
Software Kaizen: Using Agile to Form High-
Perfomance Software Development Teams

Bernardo Estácio, Rafael 
Prikladnicki, Michael Morá 

Computer Science School, PUCRS 
Porto Alegre, Brazil 

bernardo.estacio@acad.pucrs.br, 
rafael.prikladnicki@pucrs.br, 

michael.mora@pucrs.br 

Gabriel Notari, Paulo Caroli 
Thoughtworks Inc. 
Porto Alegre, Brazil 

gnotari@thoughtworks.com, 
paulonotari@gmail.com 

 
 
 

Alejandro Olchik 
Ionatec 

Porto Alegre, Brazil 
aolchik@ionatec.com.br 

 
 
 

 
 

Abstract— The process of teaching Software Engineering has 
undergone questions about the methods that have been used in 
training activities. Recent studies show that these methods 
involve traditional teaching strategies, such as presentation of 
theory and lectures. For this reason, students usually find in 
industry a different scenario than what is taught in the 
classroom. In parallel, other studies indicate that the emergence 
of agile methods in the 90s led to the formation of high 
performance teams with great level of knowledge in technical, 
business and behavioral domains. For this reason, we have 
proposed a training method called Software Kaizen, which 
provides temporary immersion of a team in a high-performance 
environment, based on agile methodologies. This paper presents 
the method and the results obtained from its application. We 
report on four replications of the method, with good results in 
learning, posture change and teamwork, some of the expected 
characteristics of high-performance teams. 

Keywords— software development, high-performance teams, 
agile methods training, university-industry collaboration.  

I. INTRODUCTION 
The development and training of qualified professionals 

are increasingly required nowadays. At the same time, the 
process of teaching Software Engineering (SE) has undergone 
questions about the methods that have been used in training 
activities. Recent studies show that these methods involve 
traditional teaching strategies, such as presentation of theory 
and lectures [1]. Other studies indicate that the emergence of 
agile methods in the 90s led to the formation of high 
performance teams, with great level of knowledge in 
technical, business and behavioral domains [2, 3].  

Parker and Jackson understand that high-performance 
teams are formed by groups that rely on each other, are 
committed to planning and execution, base their actions on a 
common vision, and develop activities through  open 
communication [4]. This definition is consistent with the 
principles and values proposed in the Agile Manifesto [5].  

For this reason, and based on the growing demand for 
training of high-performance teams and the opportunity to 
pursue innovative training strategies in SE, the goal of this 
paper is to present Software Kaizen, a training method that 
provides temporary immersion of a team in a high- 
performance environment, based on agile methodologies. The 
method was proposed to be a pioneering training program in 
the context of an innovative recruitment process as well as a 
complementary course in the university curriculum. Through 
an immersion in an environment mentored by experienced 
professionals, the selected students become members of high-
performance software development teams. The proposal is 
based on well-known agile methods such as Scrum, Kanban, 
and Extreme Programming (XP). During five two-week 
development iterations, the team develops skills in 
dimensions such as business, governance, technical and 
behavioral.  

In this paper we describe the concepts and the program in 
details, including the results obtained in four consecutive 
instances (four months each) where Software Kaizen was 
applied to groups of students and professionals. In the first 
two instances, for example, the team velocity improved by 
230% and 200% respectively. Overall the four instances 
presented above average results in terms of agile practice 
adoption, and team behavior. We also share lessons learned, 
presenting the main benefits and challenges identified. 

 The remainder of this paper is structured as follows. In 
Section II we present background information and related 
work. Section III describes our research methodology. The 
Software Kaizen method and its application are presented, 
respectively, in Sections IV and V. In Section VI we discuss 
the results and present lessons learned. Finally, we conclude 
in Section VII. 

2014 Agile Conference

978-0-7695-5222-4/14 $31.00 © 2014 IEEE

DOI 10.1109/AGILE.2014.10

1



II. BACKGROUND AND RELATED WORK 

A. High-perfomance teams 
High-performance teams are formed by groups who rely 

on each other, base their actions on a common vision, develop 
their activities through open communication, build 
confidence, and have shared leadership, enabling innovation 
from individual differences [4]. This is complemented by the 
study of Roda [3], which presents a model of three levels for 
self-organizing teams: creating, practicing and transcending. 
The high-performance teams are at the last level and are 
characterized by technical and behavioral excellence, 
practicing and experimenting challenges continuously. A high 
performance team must have autonomy, attitude and more 
productivity than a traditional team and usually have great 
satisfaction in the work they do. 

For this reason, the concept of high-performance team has 
a strong relationship with self-organization [6]. The literature 
indicates that the use of agile methodologies such as Scrum or 
XP requires the formation of high-performance teams [4]. 
Authors also reported that some of the agile practices such as 
retrospectives, daily stand-ups and the adoption of Kanban 
improved the autonomy and shared leadership, characteristics 
of high-performance teams [6].  

B. Software development education and training 
The literature reports that the common approaches in 

teaching agile concepts include lectures [7, 8], the use of 
games [1, 9], studio and Capstone projects (the execution of a 
project from start to finish) [10]. In professional agile training 
Agile is taught in short courses, some of them in the company 
environment and others are preparatory courses for 
certifications exams [9]. 

In academia, we have identified experiences with agile in 
teaching  at both undergraduate and graduate levels [8, 9, 10], 
but few studies report on  agile training using the concept of 
temporary immersion of project teams. Sutherland et al. [11]  
reported from an immersion training at two companies, 
MySpace and Jayway. The method is called Shock Therapy, 
and the goal is to bootstrap for high-performance teams in 
Scrum. In this study, an experienced coach created an 
immersion environment, and the results showed 240% of 
improvement  in  team velocity in a few weeks.  

Our work is inspired by  Shock Therapy, but it is different 
as it is not limited to Scrum and also combines academia 
(students, professors) with industry (company, professional, 
developers), promoting  rich ecosystems not only for 
teaching, but also for researching.  

III. RESEARCH METHODOLOGY 
This research was conducted following the methodology 

for the incremental evaluation of a new process, proposed by 
Shull et al. [12]. The methodology has four mains activities: 
feasibility study, observational study, a case study in a real 
lifecycle and a case study in industry. Figure 1 presents an 
overview of this methodology.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 
Figure 1. Methodology overview [12]. 

In the feasibility study the purpose is to evaluate if it is 
worthwhile to spend the resources required to continue 
through the methodology. The focus in this step is on 
generating rather than testing hypotheses about the new 
process and its usefulness.  

In the observational study the main goal is to begin 
evaluating the steps in the new process to ensure that each 
one is effective and that the order in which they are executed 
makes sense. Observational techniques can be used to 

Y 

Y 

N 

Y 

N 

N 

Y 

Feasibility Study 

Did the process 
provide usable 

results?

Was the time 
well spent ? 

Observational 
Study 

Did the steps of 
the process make 

sense? 

Case Study: Use in 
real lifecycle 

Did process fit 
into the lifecycle? 

Case Study: Use in 
industry 

Did process fit 
into the industrial 

setting? 

Redesign 
basic idea 

Rework 
process 

Tailor process 
and/or training 

Tailor process 
and/or training 

N 

N 

Y 

2



understand current work practices that can be incorporated 
into the new process.  

In order for the process to be useful, it has to be able to fit 
into a real development lifecycle. And in this case one can 
execute a case study. Once the process is tailored to be usable 
within a real development lifecycle, the next step is to use the 
new process in an industrial setting. This last step can also be 
executed through a case study. Figure 1 presents an overview 
of this methodology.  

We executed our research as follows: 

• Literature review and initial proposal of Software Kaizen: 
we performed a literature review in software engineering 
education and agile software development, in order to 
identify strategies in software engineering education and 
characteristics of training with high-perfomance teams. 
After that an initial version of the method was proposed; 

• Feasibility study: we planned and executed a survey 
including 150 interviews from 100 IT companies in Rio 
Grande do Sul (a state in Brazil) aiming at evaluating the 
feasibility, benefits and risks of the Software Kaizen 
method.; 

• Observational study: based on the feasibility study, we 
improved the Kaizen method and planned two 
observational studies with students; 

• Case study in a real lifecycle: since the pilot study with 
students, we have planned and executed two case studies 
in a real lifecycle. 

The research was executed in a collaborative initiative that 
includes a university, a technology park, and two partner 
companies, respectively, PUCRS, an university located in 
Porto Alegre, Tecnopuc, PUCRS's Technology Park, 
DBServer and ThoughtWorks, both leading companies with 
offices at Tecnopuc. 

IV. SOFTWARE KAIZEN: THE METHOD 
Kaizen is a Japanese word meaning continuous 

improvement and aims not only to increase productivity but 
also to harmonize  the work environment and the systematic 
elimination of waste [13]. In this sense, Software Kaizen aims 
to assist in forming high-performing teams for software 
development, based on agile methodologies. The method is 
characterized by temporary immersion in a project team 
environment with experienced professionals who prepare 
participants in technical, behavioral, business and governance 
aspects. The method is based on well-known agile methods 
such as Scrum, Kanban, and XP. In five two-week iterations  
the team develops competencies in dimensions such as 
business, governance, technical and behavioral. The method 
is inspired by the immersion environment proposed by Jeff 
Sutherland called Shock Therapy,  and provides learning, 
agile coaching and peer mentoring sessions. Through an open 
application process, the participants take classes made up of 
small teams.  

We support them with mentoring, training and workshops 
for a definite period (usually three months), in exchange for 

building a non-profit application. While traditional teaching 
classes are often university-driven, generally require industry 
mentoring, and focus on standard learning, curriculum 
building, grading or traditional recruiting companies, the 
Software Kaizen is focused on a real software deliverable.  

After receiving the results of two observational studies 
(the observation studies were executed in 1 preparatory 
iteration and 3 development iterations, with a duration of one 
week each), we improved the Kaizen method in a second 
version with Scrum as a framework for continuous 
improvement. We defined the method with 2 preparation 
iterations and 5 development iterations lasting two weeks that 
involve coaching in agile methodologies, training session and 
interaction with the support team. We then define the Kaizen 
method in 4 phases: 

• Phase 1: Pre-evaluation: recruitiment process of a team 
with complementary skills in order to encourage learning 
between the students, providing experience in a 
multifunctional team. It has a duration of 3 three weeks. 

• Phase 2: Iteration -1: this phase lasts for 2 weeks, and  is 
when the environment is set up with the technology that 
will be adopted. This phase also includes a preparatory 
tecnhical training for the students, with teaching assistants 
and mentors supporting the team with Coding Dojos [14] 
and providing materials (tutorials, guides, etc.). 

• Phase 3: Iterarion Zero: in this phase the team takes  a test 
about their initial stage of agile method adoption [15]. 
Additionally, an initial training begin with topics such as 
goal alignment, backlog preparation, responsibility 
definition, and definition of the concept of being done. 
The initial training involves 36 hours of agile training 
with 4 six-hour sessions  under the supervision of a 
teaching assistant. 

• Phase 4: Iteration 1 to 5: iterations of 2 weeks, with a 4- 
hour coaching focusing on planning, review and 
retrospective of the work done; 2 hours of training and 
coaching focusing on the team’s needs. In the last 
iteration (iteration 4) we have a retrospective of 2 hours to 
evaluate the training program. 

The roles are defined as follows: 
• Students (or Professionals): responsible for developing the 

product, executing coding activities, user interface, 
architecture, quality assurance. During the training, a 
student (or professional) is responsible for maintaining  
frequent communication with the product owner. 

• Coach: responsible for  pre-evaluation of the students, as 
well as conducting the planning, review and retrospective 
of each iteration. The coach also supports supervision of 
the teaching assistants and conducts the final evaluation of 
the course. 

• Teaching assistant: responsible for helping the students to 
prepare the development environment, solving 
impediments, helping the team in technical questions and 
collaborating in the coaching activity. 

3



• Mentor: reponsible for supporting the team during the 
project. The mentor could be a developer of a company 
that will often support and collaborate with the trainning.  

• Product owner: responsible for defining the requirements 
list, prioritizing it and assessing the requirements 
delivered at the end of each iteration. 

The product can be real or fictional, defined by an internal 
or external customer. Moreover, we defined the environment 
beforehand, including the technology used and the continuous 
integration tools, source code versioning, document sharing, 
static code analysis, among others. 

During the training program, we collect a set of metrics in 
order to monitor the performance of all students. The final 
evaluation includes an assessment given to each individual 
student, pointing out strengths and opportunities for 
improvement, overall evaluation of the group and a final 
evaluation of the course by each of the students. 

V. PUTTING SOFTWARE KAIZEN INTO PRACTICE 

A. Feasibility study 
We executed the feasibility study between May and 

September of 2011, in collaboration with DBServer, a 
Brazilian software development company 
(www.dbserver.com.br). We did 150 interviews with 100 
companies, these being 60 IT companies and 40 companies 
that have an IT department. In relation to the training 
methods, 56% of the companies said that they plan their 
training outside the company, 33.3% said that they plan the 
training in company and 17.3% said that they plan pilot 
training project training in company. Regarding the pilot 
training projects, the main benefit reported was regarding the 
use of this initiative to invest in continuous improvement of 
the software development process. 

When we asked about the problems that the companies 
face, 46% of the respondents said that they face a lack of 
skilled labor and 14% said that they have problems  
delivering projects on time. Furthermore, among the 
companies that use a prescriptive model for software 
development (such as a waterfall lifecycle), 41% said that the 
adoption of that model is a cultural aspect of the company and 
10% said that it is a customer requirement. On the other hand, 
among the companies that use an adaptive model for software 
development (such as an iterative lifecycle), 22% said that it 
is a customer requirement, 17% said that it is necessary to get 
better results and 12% reported that the model embraces 
changes. 

We also asked about the Software Kaizen, to which  
81.1% responded that the model is innovative and interesting. 
Moreover, 78.3 % of the respondents suggested that the 
immersion could be applied to other topics (beyond agile 
software development) such as project management and 
product management. Regarding possible challenges to 
adopting the method, 50.7% mentioned possible high costs 
and 37.7% said that it would be difficul to have the team out 
of the workspace for a long period of time. 

B. Observational Study 1 
The main purpose of the observational study was to 

evaluate the application of Software Kaizen. We performed 
this study with a team of five students at PUCRS. The team 
had developers working on software development activities 
for external customers. The study included a teaching 
assistant, three mentors (two of them professors) in the 
coordination and a coach responsible for the training. 

During four weeks, the team aimed at developing a 
minimal version of a system for evaluating students. The 
client was a University department. The technology platform 
was .NET/ MVC. At the beginning and end of the course the 
team answered a self-assessment of their adoption of agile 
methods. Figures 2 and 3 present the results and a significant 
improvement in the adoption of agile practices. They used a 
template provided at http://www.agileassessments.com/. 

 
 

Figure 2. Initial assessment of the observational study 1 

 
Figure 3. Final assessment of the observational study 1 

 
The main indicator of team performance was the speed 

per iteration. As iteration zero has been devoted to the initial 
preparation of the team and to planning the backlog of the 
product, the speed was measured in iterations 1, 2 and 3. 
From iteration 1 to 3 one can observe an improvement of 
233% in the speed (Table 1). 

Table 1. Metrics collected during the observational study 1 

 It. 1 It. 2 It. 3 
Velocity 3 6.25 10 

Code coverage 45% 81.64% 81.97% 
LOC 1.072 1,985 2,840 

Unit tests 50 112 146 
Functional tests 1 2 2 
Commits/week 62 72 70 

Build duration (seconds) 10 23 30 
Status of the continuous 

integration 72.73% 100% 100% 

% stories done in pair 75% 0% 25% 
 

In the first iteration the team still had no knowledge of the 
continuous integration process and had never  implemented 
an automated deployment. The concept of done defined was: 
acceptance criteria met the story, story accepted by the 
Product Owner, story accepted by the coach; story free of 

4



defects, 80% of code coverage and at least one story with an 
automated scenario. Regarding pair programming, as in the 
first iteration the team used this technique to develop several 
stories and was already facing major technical difficulties in 
learning other practices, the coach decided not to  use pair 
programming as a mandatory practice. The result was that the 
group significantly reduced the use of the practice in the 
iterations 2 and 3. The decision to use pair programming was 
due to the type of story and the individual preference of each 
team member. 

We also collect testimonials of the students at end of the 
study. One student commented about working in a team: 

“When I began the course, I did not know how to work on 
a team. I did not have  trust in teammates and I only cared 
about the defects that were coded by me. At the end of the 
course, I discovered that the Agile methodology greatly 
facilitates our in working  together, I learned to trust in the 
team and to  care about the project goal.” 

Software Kaizen also helped the students in quality 
improvement and in self organization of the team, as another 
student reported: 

“The temporary immersion of the Kaizen method helped 
us to adopt a quality standard for the product we were 
developing. We had the opportunity to adopt a standard for 
team self-management as well.” 

C. Observational Study 2 
After the first experience with Softwre Kaizen in an 

observational study, we planned and executed a case study 
with the purpose of  tailoring the method and set it for  the 
industry. Six students from PUCRS formed the team that also 
included a teaching assistant, a coach and two professors in 
the coordination of  program training . 

The training had 4 weeks of duration, the same as the first 
observational study. In this second edition, the team aimed to 
develop a minimal version of a system for government; the 
client was the regulatory agency for Brazilian graduate 
programs (Capes). The technology platform was .NET/ MVC. 
The team also answered a self-assessment of their level of 
agile methods adoption. Figure 4 and 5 present the initial and 
final agile assessment results, respectively. 

 
Figure 4. Initial assessment of observation study 2 

 
Figure 5. Final assessment of observation study 2 

 

As in our first study, the main metric of performance was 
the velocity of the team. In this second edition we also 
considered only the range of iteration 1 to 3, because  
iteration 0 was to set up the environment. We observed an 
improvement of 200% in team velocity from iteration 1 to 3 
(Table 2).  

Table 2. Metrics collected during observational study 2 

 It 1 It 2 It 3 
Velocity 8 18 24 

Code coverage 73.42% 99.67% 88.37% 
LOC 603 1122 1565 

Unit tests 30 100 146 
Functional tests 0 0 1 
Commits/week 74 59 80 

Build duration (seconds) 51 75 138 
Status of the continuous 

integration 
72.73% 72.73% 72.73% 

% stories done in pair 33% 15% 44% 
 

In order to measure how the students felt about their 
experience in the project, we introduced an important metric: 
the happiness index [16]. We collected it at the end of each 
iteration and during the retrospective sessions; it indicates the 
team’s sense in relation to the activities of the training. Figure 
6 shows the happiness index collected. 

 

 
Figure 6. Happiness Index 

Figure 6 shows the happiness index at the bottom. The 
index indicates a common behavior in building teams. While 
the first iteration presented a high happiness index, probably 
because of everything was new and the team had high 
expectations, we observed that during the second iteration this 
index fell significantly, indicating a possible cultural change 
and resistance, which ended up reversing in the last iteration. 
This behavior is commonly found in building teams theories, 
such as the Tuckman Theory [17]. 

In this second observational study we also collected 
testimonials to measure the impact of the training among the 
participating students.  One of the students said: 

5



“The course was a  paradigm shift, because I was used to 
developing alone. Working as a team, I could see that the 
tasks can gain greater speed and quality, if they are well 
distributed and if the communication is clear and explicit.” 

The student who performed the Product Owner role said: 

 “Through the course, I learned about agile methods and 
mainly I learned about the role of Product Owner, that I 
could perform this role during the project.” 

D. Use in a real lifecycle: case study 1 
In the third edition of the Software Kaizen we have 

planned and executed a case study in a real lifecycle. We 
received a total of 130 applications. For this edition we began 
a partnership with ThoughtWorks, a global software delivery 
and products company (www.thoughtworks.com). The 
company is closely associated with the movement for agile 
software development, and has contributed to a range of open 
source products. The students worked in the same 
environment and were immersed for several iterations. The 
team participated in  developing a piece of a social impact 
project. The piece involved a feature of an open source 
project for managing hospitals in poor cities around the 
world. The project used Java as the main programming 
language and several frameworks and technologies such as 
Spring MVC, JQuery, Hibernate and others. In this third 
edition the students also answered the agile assessment. 
Figures 7 and 8 show the results at the beginnig and at the 
end of the course. 

 
Figure 7. Initial assessment of the case study in a real life cycle 1 

 
Figure 8. Final assessment of the case study in a real life cycle 1 

Due to the complexity of the project, two developers from 
the company helped the students in technical aspects and two 
teaching assistants focused on monitoring  evolution and 
solving impediments. The product owned role was played by 
a business analyst from the company. Two professors and a 
coach were reponsible for the training.  

During the project, we faced several challenges related to 
dependencies. The main reason was the open source nature of 
the project. For instance, to develop a feature in the system, 
the students must understand the existing features and this 
process influenced the velocity of the team, although it 
reflected a real life cycle setting. Table 3 shows the results of 
the team. 

Another metric that we collected was the Net Promote 
Score (NPS) [18]; we have chosen this metric in order to 
analyze the satisfaction level in relation to team performance 
from the point of view of the support team. The support team 
was considered to be customers of the students as well, so we 
classified the metric results in three categories: NPS of PO, 
NPS of Mentor and NPS of teaching assistants. Table 4 
shows the results (the NPS range defined was 0-10). 

Table 3. Metrics collected during the real lifecycle case study 1 

 It 1 It 2 It 3 It 4 It 5 
Velocity 0 0 21 10 8 

Code coverage 20.4% 23.3% 22.3% 22.2% 22.2% 
LOC 436 684 705 722 717 

Commits/week 0 0 11 31 4 
Build duration 

(seconds) 150 120 216 169 175 

Status of the 
continuous 
integration 

13% 38% 88% 88% 88% 

Hapiness 
Index 3 4.2 3 3.2 3.2 

 
Table 4. Table 4.NPS collected in the real lifecycle case study 1 

NPS It 1 It 2 It 3 It 4 It 5 
PO 5 4 6 6 6

Mentors - 4 5 5 6 
Teaching assistant - 8 8,5 7 3 

 
We began to collect NPS from iteration 1, because from 

that iteration on we had deliverables for the project. As 
teaching assistants and mentors had little participation in  
iteration 1, they did not participate in the NPS. In the last 
iteration, the teaching assistants gave a low score to the team, 
as they reported a lack of commitment to the project.  

In this study, we did not measure functional tests and unit 
tests. We focused on TDD in iteration 1, but the feature 
developed was a front-end requirement, so the students faced 
difficulties in developing that and they chose not to do so. In 
this study, all stories had to be done using pair programming, 
so we did not measure the % stories done in pairs. The 
happiness index presented a similar behavior to that of the 
previous studies. 

At the end of this study, we also collected qualitative 
feedback from the students. One of them said:  

“I have many difficulties in communicating with other 
people and agile methods need  strong communication.  With 
the Kaizen method, I learned not only about technical aspects 
but how my voice and participation was important to the 
team”. 

Another student reported: 

“I learned a lot of TDD and about programming 
techniques. The experience of being in the same place every 
day  in a week helped us to make not classmates, but friends.” 

6



E. Use in a real lifecycle: case study 2 
The second real lifecycle study followed the same 

configuration as in the case study 1. We had improved the 
recruitment process, focusing more on collaboration aspects, 
so as a recruitment step we included a Coding Dojo to assess 
the candidates from a teamwork perspective. This time we 
also received a lot of applications, 160 altogether, and 
selected 7 students. In this study we transferred to the 
students the power to decide the project that they to wanted 
work on, so we executed an ideation, inviting the participants 
(students and mentors) to show and discuss ideas. The 
students selected a system for monitoring the draft laws from 
the Porto Alegre city hall.  

We replicated the same number of iterations as in the 
previous study. The project used several tecnologies such as 
Ruby, Angular JS and Mongo Db. The students also 
answered an agile assessment, but in this edition we adopted 
the agile evaluation proposed by James Shores [19], because 
the other assessment had been discontinued. In this 
assessment there is a scale from 0 to 100 and there is a 
classification of the agility of a team in terms of: 
collaborating, developing, thinking, planning and releasing. 
Figures 9 and 10 show the results at the beginning and at the 
end of the study.  

 
Figure 9. Initial assessment of the case study in a real life cycle 2 

 
Figure 10. Final assessment of the case study in a real life cycle 2 

The results indicates a evolution in all the dimensions, 
except in thinking. One of the reasons was that the team had 
challenges throughout the course with Test-Driven 
Development (TDD), and at the end they themselves 
evaluated  that the thinking in TDD could be improved. Table 
5 also summarizes the technical results of the team. 

As in case study 1, we did not measure functional tests 
and unit tests because we have many front-end stories. Due to 
technology limitations, we collected code coverage only in 
iteration 1 and in the last iteration, but the results indicate 
significant improvement. In this study, all stories had to be 
done using pair programming, so we did not measure the % 
stories done in pairs. The happiness index presented a  
behavior similar to that of the previous studies and had the 
highest score in two iterations. We did not use NPS in this 
case study due the customer´s choice. 

Table 5. Metrics collected during the real lifecycle case study 2 

 It 1 It 2 It 3 It 4 It 5 
Velocity 0 0 10 5 12 

Code coverage 57.7% - - - 79.9% 
Commits/week 0 2 15 5 30 

Status of continuous 
integration 38% 63% 63% 63% 63% 

Hapiness index 4.8 5 4.5 5 3.8 
 

The product owner in this study was also a business 
analyst from the company. In the coordination of the training 
program there were two professors and a coach. We also have 
two mentors and two teaching assistants who often supported 
in technical project aspects.  

At the end of the course, we also collected qualitative 
feedback from the students. One of them said:  

 “I learned to  understand the costumer value and the 
importance of a strong relationship with the Product Owner 
role.”  

Another student reported: 

“I learned that communication is a key factor in software 
development, both among the team and with the PO. I believe 
that agile methodologies support not only the technical part, 
but also the interaction between all parties involved.” 

VI. DISCUSSION AND LESSONS LEARNED 
 

During the four studies we observed a significant growth 
of the students in aspects such as technique (an improvement 
in skills such as code coverage and continuous integration), 
governance (most of the students learned how to work in a 
team and to self-organize), business (the contact of a real 
project and a continuous interaction with a product owner) 
and behavioral (the students experienced how to collaborate 
better within a team using practices such as pair programming 
and coding dojo). In the observational studies we had 
possitive results in terms of team velocity. While in the first 
observational study the velocity increased 233%, in the 
second study the velocity increased 200%. In the first case 

7



study in a real life cycle we observed that the velocity was 
impacted because the environment was less controlled and the 
project suffered from complex external dependencies. Based 
on these results, we concluded that for a real life cycle we 
have to be careful with the external dependencies in the 
project. 

At the end, all teams were more focused and more 
organized. From the point of view of training, it could be 
argued that after the course students were able to form a team 
to manage their own work focusing on software product 
delivery. But more important than delivery capacity is the 
ability to gradually improve their performance, adopting the 
correct posture when working in a  software development 
team. Future improvements of  Software Kaizen will include 
a measure of retention. In other words, we will propose a way 
to measure how the participants perform later on, whether 
they still work as agile teams or if  they reverted to how they 
worked previously, or if they were able to maintain constant 
velocity after the study period. 

Another important aspect to report was the different roles 
adopted by the students during the course, which offered 
them the opportunity to understand, in a practical way, which 
role involves the effects of the failures and success in the 
performance of the team. The students were able to  exchange 
ideas and experiences with professionals (mentors).  

As it was a short course, the students felt free to 
participate in different ways, including open communication 
with participants from ThoughtWorks. We made it clear to 
them that the purpose of Software Kaizen was not to give 
them a grade, but immerse them in a real project context.  

Communication was the most important aspect in the 
project. We understand that there are different perspectives 
and goals from the different partners (university, company, 
students and teaching assistants). For this reason, it is 
important to balance these goals and align a common vision 
for the project. This was a challenge, but regular 
communication helped us to resolve the differences. 

We also identified several research opportunities in order 
to evaluate the effectiveness of Software Kaizen in an 
industry setting. While in the first four instances we applied 
the method having the university as the main customer, we 
understand that the method can be applied with real 
customers and with industry professionals. This will be 
explored in the fifth edition. 

During the evaluation of the Software Kaizen method, we 
also learned important lessons that helped us to improve the 
process. Altogether we identified eight lessons that are listed 
as following: 

Lesson 1: Pair programming from the first moment 

During the first two studies, we observed that pair 
programming was not well adopted by the students; they 
tended to work alone. Pair programming is an agile practice 
important for learning and collaboration in our experience, as 
reported by several studies  in the literature [19, 20]. To get 
the benefits of pair programming into the Software Kaizen 
method, we made  pair programming  part of the process. 

Therefore, from our case study in industry, during the entire 
process the students used pair programming. The pomodoro 
techinique [24] also supported PP in a beneficial manner  to 
maintain the roles (driver and observer) with the students.  

Lesson 2: Students have the flexibility to set up the 
environment 

In the observational studies, the teaching assistant was 
responsible for  preparing the environment. During the 
course, we observed that all the knowledge related to  
continuous integration and configuration aspects was centered 
on the teaching assistants and not on the students. Thus, 
beginning in the second observational study, the students 
engaged in the setup stage, and this helped them throughout 
the course. 

Lesson 3: Retrospective sessions help the coach give the 
directions in each iteration 

Retrospective sessions helped the coach obtain feedback 
about the training program and change the directions when 
needed. Moreover, at the end of each of the four editions a 
final retrospective session with the students was planned and 
executed. This retrospective session helped to improve the 
Software Kaizen method. Figure 11 and figure 2 show the 
team during the retrospective session with the coach. 

 
Figure 11. A retrospective performed by the coach (case study 1) 

 
Figure 12. The final retrospective in case study 2 

8



Lesson 4: It is important to make clear that the main goal 
of Software Kaizen is the learning outcomes 

One of the challenges that we  faced in the first case study 
in a real life cycle was the fact that the students thought that 
the Software Kaizen method was a hiring process for the 
company. This fact created competition between the team 
members and several relationship problems. Once we 
identified this challenge, we made it clear to the students that 
the main purpose was  practical learning. 

Lesson 5: An impediment board helps the teaching 
assistants to solve the impediments of the team 

Beyond the daily meetings with the team, we decided to 
create an impediment board to help the teaching assistants to 
solve the impediments of the team. This board was 
continuously updated by both the team and teaching assistants 
when the impediment was solved. This strategy helped with 
the velocity of the team and the teaching assistants’ work. 

Lesson 6: The Software Kaizen method needs a specific 
infrastructure  

Since the first instances, we prepared a specific room to 
support the Software Kaizen method. This room has boards, a 
flip chart, and workstations with two teaching assistants and 
two keyboards to allow for pair programming. In the last two 
instances we limited the number of workstations available to  
exactly fit the number of pairs. The reason was that in the first 
two instances we had more workstations available, and the 
students tended to do solo programming. Figure 13 shows a 
view of the Software Kaizen room. 

 
Figure 13. Software Kaizen room 

Lesson 7: Adopting coding dojo sessions in the 
recruitment process is a good practice 

Coding dojo session [14] was an important step in the 
recruitment process to evaluate  teamwork among all the 
candidates. Besides technical knowledge, coding dojo session 
presented an overview of how the candidates dealt with 
decisions. 

Lesson 8: Coding dojo sessions help  training with 
technical aspects 

An approach that we used to solve technical impediments 
was the coding dojo session [14]. In this approach we also 
involved the teaching assistants and mentors in pairing with 
the students. We collected good results in relation to  learning 
with dojo and the creation of a collaborative environment.   

VII. CONCLUSION 
 

In this paper we presented Software Kaizen, a training 
method which provides temporary immersion of a team in a 
high-performance environment, based on agile 
methodologies. An early version of the Software Kaizen 
method, with the results from the first observational study, 
was documented in a paper that was published, in Portuguese, 
and presented at the V Education Forum on Software 
Engineering (FEES), as part of the XXVI Brazilian 
Symposium on Software Engineering (SBES), in 2012 [23]. 
In the same year this early version was also presented at the 
Agile Brazil Conference, also in Portuguese, and included 
partial results from the second observational study. This 
presentation was recorded and was made available at the 
InfoQ Brazil [24].  

In this paper we have described the current version of the 
methods, the concepts and the training program in details, 
including the results obtained in four consecutive instances 
(four months each) where the Software Kaizen was applied 
with groups of students and professionals in 2012 (in 
collaboration with DBServer) and 2013 (in collaboration with 
ThoughtWorks). 

In the first two instances, for example, the team velocity 
improved by 230% and 200% respectively. Overall, the four 
instances presented above average results in terms of agile 
practice adoption, and team behavior. We also share lessons 
learned, presenting the main benefits and challenges 
identified. In future research, we plan to continue following 
the Shull methodology [12], executing and improving the 
Software Kaizen in order to apply it in industry. 

ACKNOWLEDGMENTS 

In 2013 the Software Kaizen method received an award 
for innovation in education, offered by the Union of Private 
Education of Rio Grande do Sul (SINEPE-RS). For the 2013 
award, a total of 110 projects were evaluated in all categories, 
and Software Kaizen was the only IT related finalist project. 
We are thankful to all the students, professionals and mentors 
who have contributed to this project, which is partially funded 
by the research agreement signed between ThoughtWorks and 
PUCRS. We also thank DBServer, and CNPq (under projects 
560037/2010-4, 550130/2011-0, and 309000/2012-2).  

 

 

 

9



REFERENCES 
[1] C. G. Von Wangenheim, , R. Savi, and A. F. Borgatto. 

2013. "SCRUMIA - an Educational Game for Teaching 
SCRUM in Computing Courses," Journal of Systems and 
Software, vol. 86, pp. 2675-2687. 

[2] Nearshore Americas, “Collaborate. Innovate. Accelerate. 
Creating successful software requires a new model of 
development and a new kind of development team”. 
http://www.nxtbook.com/nxtbooks/nextcoast/nearshore_
americas/#/1. [Online]. 

[3] Roda, R., “Self-Organizing Agile Teams: A Grounded 
Theory”, PhD Thesis, Victoria University of Wellington, 
2011.  

[4] S. K. Parker, and P. R. Jackson, “ The implementation of 
high performance work teams, Case Studies in 
Organisational Behavior and Human Resource 
Management, 2nd Edition (pp 42-56). London: Paul 
Chapman Publishing, 1993. 

[5] K. Beck, et al., 2013, “Manifesto for Agile Software 
Development,” [Online]. www.agilemanifesto.org. 

[6] V. Oza, P. Kettunen, P. Abrahamsson, and J. Münch, 
“Attaining High-performing Software Teams with Agile 
and Lean Practices: An Empirical Case Study,”  
Proceedings of the International Software Technology 
Exchange Workshop, 2011, Stockholm, Sweden. 

[7] ACM,  “Computer Science Curriculum,”  2013. [Online]. 
http://www.acm.org/education/curricula-
recommendations. 

[8] V. Devedzic, “Teaching agile software development: a 
case study,  IEEE Transactions on Education,”  vol. 54 
(2), 2011, pp. 273–278.”. 

[9] C. G. VonWangenheim, F. Shull,  “ To Game or Not to 
Game?,” IEEE Software, vol. 26, 2009, pp. 92-94. 

[10] A.Goold, and P. Horan, “Foundation software 
engineering practices for capstone projects and beyond,” 
Proc. 15th Conference on Software Engineering 
Education and Training, pp 140-146, 2002. 

[11] J. Sutherland, S. Downey, and B. Granvik,. "Shock 
Therapy a Bootstrap for Hyper-Productive Scrum," Agile 
Conference, Experiente Report, 2009. 

[12] F. Shull, J. Carver, G. H. Travassos, "An empirical 
methodology for introducing software processes," ACM 

SIGSOFT Software Engineering Notes, v. 26, n. 5, pp. 
288-296, 2001. 

[13] J. K. Liker, and M. Hoseus, .Toyota Culture: The Heart 
and Soul of the Toyota Way. ,” Ed. Bookman, 2009. 

[14] M. Bravo. and A. Goldman, “Reinforcing the Learning of 
Agile Practices using Coding Dojos,” Lecture Notes in 
Business Information Processing, vol. 48, 2010, pp 379-
380. 

[15] ThoughtWorks Agile Assessment, 2012. [Online]. 
www.agileassessments.com/. 

[16] J. Sutherland, “Happiness metric wave of future”. 
http://scrum.jeffsutherland.com/2010/11/happiness-
metric-wave-of-future.html, [Online], 2010. 

[17] B. Tuckman, "Developmental sequence in small groups," 
Psychological Bulletin, vol. 63, pp. 384–99.  

[18] Frederick, R, “One Number You Need to Grow,” 
Harvard Business Review, 2003. 

[19] J. Shore. The art of Agile Development. O'Reilly Media, 
1st Edition, 2007. 

[20] C. Mcdowell, L. Werner, H. Bulock. and J. Fernald,“The 
effects of pair-programming on   performance in an 
introductory programming course, ” SIGCSE  
Symposium on Computer Science Education, 2002, pp. 
38–42. 

[21] N. Salleh, E. Mendes, J. Grundy, “Empirical studies of 
pair programming for CS/SE teaching in higher 
education: A systematic literature review,” IEEE 
Transactions on Software Engineering, vol.37-4, Jul-
Ago.. 509–525. 

[22] S. Nöteberg, Pomodoro Technique Illustrated: The Easy 
Way to Do More in Less Time. Pragmatic Programmers, 
Raleigh, N.C, 2009. 

[23] R. Prikladnicki, M. Móra, B. Copstein, A. Olchik, M. 
Bastos, L. C. Parzianello, “Kaizen: Training High 
Performance Software Development Teams,” V 
Education Forum in Software Engineering (FEES), as 
part of the XXVI Brazilian Symposium in Software 
Engineering (SBES) , in Portuguese, 2012. 

[24] A. Olchik, R. Prikladnicki, “Software Kaizen: an 
innovative model for high performance teams,” Agile 
Brazil Conference (www.agilebrazil.com), also available 
online at www.infoq.com/br/presentations/software-
kaizen-equipes, 2012. 

 

10


