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Abstract
We introduce a new computational model of moral deci-
sion making, drawing on a recent theory of commonsense
moral learning via social dynamics. Our model describes
moral dilemmas as utility function that computes trade-offs
in values over abstract moral dimensions, which provide in-
terpretable parameter values when implemented in machine-
led ethical decision-making. Moreover, characterizing the so-
cial structures of individuals and groups as a hierarchical
Bayesian model, we show that a useful description of an in-
dividual’s moral values – as well as a group’s shared values
– can be inferred from a limited amount of observed data. Fi-
nally, we apply and evaluate our approach to data from the
Moral Machine, a web application that collects human judg-
ments on moral dilemmas involving autonomous vehicles.

Recent advances in machine learning, notably Deep
Learning, have demonstrated impressive results in various
domains of human intelligence, such as computer vision
(Szegedy et al.), machine translation (Wu et al., 2016), and
speech generation (Oord et al., 2016). In domains as abstract
as human emotion, Deep Learning has shown a proficient
capacity to detect human emotions in natural language text
(Felbo et al., 2017). These achievements indicate that Deep
Learning will be paving the way for AI in ethical decision
making.

However, training Deep Learning models often requires
human-labeled data numbering in the millions, and despite
recent advances that enables a model to be trained from a
small number of examples (Vinyals et al., 2016; Santoro et
al., 2016), this constraint remains a key challenge in Deep
Learning. In addition, Deep Learning models have been crit-
icized as “blackbox” algorithms that defy attempts at inter-
pretation (Lei, Barzilay, and Jaakkola, 2016). The viability
of many Deep Learning algorithms for real-world applica-
tions in business and government has come into question as
a recent legislation in the EU, slated to take effect in 2018,
will ban automated decisions, including those derived from
machine learning if they cause an “adverse legal effect” on
the persons concerned (Goodman and Flaxman, 2016).

In contrast to Deep Learning algorithms, evidence from
studies in human cognition suggests that humans are able to
learn and make predictions from a much smaller number of
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noisy and sparse examples (Tenenbaum et al., 2011). More-
over, studies have shown that humans are able to internally
rationalize their moral decisions and articulate reasons for
these (Haidt, 2001). Given this stark difference between the
current state of machine learning and human cognition, how
can we draw on the latest theories in cognitive science to de-
sign AI with the capacity to learn moral values from limited
interactions with humans and make decisions with explica-
ble processes?

A recent theory from the field of cognitive science pos-
tulates that humans learn to make ethical decisions by ac-
quiring abstract moral principles through observation and in-
teraction with other humans in their environment (Kleiman-
Weiner, Saxe, and Tenenbaum, 2017). This theory charac-
terizes ethical decision as utility maximizing choice over a
set of outcomes whose values are computed from weights
people place on abstract moral concepts such as “kin” or
“reciprocal relationship.” In addition, given the dynamics of
individuals and their memberships in a group, the frame-
work explains how an individual’s moral preferences, and
the actions resulting from them, lead to a development of
the group’s shared moral principles (i.e. group norms).

In this work we extend the framework introduced by
Kleiman-Weiner, Saxe, and Tenenbaum (2017) to explore a
computational model of the human mind in moral dilem-
mas with binary-decisions. We characterize the decision
making in moral dilemmas as a utility function that com-
putes the trade-offs of values perceived by humans in the
choices of the dilemma. These values are the weights that
humans put on abstract dimensions of the dilemma; we call
these weights moral principles. Furthermore, we represent
an individual agent as a member of a group with many
other agents that share similar moral principles; these shared
moral principles of the group as an aggregate give rise to the
group norm. Exploiting the hierarchical structure of individ-
uals and group, we show how hierarchical Bayesian infer-
ence (Gelman et al., 2013) can provide a powerful mecha-
nism to rapidly infer individual moral principles as well as
the group norm with sparse and noisy data.

We apply our model to the domain of autonomous vehi-
cles (AV) through a data set from the Moral Machine, a web
application that collects human judgments in ethical dilem-



mas involving AV.1 A recent study on public sentiment on
AV reveals that endowing AI with human moral values is an
important step before AV can undergo widespread market
adoption (Bonnefon, Shariff, and Rahwan, 2016). In light of
this study, we view application of our model to understand
how the human mind perceives and resolves moral dilem-
mas on the road as an important step towards building an
AV with human moral values.

This paper makes the following distinct contributions to-
wards building an ethical AI:

• Introducing a novel computational model of moral deci-
sion making that characterizes moral dilemma as a trade-
off of values along abstract moral dimensions. We show
that this model well-describes how the human mind pro-
cesses moral dilemmas and provides an interpretable pro-
cess for an AI agent to arrive at a decision in a moral
dilemma.

• Characterizing the social structure of individuals and
groups as a hierarchical Bayesian model, we show that
the model can rapidly infer moral principles of individuals
from limited number of observational data. Rapidly infer-
ring other agents’ unique moral values will be crucial, as
AI agents interact with other agents, including humans.

• Demonstrating the model’s capacity to rapidly infer
group’s norms, characterized as prior over individual
moral preferences. Inferring shared moral values of a
group is an important step towards designing an AI agent
that makes socially optimal choices.

Moral Machine Data
Moral Machine is a web application built to collect and
analyze human perceptions of moral dilemmas involving
autonomous vehicles. As of October 2017, the application
has collected over 30 million responses from over 3 mil-
lion unique respondents from over 180 countries around
the world. Here, we briefly describe the design of moral
dilemma and data structure in Moral Machine.

In a typical Moral Machine session, a respondent is shown
13 scenarios such as the example shown in Figure 1. In each
scenario, the respondent is asked to choose one of two out-
comes that have different ethical consequences with differ-
ent trade-offs. A scenario can contain any random combi-
nation of twenty characters (see Figure 2) that represents
various demographic attributes found in a general popula-
tion. In addition to the demographic factors, Moral Machine
scenario also includes the factors of character’s status as a
passenger or a pedestrian and its status as a pedestrian who
is crossing on green light or red light.

In addition to the respondents’ decisions, data about their
response duration (in seconds) to each scenario and their ap-
proximate geo-location is also collected. This allows us to
infer the country or region of access.

Every scenario has two choices, which we represent as a
random variable Y with two realizable values {0, 1}. A re-
spondent’s choice to swerve (i.e., intervene) is represented

1http://moralmachine.mit.edu/

Figure 1: Moral Machine interface. An example of a moral
dilemma that features an AV with sudden brake failure, fac-
ing a choice between either not changing course, resulting
in the death of three elderly pedestrians crossing on a “do
not cross” signal, or deliberately swerving, resulting in the
death of three passengers; a child and two adults.

Figure 2: Twenty characters in Moral Machine represent var-
ious demographic attributes such as gender, age, social sta-
tus, fitness level, and species.

as Y = 1, and likewise, their choice to stay (i.e., not-
intervene) is represented as Y = 0. The respondent’s choice
yields a state of certain set of characters being saved over
others. The resultant state is represented by character vector
Θy ∈ NK , which denotes the resultant state of choice y.

Figure 3: An example of vector representation of a state in
the Moral Machine character space.

As an illustration, we show a vector representation of a re-
sultant state of swerve in Figure 3. The vector element of old
man character is denoted by value of 2, representing two old
man characters that will be saved from the choice of swerve
Y = 1. In addition, the vector element of red light feature is
denoted by value of 3, representing three pedestrian who are



crossing the red light.

Moral Dilemma as Utility Function
Jeremy Bentham, the founder of modern utilitarian ethics,
described ethical decision in a moral dilemma as a utility
maximizing decision over the sum of trade-offs over val-
ues in the dilemma (Bentham, 1789). More recently, cog-
nitive psychologists have formalized the idea of analyzing
moral dilemma using utility function that computes various
trade-offs in the dilemma (Mikhail, 2007, 2011). Evidence
of moral decision making in young children suggests that
children base their moral judgments by computing trade-off
of values over abstract concepts (Kohlberg, 1981).

Using this framework, we can analyze how a respondent
arrives to his/her decision based on the values that he/she
places on abstract dimensions of the moral dilemma, which
we label moral principles. For instance, when a respondent
chooses to save a female doctor character in a scenario over
an adult male character, this decision is in part due to the
value that respondent places on the abstract concept of doc-
tor, a rare and valuable member in society who contributes
to improvement of social welfare. The abstract concept of
female gender also would be a factor in his or her decision.

In Moral Machine, twenty characters share many abstract
features such as female, elderly, non-human, etc. Hence, the
original character vector Θy can be decomposed into a new
vector in the abstract feature space Λy ∈ ND where D ≤ K
via feature mapping F : Θ → Λ. In this work, we use a
linear mapping F (Θ) = AΘ where A is a 18 × 24 binary
matrix such as the one shown in Figure 4.

Figure 4: An example of a binary matrix A that decomposes
the characters in Moral Machine into abstract features. Black
squares indicate the presence of abstract features in the char-
acters.

Shown in Figure 5, the original state vector in the Moral
Machine character space Θ is mapped into a new state vector
in the abstract feature space Λ. We note that vector element
of old is denoted by value of 3 representing three character
with this feature.

We define moral principles as weights w ∈ RD that re-
spondent place along the D abstract dimensions Λ. These
weights represent how the respondent values abstract fea-

Figure 5: Vector representation of abstract features of a sce-
nario choice.

tures such as young, old, or doctor to compute utility value
of their choices. For simplicity, we model the utility value of
a state as a linear combination of the features in the abstract
dimension:

u(Θi) = w>F (Θi) (1)
With utility values of the choice to not-intervene u(Θ0)

and intervene u(Θ1), respondent’s decision to intervene
Y = 1 is seen as probabilistic outcome based on sigmoid
function of net utility of the two choices:

P (Y = 1|Θ) =
1

1 + e−U(Θ)
(2)

where
U(Θ) = u(Θ1)− u(Θ0). (3)

We turn our attention to inferring individual moral prin-
ciples of respondents from sparse and noisy observation of
their decisions in moral dilemma.

Hierarchical Moral Principles
Studies by anthropologists have shown that societies across
different regions and time periods hold widely divergent
views about what actions are ethical (Henrich et al., 2001;
House et al., 2013; Blake et al., 2015). For example, certain
societies strongly emphasize respect for the elderly while
others focus on protecting the young. These views in a soci-
ety are what we refer to as the society’s group norms.

Nevertheless, even in a society with a homogeneous cul-
tural and ethnic make-up, individual members of the group
can hold unique and different moral standards (Graham,
Haidt, and Nosek, 2009). How can we model the complex
relationship between the group norm and individual moral
principles?

We introduce hierarchical moral principles model, which
is an instance of hierarchical Bayesian model (Gelman et
al., 2013). Returning to data in Moral Machine, consider N
respondents that belong to a group g ∈ G. This group can be
a country, a culture, or a region within which customs and
norms are shared.

The moral principles of respondent i is drawn from a mul-
tivariate normal distribution parameterized by the mean val-
ues of the group wg on the D dimensions:

wi ∼ NormalD(wg,Σg), (4)



where the diagonal of the covariance matrix Σg represents
the in-group variance or differences between the members
of the group along the abstract dimensions. Higher variance
value describes broader diversity of opinions along that cor-
responding abstract dimension. In addition, covariance (off-
diagonal) values capture the strength of relationship between
the values they place on abstraction dimension. As an exam-
ple, a culture that highly values infancy should also highly
value pregnancy as they are intuitively closely related con-
cepts. Covariance matrix allows the Bayesian learner to un-
derstand related concepts and use the relationship to rapidly
approximate the values of one dimension after inferring that
of a highly correlated dimension.

Let w = {w1, ..., wi, ..., wN} be a set of unique moral
principles byN respondents. Each respondent imakes judg-
ments on T scenarios Θ = {Θ1

1, ...,Θ
t
i, ...,Θ

T
N}. Judgment

by respondent i is an instance of a random variable Y t
i .

Given the observation of the set of states Θ and the decisions
Y, the posterior distribution over the set of moral principles
follows:

P (w, wg,Σg|Θ,Y) ∝ P (Θ,Y|w)P (w|wg,Σg)

P (wg)P (Σg)
(5)

where the likelihood is

P (Θ,Y|w) =

N∏
i=1

T∏
t=1

p
yt
i

ti (1− pti)(1−yt
i) (6)

and pti = P (Y t
i = 1|Θt) is the probability that a respondent

chooses to swerve in scenario t given Θt as shown in Equa-
tion 2. Graphical representation of the model is presented in
Figure 6.

Figure 6: Graphical representation of hierarchical Bayesian
model of moral principles.

As an illustration, we randomly sampled 99 respon-
dents from Denmark, which equates to 1,287 response data.
We specified prior over the covariance matrix P (Σg) with
LKJ covariance matrix (Lewandowski, Kurowicka, and Joe,
2009) with parameter η = 2 :

Σg ∼ LKJ(η) (7)

and the prior over group weights P (wg) with

wg ∼ NormalD(µ,Σg) (8)

where µ = 0.
We inferred the individual moral principles as well as the

group values wg and the covariance matrices Σg . These re-
sults are shown in Figure 7. We note the variations in the
inferred moral principles of three representative sub-sample
of Danish respondents.

Predicting Individual Judgments
As an evaluation of our model, we performed out-of-sample
prediction test. We randomly selected ten-thousand respon-
dents from the Moral Machine website who completed at
least one session, which contains thirteen scenarios. We fil-
tered only the respondents’ first 13 scenarios to compile a
data set consisting 130,000 decisions.

We compared the predictive accuracy of the model against
three benchmarks. Benchmark 1 models the collective val-
ues of the characters in Moral Machine such that the utility
of a state is computed as

u(Θ) = wc>Θ (9)

where wc ∈ RK . Benchmark 1 models the weights as wc ∼
NormalK(µ, σ2I) and does not include the group hierarchy
or the covariance between the weights over the characters
and factors (e.g. traffic light, passenger, etc.).

Benchmark 2, which builds upon Benchmark 1, models
the values along the abstracts moral dimensions Λ as wf ∼
NormalD(µ, σ2I). The group hierarchy and the covariance
between weights are ignored.

Finally, benchmark 3 models the individual moral prin-
ciples of each respondent as wl

i ∼ NormalD(µ, σ2I), but
does not include the hierarchical structure. Therefore, each
respondent is viewed as an independent agent wherein infer-
ring the values of one respondent provides no insight about
the values of another.

To demonstrate the gains in accuracy, we tested the
models across different size of training data by vary-
ing the number of sampled respondents along N =
(4, 8, 16, 32, 64, 128). We used the first eight judgments
from each respondent as training data, and tested the accu-
racy of predictions on the remaining five of the responses
per each agent. For our model, we assumed that sampled re-
spondents of size N belong to one group.

The results (Figure 8) shows that as the number of respon-
dents (i.e. training data) grows larger, predictive accuracy of
our model, benchmark 1 and 2 improve. Accuracy of bench-
mark 3 does not improve as the the number of respondents
have no bearing on inference of individual respondent’s val-
ues. However, the hierarchical moral principles model shows
consistently improving accuracy rates along the increasing
size of the training data.

We note that the margin of improvement between bench-
mark 1 and benchmark 2 reveals the gain achieved from
abstraction and dimension reduction. The margin between
benchmark 2 and our model reveals the gain from includ-
ing individual moral principles. Finally, the margin be-
tween benchmark 3 and our model is indicative of the gain
achieved by the group hierarchy.
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Figure 7: (a) Inferred group norm of sampled Danish respondents; (b) Inferred covariance matrix of the Danish respondents;
(c-e) Individual moral principle values of three representative sub-sample of Danish respondents.

Response Time
Studies in human decision making find strong relationship
between the confidence level of the decision and reaction
time of the decision (i.e. reaction time) (Smith and Rat-
cliff, 2004; Cain and Shea-Brown, 2012; Baron and Gürçay,
2017). These studies show that human subjects in binary-
decision tasks take longer time to arrive at a decision when
there is lower level of evidence. In this section, we take this
approach to show that our model accurately captures the re-
lationship between reaction time and difficulty of a moral
dilemma.

We sampled 1727 respondents who accessed Moral Ma-
chine from the US; which altogether correspond to 22,451
judgments. In addition to the judgment decisions, we mea-
sured response times (RT) in seconds that the respondents
took to arrive at their decisions. Due to the unsupervised
nature of the experiments, respondents are free to stop and
reengage at later time; as such, we eliminated responses that
took more than 120 seconds from our analysis. From the
judgment data, after inferring the moral principles of indi-
vidual respondents, we computed the estimated the proba-

bility of decision to swerve (i.e. pti = P (Y t
i = 1|Θt

i)) of
each scenario as defined in Equation 2. We computed new
metric, certainty of decision, using |pti − 0.5|.

Plotting the certainty of decision and response times of
the scenarios (see Figure 9) reveals an intuitive pattern of
relationship between two variables.

Scenarios with higher certainty represent those that have
clear trade-offs in the dilemmas such that the respondents
on average respond quicker to the dilemmas. Likewise, sce-
narios with lower certainties are those that have ambiguous
trade-offs such that the respondents have less confidences
about their decisions. Intuitively, resolving the ambiguity of
the trade-offs takes greater cognitive costs, which is revealed
as longer response times for the respondents.

We view the relationship between response time and esti-
mated certainty of decision from the model as a supporting
evidence that the model is a robust representation of how
people resolves moral dilemmas. In addition, the fact that
cognitive cost of value-based decision process is revealed in
their reaction times is an extra bit of information that could
be used in the inference. For instance, we see a person mak-



Figure 8: Comparison of out-of-sample prediction accuracy
rates of the hierarchical moral principles model and the three
benchmark models.

Figure 9: Reaction time in seconds per estimated certainty
of decisions, which is defined as distance of the probability
of judgment from the 0.5 probability of swerving.

ing a quick decision; then we might also get information
about the relative value difference between the two choices.
In future work, we intend to integrate response time infor-
mation into the process of learning itself to allow the learner
to infer even faster.

Discussion
Drawing on a recent framework for modeling human moral
decisions, we proposed a computational model of how the
human mind arrives at a decision in moral dilemma. We
demonstrated the application of this model in the domain
of autonomous vehicles using data from Moral Machine.
We showed that hierarchical Bayesian inference provides a
powerful mechanism to accurately infer individual prefer-
ences as well as group norms along the abstract moral di-
mensions. We concluded with a demonstration of the model
successfully capturing the cognitive cost in resolving the
trade-offs in moral dilemmas. We show that moral dilem-
mas that are unpredictable by the model are correlated with
long response times, where response times are a proxy of
how difficult the dilemma is for the respondent because the
subject is indifferent between the two responses.

In this work, we have left out any discussion about method

to aggregate the individual moral principles and the group
norms to design an AI agent that makes decisions that op-
timize social utility of all other agents in the system. Re-
cently, a paper by Noothigattu et al. (2017) introduced a
novel method of aggregating individuals preferences such
that the decision reached after the aggregation ensures global
utility maximization. We view this method as a naturally
complement to our work.

Another interesting extension of our work is to explore the
mechanism that maps the observable data on to the abstract
feature space. We formalized this process as feature map-
ping F : Θ→ Λ. Evidence from developmental psychology
suggests that children grow to acquire abstract knowledge
and form inductive constraints (Gopnik and Meltzoff, 1997;
Carey, 2009). Non-parametric Bayesian processes such as
the Indian Buffet Process (Thomas L. Griffiths, 2005) and
its variants (Rai and Daumé, 2009) are promising models to
characterize this learning mechanism in the moral domain.

We used response time as a proxy to measure cognitive
cost and proposed that the response time can be used as
an extra information for more accurate inference over re-
spondent’s individual moral principles. Combining our cur-
rent model with drift diffusion model (Ratcliff and McKoon,
2008) can lead to a richer model that describes confidence
and error in moral decision making. An AI agent needs to
understand moral basis of people’s actions including when
they are from socially inappropriate moral values as well as
when they are mistakes. For instance, if an AI agent observes
a person who spends a long time to make a ultimately wrong
decision, the AI agent should incorporate the person’s con-
fidence level and error rates to make accurate inference that
the person most likely made a mistake.

Finally, we have inferred abstract moral principles and
tested the model’s predictive power on the same source of
data. However, the abstract dimensions of the characters and
factors in Moral Machine are not confined to the AV do-
main. An interesting experiment would be to test the model
across various moral dilemmas in difference contexts. Hi-
erarchical Bayesian models has been applied in the domain
of transfer learning. Demonstrating capacity to learn moral
principles from one domain and apply these principles in
other domains to make ethical decisions would show that a
development of human-like ethical AI system does not need
to be domain specific.
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