NBER WORKING PAPER SERIES
MACROECONOMICS AND ARCH
James D. Hamilton
Working Paper 14151
http://www.nber.org/papers/w14151
NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
June 2008
Prepared for the Festschrift in Honor of Robert F. Engle (eds. Tim Bollerslev, Jeffrey R. Russell, and
Mark Watson). The views expressed herein are those of the author(s) and do not necessarily reflect
the views of the National Bureau of Economic Research.
NBER working papers are circulated for discussion and comment purposes. They have not been peerreviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.
© 2008 by James D. Hamilton. All rights reserved. Short sections of text, not to exceed two paragraphs,
may be quoted without explicit permission provided that full credit, including © notice, is given to
the source.
Macroeconomics and ARCH
James D. Hamilton
NBER Working Paper No. 14151
June 2008
JEL No. E52
ABSTRACT
Although ARCH-related models have proven quite popular in finance, they are less frequently used in
macroeconomic applications. In part this may be because macroeconomists are usually more concerned
about characterizing the conditional mean rather than the conditional variance of a time series. This
paper argues that even if one's interest is in the conditional mean, correctly modeling the conditional
variance can still be quite important, for two reasons. First, OLS standard errors can be quite misleading,
with a "spurious regression" possibility in which a true null hypothesis is asymptotically rejected with
probability one. Second, the inference about the conditional mean can be inappropriately influenced
by outliers and high-variance episodes if one has not incorporated the conditional variance directly
into the estimation of the mean, and infinite relative efficiency gains may be possible. The practical
relevance of these concerns is illustrated with two empirical examples from the macroeconomics literature,
the first looking at market expectations of future changes in Federal Reserve policy, and the second
looking at changes over time in the Fed's adherence to a Taylor Rule.
James D. Hamilton
Department of Economics, 0508
University of California, San Diego
9500 Gilman Drive
La Jolla, CA 92093-0508
and NBER
jhamilton@ucsd.edu
1
Introduction.
One of the most influential econometric papers of the last generation was Engle’s (1982a)
introduction of autoregressive conditional heteroskedasticity (ARCH) as a tool for describing
how the conditional variance of a time series evolves over time. The ISI Web of Science lists
over 2000 academic studies that have cited this article, and simply reciting the acronyms
for the various extensions of Engle’s theme involves a not insignificant commitment of paper
(see Table 1, or the more detailed glossary in Bollerslev, 2008).
The vast majority of empirical applications of ARCH models have studied financial time
series such as stock prices, interest rates, or exchange rates.
To be sure, there have also
been a number of interesting applications of ARCH to macroeconomic questions. Lee, Ni,
and Ratti (1995) noted that the conditional volatility of oil prices, as captured by a GARCH
model, seems to matter for the magnitude of the effect on GDP of a given movement in
oil prices, and Elder and Serletis (2006) use a vector autoregression with GARCH-in-mean
elements to describe the direct consequences of oil-price volatility for GDP. Grier and Perry
(2000) and Fountas and Karanasos (2007) use such models to conclude that inflation and
output volatility also can depress real GDP growth, while Servén (2003) studied the effects
of uncertainty on investment spending.
However, despite these interesting applications, studying volatility has traditionally been
a much lower priority for macroeconomists than for researchers in financial markets because
the former’s interest is primarily in describing the first moments. There seems to be an assumption among many macroeconomists that, if your primary interest is in the first moment,
2
ARCH has little relevance apart from possible GARCH-M effects.
The purpose of this paper is to suggest that even if our primary interest is in estimating
the conditional mean, having a correct description of the conditional variance can still be
quite important, for two reasons.
First, hypothesis tests about the mean in a model in
which the variance is misspecified will be invalid. Second, by incorporating the observed
features of the heteroskedasticity into the estimation of the conditional mean, substantially
more efficient estimates of the conditional mean can be obtained.
Section 2 develops the theoretical basis for these claims, illustrating the potential magnitude of the problem with a small Monte Carlo study and explaining why the popular White
(1980) or Newey-West (1987) corrections may not fully correct for the inference problems
introduced by ARCH. The subsequent sections illustrate the practical relevance of these
concerns using two examples from the macroeconomics literature.
The first application
concerns measures of what the market expects the U.S. Federal Reserve’s next move to
be, and the second explores the extent to which U.S. monetary policy today is following a
fundamentally different rule from that observed thirty years ago.
I recognize that it may require more than these limited examples to persuade macroeconomists to pay more attention to ARCH. Another thing I learned from Rob Engle is
that, in addition to coming up with a great idea, it doesn’t hurt if you also have a catchy
acronym that people can use to describe what you’re talking about. After all, where would
we be today if we all had to pronounce “autoregressive conditional heteroskedasticity” every
time we wanted to discuss these issues? However, Table 1 reveals that the acronyms one
3
might logically use for “Macroeconomics and ARCH” seem already to be taken. “MARCH”,
for example, is already used (twice), as is “ARCH-M”.
Fortunately, Engle and Manganelli (2004) have shown us that it’s also OK to mix upperand lower-case letters, picking and choosing handy vowels or consonants so as to come up
with something catchy, as in “CAViaR” (Conditional Autoregressive Value at Risk).
In
that spirit, I propose to designate “Macroeconomics and ARCH” as “McARCH.” Maybe
not a new product so much as new packaging.
Herewith, then, discussion of the relevance of McARCH.
2
GARCH and inference about the mean.
We can illustrate some of the issues with the following simple model:
yt = β 0 + β 1 yt−1 + ut
ut =
p
ht vt
ht = κ + αu2t−1 + δht−1
(1)
(2)
for t = 1, 2, ..., T
h0 = κ/(1 − α − δ)
vt ∼ i.i.d. N(0, 1).
(3)
Bollerslev (1986, pp. 312-313) showed that if
3α2 + 2αδ + δ 2 < 1,
4
(4)
then the noncentral unconditional second and fourth moments of ut exist and are given by
κ
1−α−δ
(5)
3κ2 (1 + α + δ)
.
(1 − α − δ)(1 − δ 2 − 2αδ − 3α2 )
(6)
µ2 = E(u2t ) =
µ4 = E(u4t ) =
Consider the consequences if the mean parameters β 0 and β 1 are estimated by ordinary least
squares,
β̂ =
³X
0
xt xt
´−1 ³X
xt yt
´
β = (β 0 , β 1 )0
xt = (1, yt−1 )0 ,
and where all summations are for t = 1, ..., T. Suppose further that inference is based on
the usual OLS formula for the variance, with no correction for heteroskedasticity:
V̂ = s2
³X
0
xt xt
s2 = (T − 2)−1
´−1
X
(7)
û2t
0
ût = yt − xt β̂
Consider first the consequences of this inference when the fourth-moment condition (4)
is satisfied. For simplicity of exposition, consider the case when the true value of β = 0.
Then from the standard consistency results (e.g., Lee and Hansen, 1994; Lumsdaine, 1996)
5
we see that
³
´
X
0 −1
T V̂ = s2 T −1
xt xt
(8)
−1
E(yt−1 )
1
p
→ E(u2t )
2
)
E(yt−1 ) E(yt−1
−1
µ2 0
=
0 1
.
In other words, the OLS formulas will lead us to act as if
√
T β̂ 1 is approximately N(0, 1) if
the true value of β 1 is zero. But notice
³
´ ³
´
X
X
√
0 −1
T (β̂ − β) = T −1
xt xt
T −1/2
xt ut .
(9)
Under the null hypothesis, the term inside the second summation, xt ut , is a martingale
difference sequence with variance
0
E(u2t xt xt )
E(u2t ut−1 )
E(u2t )
.
=
E(ut−1 u2t ) E(u2t u2t−1 )
When the (2,2) element of this matrix is finite, it then follows from the Central Limit
Theorem (e.g., Hamilton, 1994, p. 173) that
T −1/2
X
¡
¡
¢¢
L
yt−1 ut → N 0, E u2t u2t−1 .
(10)
To calculate the value of this variance, recall (e.g., Hamilton, 1994, p. 666) that the
GARCH(1,1) structure for ut implies an ARMA(1,1) structure for u2t :
u2t = κ + (δ + α)u2t−1 + wt − δwt−1
6
for wt−1 a white noise process.
It follows from the first-order autocovariance for an
ARMA(1,1) process (e.g., Box and Jenkins, 1976, p. 76) that
E(u2t u2t−1 ) = E(u2t − µ2 )(u2t−1 − µ2 ) + µ22
= ρ(µ4 − µ22 ) + µ22
(11)
for
ρ=
[1 − (α + δ)δ]α
.
1 + δ 2 − 2(α + δ)δ
(12)
Substituting (11), (10) and (8) into (9),
√
L
T β̂ 1 → N (0, V11 )
V11
ρµ4 + (1 − ρ)µ22
=
µ22
3(1 + α + δ)(1 − α − δ)
+ (1 − ρ).
= ρ
(1 − δ 2 − 2αδ − 3α2 )
with the last equality following from (5) and (6).
Notice that V11 ≥ 1, with equality if and only if α = 0. Thus OLS treats
√
T β̂ 1 as
approximately N(0, 1), whereas the true asymptotic distribution is Normal with a variance
bigger than unity, meaning that the OLS t test will systematically reject more often than it
should. The probability of rejecting the null hypothesis that β 1 = 0 (even though the null
hypothesis is true) gets bigger and bigger as the parameters get closer to the region at which
the fourth moment becomes infinite, at which point the asymptotic rejection probability
becomes unity. Figure 1 plots the rejection probability as a function of a and δ. If these
parameters are in the range typically found in estimates of GARCH processes, an OLS t
7
test with no correction for heteroskedasticity would spuriously reject with arbitrarily high
probability for a sufficiently large sample.
The good news is that the rate of divergence is pretty slow— it may take a lot of observations before the accumulated excess kurtosis overwhelms the other factors. I simulated
10,000 samples from the above Gaussian GARCH process for samples of size T = 100, 200,
and 1000 and 10,000, (and 1,000 samples of size 100,000), where the true values were specified
as follows:
β0 = β1 = 0
κ=2
α = 0.35
δ = 0.6.
The solid line in Figure 2 plots the fraction of samples for which an OLS t test of β 1 = 0
exceeds two in absolute value. Thinking we’re only rejecting a true null hypothesis 5% of
the time, we would in fact do so 15% of the time in a sample of size T = 100 and 33% of
the time when T = 1, 000.
As one might imagine, for a given sample size, the OLS t-statistic is more poorly behaved
if the true innovations vt in (2) are Student’s t with 5 degrees of freedom (the dashed line
in Figure 2) rather than Normal.
What happens if instead of the OLS formula (7) for the variance of β̂ we use White’s
8
(1980) heteroskedasticity-consistent estimate,
Ṽ =
³X
0
xt xt
´−1 ³X
0
û2t xt xt
´ ³X
0
xt xt
´−1
(13)
?
ARCH is not a special case of the class of heteroskedasticity for which Ṽ is intended to be
robust, and indeed, unlike typical cases, T Ṽ is not a consistent estimate of a given matrix:
³
´ ³
´³
´
X
X
X
0 −1
0
0 −1
−1
−1
2
−1
T Ṽ = T
xt xt
T
ût xt xt T
xt xt
.
The first and last matrices will converge as before,
T −1
but T −1
P
X
0
1 0
0 p
,
xt xt →
0 µ2
û2t xt xt will diverge if the fourth moment µ4 is infinite. Figure 3 plots the simu-
lated value for the square root of the lower-right element of T Ṽ for the Gaussian simulations
above.
However, this growth in the estimated variance of
the growth of the actual variance of
√
T β̂ 1 is exactly right, given
√
T β̂ 1 implied by the GARCH specification.
And a
t test based on (13) seems to perform reasonably well for all sample sizes (see the second
row of Table 2).
The small-sample size distortion for the White test is a little worse for
Student’s t compared with Normal errors, though still acceptable. Table 2 also explores the
consequences of using the Newey-West (1987) generalization of the White formula to allow
for serial correlation, using a lag window of q = 5:
#Ã T
!−1
à T
!−1 "
T
³ 0
´
X
X
X
v
0
0
0
)
ût ût−v xt xt−v + xt−v xt
xt xt
Ṽ∗ =
xt xt
(1 −
.
q + 1 t=v+1
t=1
t=1
These results (reported in the third row of the two panels of Table 2) illustrate one potential
pitfall of relying too much on “robust” statistics to solve the small-sample problems, in that
9
it has more serious size distortions than does the simple White statistic for all specifications
investigated.
Another reason one might not want to assume that White or Newey-West standard errors
can solve all the problems is that these formulas only correct the standard error for β̂, but are
still using the OLS estimate itself, which from Figure 3 was seen not to be
√
T convergent.
By contrast, even if the fourth moment does not exist, maximum likelihood estimation as an
alternative to OLS is still
√
T convergent. Hence the relative efficiency gains of MLE relative
to OLS become infinite as the sample size grows for typical values of GARCH parameters.
Engle (1982, p. 999) observed that it is also possible to have an infinite relative efficiency
gain for some parameter values even with exogenous explanatory variables and ARCH as
opposed to GARCH errors.
Results here are also related to the well-known result that ARCH will render inaccurate
traditional tests for serial correlation in the mean.
That fact has previously been noted,
for example, by Milhøj (1985, 1987), Diebold (1988), Stambaugh (1993), and Bollerslev and
Mikkelsen (1996). However, none of the above seems to have commented on the fact (though
it is implied by the formulas they use) that the test size goes to unity as the fourth moment
approaches infinity, or noted the implications as here for OLS regression.
Finally, I observe that just checking for a difference between the OLS and the White
standard errors will sometimes not be sufficient to detect these problems. The difference
between V̂ and Ṽ will be governed by the size of
X
0
(s2 − û2t )xt xt .
10
White (1980) suggested a formal test of whether this magnitude is sufficiently small on the
0
basis of an OLS regression of û2t on the vector ψ t consisting of the unique elements of xt xt .
2
)0 . White showed that, under the null hypothesis that
In the present case, ψ t = (1, yt−1 , yt−1
the OLS standard errors are correct, T R2 from a regression of û2t on ψ t would have a χ2 (2)
distribution. The next-to-last row of each panel of Table 2 reports the fraction of samples
for which this test would (correctly) reject the null hypothesis. It would miss about half the
time in a sample as small as 100 observations but is more reliable for larger sample sizes.
Alternatively, one can look at Engle’s (1982) analogous test for the null of homoskedasticity against the alternative of qth-order ARCH by looking at T R2 from a regression of
û2t on (1, û2t−1 , û2t−2 , ..., û2t−q )0 , which asymptotically has a χ2 (q) distribution under the null.
The last rows in Table 2 report the rejection frequency for this test using q = 3 lags. Not
surprisingly, since this test is designed specifically for the ARCH class of alternatives whereas
the White test is not, this test has a little more power. Its advantage over the White test
for homoskedasticity is presumably greater in many macro applications in which xt includes
a number of variables and their lags, in which case the vector ψ t can become unwieldy,
whereas the Engle test remains a simple χ2 (q) regardless of the size of xt .
The philosophy of McARCH, then, is quite simple. The Engle T R2 diagnostic should
be calculated routinely in any macroeconomic analysis. If a violation of homoskedasticity is
found, one should compare the OLS estimates with maximum likelihood to make sure that
the inference is robust. The following sections illustrate the potential importance of doing
so with two examples from applied macroeconomics.
11
3
Application 1: Measuring market expectations of
what the Federal Reserve is going to do next.
My first example is adapted from Hamilton (forthcoming). The fed funds rate is a marketdetermined interest rates at which banks lend reserves to one another overnight.
This
interest rate is extremely sensitive to the supply of reserves created by the Fed, and in
recent years monetary policy has been implemented in terms of a clearly announced target
for the fed funds rate that the Fed intends to achieve.
A critical factor that determines how Fed actions affect the economy is expectations by
the public as to what the Fed is going to do next, as discussed, for example, in my (2008)
paper. One natural place to look for an indication of what those expectations might be is
the fed funds futures market.
Let t = 1, 2, .., T index monthly observations.
In the empirical results reported here,
t = 1 corresponds to October, 1988 and the last observation (T = 213) is June 2006. For
each month, we’re interested in what the market expects for the average effective fed funds
rate over that month, denoted rt . For the empirical estimates reported in this section, rt
is measured in basis points, so that for example rt = 525 corresponds to an annual interest
rate of 5.25%.
On any business day, one can enter into a futures contract through the Chicago Board of
Trade whose settlement is based on what the value of rt+j actually turns out to be for some
future month. The terms of a j-month-ahead contract traded on the last day of month t can
12
(j)
be translated1 into an interest rate ft
(j)
such that, if rt+j turns out to be less than ft , then
the seller of the contract has to compensate the buyer a certain amount (specifically, $41.67
on a standard contract) for every basis point by which ft(j) exceeds rt+j . If ft(j) < rt+j , the
buyer pays the seller.
(j)
Since ft
is known as of the end of month t but rt+j will not be
known until the end of month t + j, the buyer of the contract is basically making a bet that
(j)
rt+j will be less than ft . If the marginal market participant were risk neutral, it would be
the case that
(j)
ft
= Et (rt+j )
(14)
where Et (.) denotes the mathematical expectation on the basis of any information publicly
(j)
available as of the last day of month t. If (14) holds, we could just look at the value of ft
to infer what market participants expect the Federal Reserve to do in the coming months.
However, previous investigators such as Sack (2004) and Piazzesi and Swanson (forthcoming) have concluded that (14) does not hold. The simplest way to investigate this claim
is to construct the forecast error implied by the 1-month-ahead contract,
(1)
(1)
ut = rt − ft−1
and test whether this error indeed has mean zero, as it should if (14) were correct.
For
contracts at longer horizons j > 1, one can look at the monthly change in contract terms,
(j)
(j−1)
ut = ft
1
(j)
− ft−1 .
Specifically, if Pt is the price of the contract agreed to by the buyer and seller on day t, then ft =
100 × (100 − Pt ).
13
(j)
If (14) holds, then ut would also be a martingale difference sequence:
(j)
ut = Et (rt+j−1 ) − Et−1 (rt+j−1 ).
One simple test is then to perform the regression
(j)
(j)
ut = µ(j) + εt
and test the null hypothesis that µ(j) = 0; this is of course just the usual t-test for a sample
mean.
Table 3 reports the results of this test using 1-, 2-, and 3-month-ahead futures
(1)
contracts. For the historical sample, the 1-month-ahead futures contract ft
(j)
the value of rt+1 by an average of 2.66 basis points and ft
overestimated
(j−1)
overestimated the value of ft+1
by almost 4 basis points. One interpretation is that there is a risk premium built into these
contracts. Another possibility is that the market participants failed to recognize fully the
chronic decline in interest rates over this period.
Before putting too much credence in such interpretations, however, recall that the theory
(j)
(14) implies that ut should be a martingale difference sequence but makes no claims about
predictability of its variance.
(j)
Figure 4 reveals that each of the series ut
exhibits some
clustering of volatility and a significant decline in variability over time, in addition to occasional very large outliers. Engle’s T R2 test for omitted 4th-order ARCH finds very strong
(1)
(3)
evidence of conditional heteroskedasticity at least for ut and ut ; see Table 3. Hence if we
are interested in a more accurate estimate of the bias and statistical test of its significance,
we might want to model these features of the data.
Hamilton (forthcoming) calculated maximum likelihood estimates for parameters of the
14
following EGARCH specification (with (j) superscripts on all variables and parameters suppressed for ease of readability):
ut = µ +
p
ht εt
log ht − γ 0 zt = α(|εt−1 | − k2 ) + δ(log ht−1 − γ 0 zt−1 )
(15)
(16)
zt = (1, t/1000)0
√
2 νΓ[(ν + 1)/2]
√
k2 = E|εt | =
(ν − 1) πΓ(ν/2)
for εt a Student’s t variable with ν degrees of freedom and Γ(.) the gamma function:
Γ(s) =
Z
∞
xs−1 e−x dx.
0
The log likelihood is then found from
T
X
log f (ut |Ut−1 ; θ)
(17)
t=1
³ p ´
f(ut |Ut−1 , θ) = k1 / ht [1 + (ε2t /ν)]−(ν+1)/2
√
k1 = Γ[(ν + 1)/2]/[Γ(ν/2) νπ].
Given numerical values for the parameter vector θ = (µ, γ 0 , α, δ, ν)0 and observed data
UT = (u1 , u2 , ..., uT )0 we can then begin the iteration (16) for t = 1 by setting h1 = exp(γ 0 z0 ).
Plugging this into (15) gives us a value for ε1 , which from (16) gives us the number for h2 .
Iterating in this fashion gives the sequence {ht , εt }Tt=1 from which the log likelihood (17)
can be evaluated for the specified numerical value of θ. One then tries another guess for θ
in order to numerically maximize the likelihood function. Asymptotic standard errors can
15
be obtained from numerical second derivatives of the log likelihood as in Hamilton (1994,
equation [5.8.3]).
Maximum likelihood parameter estimates are reported in Table 4. Adding these features
provides an overwhelming improvement in fit, with a likelihood ratio test statistic well in
excess of 100 when adding just 4 parameters to a simple Gaussian specification with constant
variance.
The very low estimated degrees of freedom results from the big outliers in the
data, and both the serial dependence (δ) and trend parameter (γ 2 ) for the variance are
extremely significant.
A very remarkable result is that the estimates for the mean of the forecast error µ actually
switch signs, shrink by an order of magnitude, and become far from statistically significant.
Evidently the sample means of u(j)
t are more influenced by negative outliers and observations
early in the sample than they should be.
Note that for this example, the problem is not adequately addressed by simply replacing
OLS standard errors with White standard errors, since when the regressors consist only
of a constant term, the two would be identical.
Moreover, whenever, as here, there is
an affirmative objective of obtaining accurate estimates of a parameter (the possible risk
premium incorporated in these prices) as opposed solely to testing a hypothesis, the concern
is with the quality of the coefficient estimate itself rather than the correct size of a hypothesis
test.
16
4
Application 2: Using the Taylor Rule to summarize
changes in Federal Reserve policy.
One of the most influential papers for both macroeconomic research and policy over the last
decade has been John Taylor’s (1993) proposal of a simple rule that the central bank should
follow in setting an interest rate like the fed funds rate rt . Taylor’s proposal called for the
Fed to raise the interest rate by an amount governed by a parameter ψ 1 when the observed
inflation rate π t is higher than it wishes (so as to bring inflation back down), and to raise
the interest rate by an amount governed by ψ 2 when yt , the gap between real GDP and its
potential value, is positive:
rt = ψ 0 + ψ 1 π t + ψ 2 yt
In this equation, the value of ψ 0 reflects factors such as the Fed’s long-run inflation target
and the equilibrium real interest rate.
There are a variety of ways such an expression
has been formulated in practice, such as “forward-looking” specifications, in which the Fed
is responding to what it expects to happen next to inflation and output, and “backwardlooking” specifications, in which lags are included to capture expectations formation and
adjustment dynamics.
A number of studies have looked at the way that the coefficients in such a relation may
have changed over time, including Judd and Rudebusch (1998), Clarida, Galí and Gertler
(2000), Jalil (2004), and Boivin and Giannoni (2006). Of particular interest has been that
the claim that the coefficient on inflation ψ 1 has increased relative to the 1970s, and that
this increased willingness on the part of the Fed to fight inflation has been a factor helping
17
to make the U.S. economy become more stable.
In this paper, I will explore the variant
investigated by Judd and Rudebusch, whose reduced-form representation is
∆rt = γ 0 + γ 1 π t + γ 2 yt + γ 3 yt−1 + γ 4 rt−1 + γ 5 ∆rt−1 + vt .
(18)
Here t = 1, 2, ..., T now will index quarterly data, with t = 1 in my sample corresponding
to 1956:Q1 and T = 205 corresponding to 2007:Q1. The value of rt for a given quarter is
the average of the three monthly series for the effective fed funds rate, with ∆rt = rt − rt−1 ,
and for empirical results here is reported as percent rather than basis points, e.g., rt = 5.25
when the average fed funds rate over the three months of the quarter is 5.25%. Inflation
π t is measured as 100 times the natural logarithm of the difference between the level of
the implicit GDP deflator for quarter t and its value for the corresponding quarter of the
preceding year, with data taken from Bureau of Economic Analysis Table 1.1.9. As in Judd
and Rudebusch, the output gap yt was calculated as
yt =
100(Yt − Yt∗ )
Yt∗
for Yt the level of real GDP (in billions of chained 2000 dollars, from BEA Table 1.1.6) and
Yt∗ the series for potential GDP from the Congressional Budget Office (obtained from the
St. Louis FRED database). Judd and Rudebusch focused on certain rearrangements of the
parameters in (18), though here I will simply report results in terms of the reduced-form
estimates themselves. The term vt in (18) is the regression error.
Table 5 presents results from OLS estimation of (18) using the full sample of data. Of
particular interest are γ 1 and γ 2 , the contemporary responses to inflation and output, respectively.
Table 6 then re-estimates the relation, allowing for separate coefficients since
18
1979:Q3, when Paul Volcker became Chair of the Federal Reserve. The OLS results reproduce the findings of the many researchers noted above that monetary policy seems to have
responded much more vigorously to disturbances since 1979, with the inflation coefficient γ 1
increasing by 0.26 and the output coefficient γ 2 increasing by 0.64.
However, the White standard errors for the coefficients on dt π t and dt yt are almost twice
as large as the OLS standard errors, and suggest that the increased response to inflation is
in fact not statistically significant and the increased response to output is measured very
imprecisely. Moreover, Engle’s LM test for the null of Gaussian errors with no heteroskedasticity against the alternative of 4th-order ARCH leads to overwhelming rejection of the null
hypothesis.2
All of which suggests that, if we are indeed interested in measuring the
magnitudes by which these coefficients have changed, it is preferable to adjust not just the
standard errors but the parameter estimates themselves in light of the dramatic ARCH
displayed in the data.
I therefore estimated the following GARCH-t generalization of (18):
0
yt = xt β + vt
vt =
p
ht εt
ht = κ + h̃t
2
h̃t = α(vt−1
− κ) + δ h̃t−1
with εt a Student’s t random variable with ν degrees of freedom.
2
Siklos and Wohar (2005) also make this point.
19
(19)
Iteration on (19) is
initialized with h̃1 = 0. The log likelihood is then evaluated exactly as in (17). Maximum
likelihood estimates are reported in Table 7.
Once again generalizing a homoskedastic Gaussian specification is overwhelmingly favored by the data, with a comparison of the specifications in Tables 6 and 7 producing a
likelihood ratio χ(4) statistic of 183.34. The degrees of freedom for the Student’s t distribution are only 2.29, and the implied GARCH process is highly persistent (α̂ + δ̂ = 0.82). Of
particular interest is the fact that the changes in the Fed’s response to inflation and output
are now considerably smaller than suggested by the OLS estimates. The change in γ 1 is now
estimated to be only 0.09 and the change in γ 2 has dropped to 0.05 and no longer appears
to be statistically significant.
Figure 5 offers some insight into what produces these results. The top panel illustrates
the tendency for interest rates to exhibit much more volatility at some times than others, with
the 1979:Q2 to 1982:Q3 episode particularly dramatic. The bottom panel plots observations
on the pairs (yt , ∆rt ) in the second half of the sample. The apparent positive slope in that
scatter plot is strongly influenced by the observations in the 1979-82 period. If one allowed
the possibility of serial dependence in the squared residuals, one would give less weight to
the 1979-82 observations, resulting in a flatter slope estimate over 1979-2007 relative to OLS.
This is not to attempt to overturn the conclusion of earlier researchers that there has
been a change in Fed policy in the direction of a more active policy. A comparison of the
changing-parameter specification of Table 7 with a fixed-parameter GARCH specification
produces a χ(4) likelihood ratio statistic of 18.22, which is statistically significant with a
20
p-value of 0.001.
Nevertheless, the magnitude of this change appears to be substantially
smaller than one would infer on the basis of OLS estimates of the parameters.
Nor is this discussion meant to displace the large and thoughtful literature on possible
changes in the Taylor Rule, which has raised a number of other substantive issues not
explored here. These include whether one wants to use real-time or subsequent revised data
(Orphanides (2001)), the distinction between the “backward-looking” Taylor Rule explored
here and “forward-looking” specifications (Clarida, Galí, and Gertler, 2000), and continuous
evolution of parameters rather than a sudden break (Jalil, 2004; Boivin, 2006). The simple
exercise undertaken nevertheless does in my mind establish the potential importance for
macroeconomists to check for the presence of ARCH even when their primary interest is in
the conditional mean.
5
Conclusions.
The reader may note that both of the examples I have used to illustrate the potential
relevance of McARCH use the fed funds rate as the dependent variable. This is not entirely
an accident.
Although Kilian and Gonçalves (2004) concluded that most macro series
exhibit some ARCH, the fed funds rate may be the macro series for which one is most likely
to observe wild outliers and persistent volatility clustering, regardless of the data frequency
or subsample. It is nevertheless, as the examples used here illustrate, a series that features
very importantly for some of the most fundamental questions in macroeconomics.
The rather dramatic way in which accounting for outliers and ARCH can change one’s
21
inference that was seen in these examples presumably would not be repeated for every
macroeconomic relation estimated.
However, routinely checking something like a T R2
statistic, or the difference between OLS and White standard errors, seems a relatively costless
and potentially quite beneficial habit. And the assumption by many practitioners that we
can avoid all these problems simply by always relying on the White standard errors may not
represent best possible practice.
22
References
Baillie, Richard T., Tim Bollerslev, and Hans O. Mikkelsen. 1996. “Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity” Journal of Econometrics
74, pp.3-30.
Bera, Anil K., Matthew L. Higgins, and Sangkyu Lee. 1992. “Interaction between Autocorrelation and Conditional Heteroscedasticity: A Random-Coefficient Approach,” Journal
of Business and Economic Statistics 10, pp. 133-142.
Boivin, Jean. 2006. “Has U.S. Monetary Policy Changed? Evidence from Drifting
Coefficients and Real-Time Data,” Journal of Money, Credit and Banking 38, pp. 11491173.
_____, and Marc P. Giannoni. 2006. “Has Monetary Policy Become More Effective?”
Review of Economics and Statistics 88, pp. 445-462.
Bollerslev, Tim. 1986. “Generalized Autoregressive Conditional Heteroskedasticity,”
Journal of Econometrics 31, pp. 307—327.
_____. 1987. “A Conditionally Heteroskedastic Time Series Model for Speculative
Prices and Rates of Return,” Review of Economics and Statistics 69, pp.542-547.
_____. 2008. “Glossary to ARCH (GARCH),” in Festschrift in Honor of Robert F.
Engle, edited by Tim Bollerslev, Jeffry R. Russell and Mark Watson.
_____, Ray Y. Chou, and Kenneth F. Kroner. 1992. “ARCH Modeling in Finance,”
Journal of Econometrics 52, pp. 5-59.
_____, and Robert F. Engle. 1986. “Modeling the Persistence of Conditional Vari23
ances,” Econometric Reviews 5, pp. 1-50.
_____, and Hans Ole Mikkelsen. 1996. “Modeling and Pricing Long Memory in Stock
Market Volatility,” Journal of Econometrics 73, pp. 151-184.
_____, _____, and Jeffrey M. Wooldridge. 1988. “A Capital Asset Pricing Model
with Time-Varying Covariances”, Journal of Political Economy 96, pp. 116 - 131.
Box, George E. P., and Gwilym M. Jenkins. 1976. Time Series Analysis: Forecasting
and Control. Revised edition. San Francisco: Holden-Day.
Clarida, Richard, Jordi Galí, and Mark Gertler. 2000. “Monetary Policy Rules and
Macroeconomic Stability: Evidence and Some Theory,” Quarterly Journal of Economics
115, pp. 147-180.
Diebold, Francis X. 1988. Empirical Modeling of Exchange Rate Dynamics. New York:
Springer-Verlag.
Ding, Zhuanxin, Robert F. Engle, and Clive W.J. Granger. 1993. “A Long Memory
Property of Stock Market Returns and a New Model,” Journal of Empirical Finance 1, pp.
83-106.
Elder, John, and Apostolos Serletis. 2006. “Oil Price Uncertainty.”
Working paper,
North Dakota State University.
Engle, Robert F. 1982(a). “Autoregressive Conditional Heteroskedasticity With Estimates of the Variance of U.K. Inflation,” Econometrica 50, pp. 987-1008.
_____. 1982(b). “A General Approach to Lagrange Multiplier Model Diagnostics,”
Journal of Econometrics 20, pp. 83-104.
24
_____, and Gloria González-Rivera. 1991. “Semi-Parametric ARCH Models,” Journal
of Business and Economic Statistics 9, pp. 345-359.
_____, David Lilien and Russell Robins. 1987. “Estimation of Time Varying Risk
Premia in the Term Structure: the ARCH-M Model,” Econometrica 55, pp. 391-407.
_____, and Simone Manganelli. 2004. “CAViaR: Conditional Autoregressive Value at
Risk by Regression Quantiles,” Journal of Business and Economic Statistics 22, pp. 367-381.
_____, and Victor Ng. 1993. “Measuring and Testing the Impact of News On Volatility,” Journal of Finance 48, pp. 1749-1778.
Fountas, Stilianos and Menelaos Karanasos. 2007. “Inflation, Output Growth, and
Nominal and Real Uncertainty: Empirical Evidence for the G7,” Journal of International
Money and Finance 26: pp. 229-250.
Friedman, Benjamin M., David I. Laibson, and Hyman P. Minsky. 1989. “Economic
Implications of Extraordinary Movements in Stock Prices,” Brookings Papers on Economic
Activity 1989:2, pp. 137-189.
Gourieroux, Christian, and Alain Monfort. 1992. “Qualitative Threshold ARCH Models,” Journal of Econometrics 52, pp. 159-199.
Glosten, L. R., R. Jagannathan, and D.E. Runkle. 1993. “On the Relation between the
Expected Value and the Volatility of the Nominal Excess Return on Stocks,” Journal of
Finance 48, pp. 1779—1801.
Grier, Kevin B., and Mark J. Perry. 2000. “The Effects of Real and Nominal Uncertainty on Inflation and Output Growth: Some GARCH-M Evidence,” Journal of Applied
25
Econometrics 15, pp. 45-58.
Hamilton, James D. 1994. Time Series Analysis. Princeton: Princeton University Press.
_____. Forthcoming. “Daily Changes in Fed Funds Futures Prices,” Journal of
Money, Credit and Banking.
_____. 2008. “Daily Monetary Policy Shocks and the Delayed Response of New Home
Sales,” Working paper, UCSD.
_____, and Raul Susmel. 1994. “Autoregressive Conditional Heteroskedasticity and
Changes in Regime,” Journal of Econometrics 64, pp. 307-333.
Harvey, Andrew, Esther Ruiz, and Enrique Sentana. 1992. “Unobserved Component
Time Series Models with ARCH Disturbances,” Journal of Econometrics 52: 129-157.
Higgins M.L., and A.K. Bera. 1992. “A Class of Nonlinear Arch Models,” International,
Economic Review 33, pp. 137—158.
Hentschel, L. 1995. “All in the Family: Nesting Symmetric and Asymmetric GARCH
Models,” Journal of Financial Economics 39, pp. 71-104.
Jalil, Munir. 2004. Essays on the Effect of Information on Monetary Policy, unpublished
Ph.D. dissertation, UCSD.
Judd, John P., and Glenn D. Rudebusch. 1998. “Taylor’s Rule and the Fed: 1970-1997,”
Federal Reserve Bank of San Francisco Review 3, pp. 3-16.
Kilian, Lutz, and Sílvia Gonçalves. 2004. “Bootstrapping Autoregressions with Conditional Heteroskedasticity of Unknown Form,” Journal of Econometrics 123, pp. 89-120.
Lee, Kiseok, Shawn Ni, and Ronald A. Ratti. 1995. “Oil Shocks and the Macroeconomy:
26
The Role of Price Variability,” Energy Journal, 16, pp. 39-56.
Lee, Sang-Won, and Bruce E. Hansen. 1994. “Asymptotic Theory for the Garch (1,1)
Quasi-Maximum Likelihood Estimator,” Econometric Theory 10, pp. 29-52.
Lumsdaine, Robin L. 1996. “Consistency and Asymptotic Normality of the QuasiMaximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1)
Models,” Econometrica 64, pp. 575-596.
Milhøj,Anders. 1985. “The Moment Structure of ARCH Processes,” Scandinavian Journal of Statistics 12, pp. 281-292.
Milhøj, Aers. 1987. “A Conditional Variance Model for Daily Observations of an Exchange Rate,” Journal of Business and Economic Statistics 5, pp. 99-103.
Nelson Daniel B. 1991. “Conditional Heteroscedasticity in Asset Returns: A New Approach,” Econometrica 59, pp. 347—370.
Newey, Whitney K., and Kenneth D. West. 1987. “A Simple Positive Semi-Definite,
Heteroskedasticity and Autocorrelation Consistent Covariance Matrix,” Econometrica 55,
pp. 703-708.
Orphanides, Athanasios. 2001. “Monetary Policy Rules Based on Real-Time Data.”
American Economic Review 91. [[/ 964-985.
Pelloni, Gianluigi and Wolfgang Polasek. 2003. “Macroeconomic Effects of Sectoral
Shocks in Germany, the U.K. and the U.S.: A VAR-GARCH-M Approach,” Computational
Economics 21, pp. 65-85.
Piazzesi, Monika, and Eric Swanson. Forthcoming. “Futures Prices as Risk-Adjusted
27
Forecasts of Monetary Policy.” Journal of Monetary Economics.
Sack, Brian. (2004) “Extracting the Expected Path of Monetary Policy from Futures
Rates.” Journal of Futures Markets, 24, 733-754.
Sentana, Enrique. 1995. “Quadratic ARCH Models,” Review of Economic Studies 62,
pp. 639-661.
Servén, Luis. 2003. “Real-Exchange-Rate Uncertainty and Private Investment in LDCS,”
Review of Economics and Statistics 85, pp. 212-218.
Shields, Kalvinder, Nilss Olekalns, Ólan T. Henry, and Chris Brooks. 2005. “Measuring
the Response of Macroeconomic Uncertainty to Shocks,” Review of Economics and Statistics
87, pp. 362-370.
Siklos, Pierre L., and Mark E. Wohar. 2005. “Estimating Taylor-Type Rules: An Unbalanced Regression?”, in Advances in Econometrics, vol. 20, edited by Thomas B. Fomby
and Dek Terrell. Amsterdam: Elsevier.
Stambaugh, Robert F. 1993. “Estimating Conditional Expectations when Volatility Fluctuates,” NBER Working Paper 140.
Taylor, John B. 1993. “Discretion Versus Policy Rules in Practice,” Carnegie-Rochester
Conference Series on Public Policy 39, pp. 195-214.
White, Halbert. 1980. “A Heteroskedasticity-Consistent Covariance Matrix Estimator
and a Direct Test for Heteroskedasticity,” Econometrica 48, pp. 817-38.
Zakoian, J. M. 1994. “Threshold Heteroskedastic Models,” Journal of Economic Dynamics and Control 18, pp. 931—955.
28
Table 1. How many ways can you spell “ARCH”? (A partial lexicography).
________________________________________________________________________
AARCH
APARCH
ARCH-M
FIGARCH
GARCH
GARCH-t
GJR-ARCH
EGARCH
HGARCH
IGARCH
MARCH
MARCH
NARCH
PNP-ARCH
QARCH
QTARCH
SPARCH
STARCH
SWARCH
TARCH
VGARCH
Augmented ARCH
Asymmetric power ARCH
ARCH in mean
Fractionally integrated GARCH
Generalized ARCH
Student’s t GARCH
Glosten-Jagannathan-Runkle ARCH
Exponential generalized ARCH
Hentschel GARCH
Integrated GARCH
Modified ARCH
Multiplicative ARCH
Nonlinear ARCH
Partially Non-parametric ARCH
Quadratic ARCH
Qualitative Threshold ARCH
Semiparametric ARCH
Structural ARCH
Switching ARCH
Threshold ARCH
Vector GARCH
Bera, Higgins and Lee (1992)
Ding, Engle, and Granger (1993)
Engle, Lilien and Robins (1987)
Baillie, Bollerslev, Mikkelsen (1996)
Bollerslev (1986)
Bollerslev (1987)
Glosten, Jagannathan, and Runkle (1993)
Nelson (1991)
Hentschel (1995)
Bollerslev and Engle (1986)
Friedman, Laibson, and Minsky (1989)
Milhøj (1987)
Higgins and Bera (1992)
Engle and Ng (1993)
Sentana (1995)
Gourieroux and Monfort (1992)
Engle and Gonzalez-Rivera (1991)
Harvey, Ruiz, and Sentana (1992)
Hamilton and Susmel (1994)
Zakoian (1994)
Bollerslev, Engle, and Wooldrige (1988)
29
Table 2. Fraction of samples for which indicated hypothesis is rejected by test of nominal size 0.05.
----------------------------------------------------------------------------------------------------Errors Normally distributed
H0
------------------β1 =0 (H0 is true)
β1 =0 (H0 is true)
β1 =0 (H0 is true)
εt homoskedastic (H0 is false)
εt homoskedastic (H0 is false)
Test based on
--------------------OLS standard error
White standard error
Newey-West standard error
White TR2
Engle TR2
T = 100 T = 200 T = 1000
--------- --------- ----------0.152 0.200
0.327
0.072 0.063
0.054
0.119 0.092
0.062
0.570 0.874
1.000
0.692 0.958
1.000
Errors Student’s t with 5 degrees of freedom
H0
------------------β1 =0 (H0 is true)
β1 =0 (H0 is true)
β1 =0 (H0 is true)
εt homoskedastic (H0 is false)
εt homoskedastic (H0 is false)
Test based on
--------------------OLS standard error
White standard error
Newey-West standard error
White TR2
Engle TR2
T = 100 T = 200 T = 1000
--------- --------- ----------0.174 0.229
0.389
0.081 0.070
0.065
0.137 0.106
0.079
0.427 0.691
0.991
0.536 0.822
0.998
30
Table 3. OLS estimates of bias in monthly fed funds futures forecast errors.
--------------------------------------------------------------------------dependent
estimated
standard OLS
ARCH(4)
Log like( j)
( j)
ˆ
p-value LM p-value lihood
variable (ut ) mean ( µ ) error
----------------------------- -----------------------j = 1 month
-2.66
0.75
0.001
0.006
-812.61
j = 2 months
-3.17
1.06
0.003
0.204
-884.70
j = 3 months
-3.74
1.27
0.003
0.001
-922.80
31
Table 4. Maximum likelihood estimates (asymptotic standard errors in parentheses) for
EGARCH model of fed funds futures forecast errors.
------------------------------------------------------------------------------------------------------horizon (j)
ut(1)
ut( 2 )
ut( 3)
mean (µ)
0.12
(0.24)
0.43
(0.34)
0.27
(0.67)
log average
variance (γ1)
5.73
(0.42)
6.47
(0.51)
7.01
(0.54)
trend in
variance (γ2)
-22.7
(3.1)
-23.6
(3.3)
-17.1
(3.8)
| ut-1| (α)
0.18
(0.07)
0.15
(0.07)
0.30
(0.12)
log ht-1 (δ)
0.63
(0.16)
0.74
(0.22)
0.84
(0.11)
Student t
degrees of
freedom (υ)
2.1
(0.4)
2.2
(0.4)
4.1
(1.2)
-731.08
-793.38
-860.16
log likelihood
32
Table 5. Fixed-coefficient Taylor Rule as estimated from full sample OLS regression.
Regressor
constant
πt
yt
yt-1
rt-1
∆rt-1
TR2 for ARCH(4)
(p-value)
Log likelihood
Coefficient
0.06
0.13
0.37
-0.27
-0.08
0.14
Std error (OLS)
0.13
0.04
0.07
0.07
0.03
0.07
23.94
(0.000)
-252.26
33
Std error (White)
0.18
0.06
0.11
0.10
0.03
0.15
Table 6. Taylor Rule with separate pre- and post-Volcker parameters as estimated by
OLS regression (dt = 1 for t > 1979:Q2).
Regressor
constant
πt
yt
yt-1
rt-1
∆rt-1
dt
dtπt
dtyt
dtyt-1
dtrt-1
dt∆rt-1
TR2 for ARCH(4)
(p-value)
Log likelihood
Coefficient
0.37
0.17
0.18
-0.07
-0.21
0.42
-0.50
0.26
0.64
-0.55
0.05
-0.53
Std error (OLS)
0.19
0.07
0.08
0.08
0.07
0.11
0.24
0.09
0.14
0.14
0.08
0.13
45.45
(0.000)
-226.80
34
Std error (White)
0.19
0.04
0.07
0.07
0.06
0.13
0.30
0.16
0.24
0.21
0.08
0.24
Table 7. Taylor Rule with separate pre- and post-Volcker parameters as estimated by
GARCH-t maximum likelihood (dt = 1 for t > 1979:Q2).
Regressor
constant
πt
yt
yt-1
rt-1
∆rt-1
dt
dtπt
dtyt
dtyt-1
dtrt-1
dt∆rt-1
GARCH parameters
constant
α
δ
ν
Log likelihood
Coefficient
0.13
0.06
0.14
-0.12
-0.07
0.47
-0.03
0.09
0.05
0.02
-0.01
-0.01
Asymptotic std error
0.08
0.03
0.03
0.03
0.03
0.09
0.12
0.04
0.07
0.07
0.03
0.11
0.015
0.11
0.71
2.29
0.010
0.05
0.07
0.48
-135.13
35
Figure 1. Asymptotic rejection probability for OLS t-test that autoregressive coefficient
is zero as a function of GARCH(1,1) parameters α and δ. Note: null hypothesis is
actually true and test has nominal size of 5%.
36
Figure 2. Fraction of samples in which OLS t-test leads to rejection of the null hypothesis
that autoregressive coefficient is zero as a function of the sample size for regression with
Gaussian errors (solid line) and Student’s t errors (dashed line). Note: null hypothesis is
actually true and test has nominal size of 5%.
1
Normal
Student t
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
2
10
3
10
10
Sample size (T)
37
4
10
5
Figure 3. Average value of T times estimated standard error of estimated
autoregressive coefficient as a function of the sample size for White standard error (solid
line) and OLS standard error (dashed line).
6
White
OLS
5
4
3
2
1
0
2
10
3
10
10
Sample size (T)
38
4
10
5
Figure 4. Plots of 1-month-ahead forecast errors (ut( j ) ) as a function of month t based on j
= 1-, 2-, or 3-month ahead futures contracts.
1 month
30
20
10
0
-10
-20
-30
-40
-50
-60
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
2 month
75
50
25
0
-25
-50
-75
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
3 month
80
60
40
20
0
-20
-40
-60
-80
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
39
Figure 5. Change in fed funds rate for the full sample (1956:Q2-2007:Q1), and scatter
plot for later subsample (1979:Q2-2007:Q1) of change in fed funds rate against deviation
of GDP from potential.
Change in fed funds rate, 1956:Q2-2007:Q1
change in funds rate
8
6
4
2
0
-2
-4
1956 1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007
date
Scatter diagram, 1979:Q2-2007:Q1
8
change in funds rate
6
4
2
0
-2
-4
-8
-6
-4
-2
GDP deviation
40
0
2
4