ncl uded : <, <=, >=, >, ==,
posi t i ve, negat i ve, zer o, i nt eger , odd, even . CML i ncl udes
mat hemat i cal f unct i ons as def i ned i n t he Common Li sp
st andar d ( +, - , * , / , abs, acos, acosh, asi n, asi nh, at an,
at anh, cos, cosh, exp, expt , l og, max, mi n, mod, si gnum,
si n, si nh, sqr t , t an, t anh) ; t he t i me der i vat i ve d/ dt ; t he
qual i t at i ve r el at i ons M+, M- M+O, M- 0, Q= ; and t he
composabl e equat i ons C+, C- , Qpr op+, Qpr op+O, Qpr op- 0,
I +, I . The f ul l semant i cs of t hese f unct i ons and r el at i ons
ar e def i ned i n [ Fal kenhai ner , Far quhar et al . 1994] . Tabl e
3 summar i zes t he der i vat i ve, qual i t at i ve const r ai nt s, and
composabl e equat i ons .
5.
Concl usi on
I n t hi s paper , we have pr esent ed CML, t he knowl edge
r epr esent at i on l anguage f or t he composi t i onal model i ng
par adi gm. The mai n advant age of composi t i onal model i ng
i s i t s modul ar i t y .
Wr i t i ng model f r agment s, each
descr i bi ng a si ngl e phenomenon, i s a much easi er t ask t han
composi ng a compl et e model f or ever y possi bl e syst em and
quer y . Even so, const r uct i ng such a domai n t heor y i s a
subst ant i al under t aki ng . Thus, t he maj or goal of CML i s t o
suppor t t he i nt er change and r euse of such t heor i es . To
enabl e shar i ng of knowl edge st at ed i n CML, t he semant i cs
of CML i s f ul l y def i ned i n KI F.
The l anguage pr esent ed her e i s t he base l anguage of CML,
whi ch al l t he i mpl ement at i ons of model i ng syst ems usi ng
CML ar e expect ed t o suppor t . Var i ous ext ensi ons t o t he
base l anguage wi l l undoubt edl y be needed t o accommodat e
domai n- speci f i c r epr esent at i onal needs . Some of such
ext ensi ons t hat we ar e consi der i ng ar e t he f ol l owi ng :
Bobr ow
19
For ms
Exampl es
Meani ng
( d/ dt x)
d/ dt x
( M+ y x)
M- x
( M+0 y x)
M- 0 x
( Q= x y)
( > ( d/ dt ( l ocat i on m) 0)
d/ dt
os m vel m
( M+ ( l evel w) ( pr essur e w) )
M- vol w ( space c
( M+0 ( l evel w)
( pr essur e w
( C+ y x)
( C- y x)
( C+ ( net c) ( i n 1 c) )
( C- ( net c) ( out c) )
( Qpr op+ y x)
( Qpr op- y x)
( Qpr op+ ( si ze ( dr ai n c) )
( out c) )
( Qpr op+0 y x)
( Qpr op- 0 y x)
( Qpr op+0 ( cur r ent w)
( conduct ance w) )
( C* y x)
x
C/
( cor r espondence y v
x1 v I . . . x n v n )
( C* ( magni f i cat i on scope)
( magni f i cat i on l ens
( cor r espondence
( l evel c) t op
( vol ume c) f ul l )
The t i me der i vat i ve of x .
The t i me der i vat i ve of x i s
The quant i t y y i s a i n( de) cr easi ng monot oni c
f unct i on of x .
Y i s a monot oni c i n( de) cr easi ng f unct i on of x, but
asses t hr ough t he or i gi n .
X and y and t hei r der i vat i ves have t he same si gn .
A somewhat weaker st at ement t han M+O.
Composabl e addi t i on and subt r act i on . X
i n( de) cr ement s y . Not e t hat t hese can be mi xed
wi t h
ro s.
Composabl e qual i t at i ve pr opor t i onal i t i es . Not e t hat
t hese can be mi xed wi t h C+, C- . Qpr op+ i s
equi val ent t o a C+ chai ned t o an M+ .
Si mi l ar t o Qpr op, but i f al l of t he composed
equat i ons on y ar e C+, C, Qpr op+0, Qpr op- 0, t hen
=0 when t he x' s ar e 0.
Si mi l ar t o C+, C- , but x mul t i pl i es ( di vi des) i nt o y .
I f t her e i s a f unct i on f such t hat y=f ( x I . . . x n) t hen
when xi =vi y=v . The xi ar e quant i t y f unct i ons, and
t he vi ar e val ues.
Tabl e 3 : Qual i t at i ve Rel at i ons and Composi t i onal Equat i ons
Ext ensi on t o t he r epr esent at i on of quant i t i es t o
i ncl ude vect or s and mat r i ces .
Ext ensi on t o t he not i on of mat hemat i cal f unct i ons t o
i ncl ude mat hemat i cal r el at i ons r epr esent ed by
ar bi t r ar y ext er nal dat a st r uct ur es such as dat abases
and f or ei gn pr ocedur es .
Expansi on of t he mat hemat i cal vocabul ar y t o i ncl ude
par t i al di f f er ent i al equat i ons .
Gener al i zat i on of t he model f r agment r epr esent at i on
t o r epr esent non- numer i c and di scont i nuous changes .
Repr esent at i on of pr ocedur al speci f i cat i ons such as
pr escr i bed oper at or pr ocedur es .
The det ai l ed speci f i cat i on of t he synt ax and semant i cs of
t he l anguage al ong wi t h di scussi ons of desi gn r at i onal e and
i mpl ement at i on consi der at i ons can be f ound i n
[ Fal kenhai ner , Far quhar et al . 1994] .
To f aci l i t at e
const r uct i on of domai n t heor i es i n CML, we have
i mpl ement ed a web- based CML edi t or f or br owsi ng,
cr eat i ng and edi t i ng CML domai n t heor i es . The edi t or ,
whi ch i s publ i cl y accessi bl e on t he W
W
W
, pr ovi des a f ul l ,
di st r i but ed col l abor at i ve edi t i ng envi r onment . W
e ar e al so
i n t he pr ocess of i mpl ement i ng a model f or mul at i on and
si mul at i on syst em, whi ch wi l l make use of t he CML
l i br ar y . The syst em wi l l be al so publ i cl y accessi bl e as a
ser vi ce on t he W
W
W
. W
e hope t hat t he avai l abi l i t y of
t hese ser vi ces wi l l f aci l i t at e devel opment of a si gni f i cant
publ i c l i br ar y of domai n t heor i es by t hi s r esear ch
communi t y and t hat i t wi l l spur f ur t her r esear ch and
devel opment i n t he f i el d .
20
QR- 96
Acknowl edgement
The aut hor s t hank Vi j ay Sar aswat f or usef ul comment s on
t he l anguage speci f i cat i ons . The r esear ch by t he aut hor s
ar e suppor t ed i n par t by t he f ol l owi ng agenci es : For bus by
t he Of f i ce of Naval Resear ch, Far quhar , Fi kes, Gr uber , and
I wasaki by ARPA and NASA/ ARC under cont r act NAG2581 ( ARPA or der 8607) , and Kui per s by NSF gr ant s I RI 9216584 and I RI - 9504138 and by NASA gr ant s NCC 2760 and NAG2- 994 .
Ref er ences
Cr awf or d, J . , Far quhar , A. , and Kui per s, B. ( 1990) . PC: A
Compi l er f r om Physi cal Model s i nt o Qual i t at i ve
Di f f er ent i al Equat i ons . The Ei ght h Nat i onal Conf er ence on
Ar t i f i ci al I nt el l i gence,
Fal kenhai ner , B . , For bus, K . ( 1991) . " Composi t i onal
model i ng : f i ndi ng t he r i ght model f or t he j ob . " Ar t i f i ci al
I nt el l i gence 51( 1- 3) :
Fal kenhai ner , B. , Far quhar , A. , Bobr ow, D. , Fi kes, R. ,
For bus, K. , et al . ( 1994) .
CML : A Composi t i onal
Techni cal r epor t KSL- 94- 16,
Model i ng Language .
Knowl edge Syst ems Labor at or y, St anf or d Uni ver si t y .
Far quhar , A. ( 1993) . Aut omat ed Model i ng of Physi cal
Syst ems i n t he Pr esence of I ncompl et e Knowl edge . Ph . D.
t hesi s . Uni ver si t y of Texas at Aust i n .
Far quhar , A. ( 1994) . A Qual i t at i ve Physi cs Compi l er .
Pr oceedi ngs, Twel f t h Nat i onal Conf er ence on Ar t i f i ci al
I nt el l i gence, Seat t l e, Washi ngt on, The AAAI Pr ess/ The
MI T Pr ess .
For bus, K. D. ( 1984) . " Qual i t at i ve Pr ocess Theor y . "
Ar t i f i ci al I nt el l i gence 24( 1- 3) :
Geneser et h, M. R. and Fi kes, R. E. ( 1992) . Knowl edge
I nt er change For mat , Ver si on 3 . 0 Ref er ence Manual .
Techni cal r epor t Logi c- 92- 1, St anf or d Uni ver si t y Logi c
Gr oup .
Low, C. M. and I wasaki , Y. ( 1993) . " Devi ce model l i ng
envi r onment : an i nt er act i ve envi r onment f or model l i ng
devi ce behavi our . " I nt el l i gent Syst ems Engi neer i ng 1( 2) :
115- 145 .
St eel e, G. L . ( 1990) . Common Li sp : The Language . Di gi t al
Pr ess .
Bobr ow
21