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Abstract

We present socially-aware navigation for an intelligent robot
wheelchair in an environment with many pedestrians. The
robot learns social norms by observing the behaviors of hu-
man pedestrians, interpreting detected biases as social norms,
and incorporating those norms into its motion planning. We
compare our socially-aware motion planner with a baseline
motion planner that produces safe, collision-free motion.
The ability of our robot to learn generalizable social norms
depends on our use of a topological map abstraction, so that
a practical number of observations can allow learning of a
social norm applicable in a wide variety of circumstances.
We show that the robot can detect biases in observed human
behavior that support learning the social norm of driving on
the right. Furthermore, we show that when the robot follows
these social norms, its behavior influences the behavior of
pedestrians around it, increasing their adherence to the same
norms. We conjecture that the legibility of the robot’s norma-
tive behavior improves human pedestrians’ ability to predict
the robot’s future behavior, making them more likely to fol-
low the same norm.

1 Introduction
Social norms range from deeply held moral and ethical prin-
ciples about lying, stealing, etc., to social conventions such
as driving on the right side of the road (or on the left in
the UK and Japan) and turn-taking protocols for drivers at
rotaries or four-way stops. All along this spectrum, social
norms are society’s way to influence its individual members
away from selfish individual utility maximization, and to-
ward behaviors that produce greater benefits for the entire
society. There are many compelling demonstrations of the
tension between individual self-interest and the interest of
society as a whole, including the Prisoners’ Dilemma (Axel-
rod 1984) and the Tragedy of the Commons (Hardin 1968).

There is growing concern that robots, taking an increas-
ing role in our society while remaining unconstrained by so-
cial norms, could produce harmful unintended consequences
even while pursuing human-given goals (Bostrom 2014). We
therefore need to study, not only how social norms are ex-
pressed and applied, but how they can be learned from expe-
rience. It is important to study social norms with meaningful
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physical behaviors in the physical world, rather than simply
by playing artificial games. Finally, for experimental study
to be feasible, meaningful interactions where social norms
are applicable must occur at time-scales of seconds to min-
utes, rather than days, weeks, or longer.

To meet these requirements, we focus on spatial naviga-
tion by a robotic wheelchair in a campus-scale environment
– an office or industrial campus, shopping mall, medical or
retirement center, or a college campus. To navigate safely
and naturally in such an environment, the robot must per-
ceive and predict the behaviors of nearby pedestrians, and
plan its motion for safety as well as progress toward its goal.

Our existing motion planning algorithm (MPEPC (Park,
Johnson, and Kuipers 2012; Park 2016)) plans a locally-
optimal smooth trajectory within a five-second horizon, bal-
ancing the benefit of progress toward the goal against costs
including the probability of collision with static or dynamic
hazards. The optimal trajectory is recalculated 10-20 times
per second, implementing a strategy called model-predictive
control. Once learned, social norms can be incorporated into
our motion planning framework by adding new terms to the
cost-benefit trade-off.

In this paper, we present a method for learning social
norms, exploiting the abstraction provided by our hybrid
topological-metric map representation (Beeson, Modayil,
and Kuipers 2010). For example, while traveling along a cor-
ridor, the robot should generally stay to the right and pass on
the left, or when turning at an intersection, the robot should
not cut the corners, which increases the chance of a collision.

We show how a topological map simplifies pedestrian in-
tention estimation by providing a small set of possible action
classes. The discrete representation of the current navigation
situation provides two distinct benefits. First, social norms
can be easily learned by counting the observed behavior in-
stances in each situation. Second, the behaviors learned are
conditioned only on the generic topological action taken, i.e.
moving down a corridor or from one place to another. Thus,
learned norms generalize to any environment with the same
topological description, allowing the robot to behave appro-
priately in previously unvisited environments. We have im-
plemented social norm learning on our intelligent robotic
wheelchair and have integrated preferences based on so-
cial norms into our baseline motion planner, MPEPC (Park,
Johnson, and Kuipers 2012; Park 2016), creating a Socially-
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Figure 1: The robot encounters an oncoming pedestrian
moving toward it on the right side of a corridor (a). By fol-
lowing the social norm of staying right, the robot implicitly
signals to the pedestrian to move to the robot’s left to pass
(b). While this interaction occurs, a second pedestrian ap-
pears moving along the left wall.

Aware version (SA-MPEPC), which allows our wheelchair
to move more naturally through everyday environments.

After discussing related work in Section 2, we describe
the representation of topological intentions in Section 3.
Section 4 describes how social norms are learned, and Sec-
tion 5 describes how they are used for motion planning in
SA-MPEPC. Section 6 presents our evaluation and its re-
sults.

2 Related Work
Improvements in mapping, localization, and control are en-
abling robots to the leave confines of the lab and operate
in real-world, dynamic environments. This shift in operat-
ing environments has led to increasing interest in socially-
aware navigation, where a robot considers additional fac-
tors beyond the traditional measures of safety and efficiency
in deciding how to move through the world. As noted in a
review of the field (Kruse et al. 2013), most of these addi-
tional performance measures are drawn from social science
research into proxemics (measures of interpersonal distance)
(Hall 1966) and social norms (accepted cultural behaviors
for a variety of situations) (Lapinski and Rimal 2005). A re-
cent study in (Zanlungo, Ikeda, and Kanda 2012) provides
experimental evidence for the commonly acknowledged so-
cial norm of moving along the right (or left) of a corridor,
even when not interacting with other pedestrians.

The importance of social awareness for improving hu-
man comfort in the proximity of robots has been estab-
lished by a number of studies (Shiomi et al. 2014; Lasota
and Shah 2015; Joosse et al. 2013; Pacchierotti, Christensen,
and Jensfelt 2006). However, because social norms are so
loosely-specified and culture-dependent, the most success-
ful approach for making a robot understand and follow so-

cial norms is to learn them from observing people’s behavior
in a variety of social situations. Most relevant to our work
are approaches that learn spatial navigation behaviors in the
environment.

(Chung and Huang 2010; 2012) present the Spatial Be-
havior Cognition Model (SBCM) that divides the naviga-
tion problem into General (GSE) and Specific Spatial Ef-
fects (SSE). GSEs define a similar set of metrics to MPEPC,
whereby costs are associated with static and dynamic ob-
stacles, as well as actions. SSEs are environment-specific
features that influence pedestrian behaviors, learned using
a histogram of pedestrian motion in the environment. Un-
like SSEs however, the responses learned by our approach
generalize to any environment with a structure that can be
represented as a topological map.

(Kim and Pineau 2016) use Inverse Reinforcement Learn-
ing to learn a cost function associated with navigation ac-
tions to navigate a smart wheelchair around dynamic obsta-
cles. However, their approach is limited by choice of sensors
and thus unable to generalize to fully autonomous motion.
Additionally, they only learn passing behaviors and default
to the shortest path to the goal otherwise. An alternate ap-
proach in (Dondrup et al. 2015) creates a qualitative descrip-
tion of a passing interaction and learns state transition prob-
abilities for how the passing action should be performed.
Their approach focus on passing behaviors between a sin-
gle person and robot, which limits the applicability of their
method to more complex scenarios. More complex passing
behaviors are learned in (Chen et al. 2017) using deep re-
inforcement learning. They achieve impressive performance
in learning norms for passing pedestrians and navigating in
a busy real-world environment, but they also focus on solely
on passing behaviors and otherwise optimize for time effi-
ciency.

3 Situations for Topological Navigation
Our map representation is based on the Hybrid Spatial Se-
mantic Hierarchy (HSSH) (Beeson, Modayil, and Kuipers
2010), where a topological map consists of a set of discrete,
non-overlapping areas (places and paths). Gateways define
the boundary between adjacent areas and are simple line
segments whose endpoints are static obstacles in the envi-
ronment.

Navigation through such a topological map can be de-
scribed using two actions: traveling along a path or transi-
tioning from one area to another. When traveling along a
path, an agent moves towards the place at one of the ends,
which we refer to as p+ or p−. When transitioning between
areas, an agent crosses a gateway g separating them.

When executing these actions, an agent may encounter
crowded intersections or empty hallways. It might need to
give way to an oncoming pedestrian or follow a pedestrian
through a corridor. We formalize these different scenarios
using the concept of a situation.

A situation, St = 〈M,Xt, Ot, αt〉, describes the robot’s
navigation in terms of the environment’s topological and
metric map M , the robot’s current pose and topological lo-
cation Xt, the observed pedestrians Ot near the robot, and



the current topological action being executed αt ∈ {Ψ,∆},
where Ψ is a path travel action and ∆ is a transition action.

We describe each pedestrian’s state o ∈ Ot based on the
set of possible actions for its topological location. For a mo-
tion along a path (α = Ψ), a pedestrian is either moving
towards the place at one of the ends, which we refer to as
p+ or p−, depending on whether the pedestrian is moving in
the same (+) or opposite (−) direction as the agent. When
transitioning to a new area (α = ∆), the pedestrian is either
crossing in the same (g+) or opposite (g−) direction as the
agent. The topological action is estimated by adapting BH-
MIP (Ferrer and Sanfeliu 2014) to estimating goals based on
gateways rather than single points in the environment.

4 Learning Navigation Social Norms
A social norm describes the expected behavior of an agent
in the environment when faced with a social situation. How-
ever, social norms are loosely defined, so a variety of people
following the same social norm, like moving along the right
side of a corridor, are likely to exhibit a range of behav-
iors. To account for the variation in behaviors, we represent
a social norm as a probability distribution over possible be-
haviors, which can be learned by observing how pedestrians
behave when responding to various situations.

Formally, we learn probability distributions across possi-
ble robot poses x̄t, given a navigation situation St:

p(x̄t|St) = p(x̄t|M,Xt, Ot, αt) (1)
≈ p(x̄t|Ot, αt) (2)

We can approximate the complete distribution in (1), which
depends on the robot’s location Xt in a particular map M ,
using a more general situation description that depends only
on agent states Ot and the current action αt (2). By ignor-
ing conditioning on the robot’s specific state within a map,
we learn a distribution that describes social norms for topo-
logical actions in any environment, even previously unex-
plored environments. However, if the robot continually op-
erates within a single environment, (2) can be used as a prior
for learning the more complex distribution in (1), which al-
lows the robot’s behavior within known environments to be
refined over time to account for local variations in how peo-
ple interact.

Our approach learns two related social norms. The first
norm is a preference for the robot’s lateral position while
traveling longitudinally along a path. The other norm de-
scribes where the robot should cross a gateway when tran-
sitioning from one area to another. Therefore, x̄t in (1) de-
scribes either the robot’s position along the line orthogonal
a path segment’s axis or its position along a gateway bound-
ary.

To ensure the learned model generalizes to new environ-
ments, we normalize x̄t to the range [0, 1]. In this range, 0 is
the location of the left wall relative to the nominal direction
of motion. Therefore, the left side of a corridor or gateway
relative to the center has distance in the range [0, 0.5) and
the right side range is (0.5, 1].

We then divide x̄t into N bins of equal size. By discretiz-
ing the normalized range for x̄t, (1) becomes a simple dis-

crete distribution, whose entire state space can be easily enu-
merated. We estimate the parameters of this distribution by
observing other agents’ responses to situations in the envi-
ronment, incrementing the bin that corresponds to their po-
sition, and then normalizing over the total number of obser-
vations.

4.1 Learning Norms for Path Segments
When navigating a path segment, p(x̄t|Ot, αt = Ψ) is
a distribution across the robot’s lateral position along the
path segment, where Ψ is the action that takes the robot
from one end of the path segment to the other. We estimate
p(x̄t|Ot, αt = Ψ) by considering a simpler case first, where
we ignore other agents in the environment, thus estimating
p(x̄t|αt = Ψ).

To estimate p(x̄t|αt = Ψ), we observe other agents in
the environment. For agents traveling through the environ-
ment, we can directly observe x̄t and count the number of
instances of their position being in a bin n ∈ x̄t. Dividing
by the total number of observation yields the probability dis-
tribution p(x̄t|αt = Ψ).

In the more general case, we must consider how agents in-
teract with one another. While the state for an agent’s action
αt is simple, interactions amongst agents can be complex.
In our representation, each agent can be in one of N lateral
positions with a state of + or −, depending on their motion
relative to the robot. For an environment with K objects,
there are (2N)K possible states.

Rather than attempting to directly learn a distribution
across this potentially huge state space, we create a simpli-
fied representation of the situation and learn a new distribu-
tion:

p(x̄t|Ot, αt = Ψ) ≈ p(x̄t|Lt, αt = Ψ) (3)

The simplified situation Lt divides the path segment later-
ally into L bins. Each bin has one of three states: {+,−, ∅},
which indicates if that bin is empty (∅) or is occupied by an
agent moving in the direction ({+,−}).

To computeLt, each bin l ∈ L is matched with the nearest
agent occupying the lateral position of the bin in the direc-
tion the robot is heading. The state is assigned to ({+,−})
based on the estimated goal, or (∅) if no object occupies the
bin.

When learning p(x̄t|Lt, αt), we can use the same basic
counting approach as when learning p(x̄t|αt). We create a
description of the situation Lt for each pedestrian. In this
description, the robot is included as an agent that can occupy
one of the bins in Lt. However, we must compute a different
description of the situation Lt for each pedestrian because
they each have a different perspective. For example, in Fig. 1
with L = 2, the situation for the top right pedestrian is Lt =
{−,+}, whereas the situation for the top left pedestrian is
Lt = {−, ∅}.

4.2 Learning Norms for Transitions
Motion through from one area to another occurs by crossing
the gateway between the areas. The relevant position x̄t for
this action is where to cross the gateway boundary. Like the
norm for path segments, we can learn this distribution by



observing an agent’s position whenever it crosses a gateway
boundary.

As with path travel, we first learn the simplified distribu-
tion p(x̄t|αt = ∆) by ignoring other agents. We use a sim-
ple discrete distribution to represent p(x̄t|αt = ∆), which
we estimate by measuring where each agent crosses a gate-
way in the environment and incrementing that the count of
that bin, then normalizing over all measurements.

The distribution p(x̄t|Ot, αt) represents more complex
interactions amongst agents as they move from one area to
another via a gateway. For this distribution, we consider only
the subset of agents Pt ⊆ Ot whose estimated action is to
move across a gateway in the opposite of the robot:

p(x̄t|Ot, αt = ∆) ≈ p(x̄t|Pt, αt = ∆) (4)

For example, if the robot is entering a place through some
gateway g, we consider all agents who are leaving the place
through that same gateway. We condition the social distri-
bution on |Pt|. Thus, we estimate the distributions for each
value of |Pt| experienced by the robot during training using
the same counting approach as with p(x̄t|αt).

5 Socially-Aware MPEPC
MPEPC generates plans at a fixed time horizon TH with an
update rate of 5Hz. Each planning cycle computes the best
robot trajectory for the next TH seconds which requires es-
timating the future trajectory of all dynamic objects around
the robot for the next TH seconds as well. The best trajectory
is computed by optimizing the progress towards the goal, as
defined by a navigation function, weighted by the probabil-
ity of safe motion.

We integrate the above goal prediction and social norm
behaviors with MPEPC to create a new socially-aware
MPEPC (SA-MPEPC) by defining a cost map for the learned
norms from Section 4 to integrate them into the navigation
function used for defining progress through the environment
to bias the robot’s decision making towards obeying social
norms.

In the existing MPEPC implementation (Park 2016), the
robot’s navigation function is computed using the wavefront
algorithm defined by Konolige (Konolige 2000). The wave-
front grows from the goal position outward using 8-way con-
nectivity. Each cell in free space contains the distance to
the goal, thereby defining a gradient that can be followed
to reach the goal. Walls are marked as infinite distance.

The navigation function used by MPEPC is computed us-
ing a combination of the distance to the goal and a cost func-
tion. In many applications, including MPEPC, cost is a func-
tion of the distance to obstacles. By ensuring the navigation
function is infinite in collision states for the robot, the gradi-
ent of the navigation function will always lead the robot on
a collision-free path to the goal.

We integrate the learned social norms into MPEPC by in-
troducing an additive social cost into the cost function for
computing the navigation function for each free cell in the
occupancy grid:

Ccell = Cobst + Csocial (5)

(a) (b)

Figure 2: Examples of cost maps used to define the social
norm navigation function. The cost map in (a) is for the robot
making a right turn from the horizontal corridor to the ver-
tical corridor. Note that the cost is different when navigat-
ing through the intersection because the cost is based on the
transition norm rather than the path norm. In (b), the cost
map is for executing a left turn at the same interaction. The
high-cost and low-cost regions are reversed since the learned
norm is to stay to the right.

The cost associated with being near an obstacle Cobst is
an exponential function of the distance to the obstacle:

Cobst =

0 if dobst ≥ Dmax

α
(
Dmax−dobst

Dmax

)β
if dobst < Dmax

(6)

Both social norms in Section 4 are probability distribu-
tions over the robot’s lateral position when moving along a
path segment or across a gateway, where the robot should
prefer moving through high-probability regions. The cost of
being in a particular position is proportional to the learned
probability of not being in a particular position:

Csocial =

{
k3/(1− p(dnorm|Pt, αt)) if αt = G

k3/(1− p(dnorm|Lt, αt)) if αt = Ψ
(7)

where σ is an adjustable weight.
In our implementation, we use the Voronoi skeleton to

compute dnorm. There are typically multiple branches of the
Voronoi skeleton. We select the branches of interest by find-
ing the shortest path along the skeleton between the entry
and exit gateways. Only the skeleton cells along this short-
est path are used for computing dnorm.

The normalized distance relative to the left wall for a cell
in the map is dnorm = dobst/(2dskel) when the skeleton is
to the right of the cell. When the skeleton is to the left of the
cell, dnorm = 1− (dobst/2dskel). Here dobst is the distance
to the nearest obstacle and dskel as the distance of the nearest
Voronoi skeleton cell to an obstacle.

Examples of the cost maps generated by (5) are shown
in Fig. 2. Using such a cost map, a 2D navigation func-
tion can be computed using the wavefront algorithm. When
computing the wavefront, we initialize the goal from which
the wavefront emanates to be the entire gateway boundary,
rather than a specific point. Doing so ensures that the gra-
dient of the navigation function will lead the robot across
the gateway boundary, regardless of where it reaches it, as



Figure 3: The test environment used for evaluation, show-
ing trajectories generated by MPEPC (blue) and SA-MPEPC
(orange). All trajectories follow a figure-of-eight pattern,
CW around the left loop and CCW around the right loop.
(This figure is best viewed magnified and in color.)

opposed to forcing it across at a single point, which isn’t
necessary for topological navigation.

6 Evaluation and Results
6.1 Experimental Methods
The goal of our socially-aware navigation algorithm is to en-
able the robot to learn how to behave in different social nav-
igation situations, thereby improving its interactions with
pedestrians to allow more socially acceptable and safer mo-
tion through the environment.

To test the effectiveness of our algorithm, we have im-
plemented the socially-aware MPEPC algorithm on our
robotic wheelchair, Vulcan (Williams et al. 2017). Vulcan
is equipped with two Hokuyo URG-30LX lasers, an IMU,
and wheel encoders. The software runs on a standard laptop
with an Intel i7-4800MQ processor and 8GB of memory.

We learned the distributions in (3) and (4) using training
data collected by Vulcan during autonomous explorations of
campus buildings at the University of Michigan. While ex-
ploring, Vulcan was controlled using the MPEPC algorithm
described in (Park 2016).

To evaluate the effectiveness of our new approach, we
compare the performance of SA-MPEPC against the previ-
ous MPEPC algorithm. For this evaluation, we performed
approximately 90 minutes of autonomous circuits with each
algorithm around the figure-8 loop shown in Fig. 3. These
circuits were performed at varying times of day, so the robot
would encounter a more varied set of social situations and
pedestrians. During autonomous navigation, the robot’s pose
and velocity were estimated at 50Hz, and the position and
velocity of pedestrians were estimated at 20Hz using only
the onboard laser sensors.

All robot-human interactions were with people carrying
out their daily activities unaware of the experiment being
performed. To ensure the safety of others, Vulcan was oper-
ated during all experiments by one of the authors who would
manually intervene if unsafe conditions were detected.

(a) (b)

Figure 4: The distributions over the normalized lateral posi-
tion of the robot show a clear shift to the right for both (a)
travel along paths and (b) transitions across gateways.

(a) (b)

Figure 5: The observed pedestrian positions also see a shift
to the right, though the effect is less dramatic.

6.2 Lateral Position During Navigation
In our approach, preferences for behavior influenced by so-
cial norms are learned as probability distributions over the
agent’s lateral position. Lateral position represented using
the normalized distance from the left wall, with a distance
of 0 being the agent touching the left wall and a distance of
1 touching the right wall. Since the test was performed in
the US, the robot successfully learning and following social
norms will be demonstrated by a significant increase (closer
to 1) in the normalized lateral position of the robot.

The results of our experiment demonstrate a clear right-
ward shift in the robot’s position while traveling along a path
and across transitions, as can be seen in Fig. 4. We com-
pared Gaussian distributions computed from the experimen-
tal data (Table 1) and found a significant difference between
MPEPC and SA-MPEPC (p < .001, t = 349) supporting
the hypothesis that a robot controlled by SA-MPEPC trav-
els along paths closer to the right wall. Similarly, comparing
Gaussian distributions for the lateral position when transi-
tioning between areas, we found a significant difference be-
tween SA-MPEPC and MPEPC (p < .001, t = 41.9).

In analyzing our data, we also explored how the robot’s
adherence to social norms affects the behavior of other
agents in the environment.

We hypothesize that the robot’s more normative behav-
ior improves the adherence to norms of agents the robot in-
teracts with. Table 1 shows a significant rightward shift in
the lateral position of observed agents traveling along paths
(p < .001, t = 19.35). The shift in the mean of 0.07 cor-
responds to 15 − 20cm in the test environment, depending
on the corridor. We do not, however, find a significant dif-



Table 1: Distribution of normalized lateral positions for the
robot and observed pedestrians, for travel along paths and
transitions across gateways.

SA-MPEPC MPEPC p-value

Robot Path 0.66 ± 0.02 0.48 ± 0.03 < .001

Robot Transition 0.61 ± 0.03 0.49 ± 0.05 < .001

Pedestrian Path 0.62 ± 0.08 0.55 ± 0.09 < .001

Pedestrian Transition 0.58 ± 0.08 0.57 ± 0.07 < .3

Table 2: Comparison of oncoming passing behaviors: mini-
mum passing distance and frequency of passing on the left.

SA-MPEPC MPEPC p-value

Count 61 42

Distance (m) 0.52 ± 0.22 0.50 ± 0.24 < .4

% Left 88.5 59.5 < .001

ference in the lateral position of transitions between the two
approaches (p < .3, t = 0.6745).

6.3 Oncoming Pedestrian Avoidance Behavior
In addition to lateral positioning while navigating, we ex-
plored the behavior of SA-MPEPC when faced with another
common scenario: passing an oncoming pedestrian moving
the opposite direction along a corridor. During our experi-
ment, performed 42 oncoming passes with MPEPC and 61
oncoming passes with SA-MPEPC. The data is presented in
Table 2.

To assess the safety of the passing behavior, we looked
at the passing distance between the robot and the oncom-
ing pedestrians. We found no significant difference (p < .4,
t = 0.372) between the average passing distance of 0.52m
for SA-MPEPC versus 0.50m for MPEPC. This behavior is
expected because MPEPC does not rely on the navigation
function to ensure the safety of the vehicle and pedestrians
because progress towards the goal is weighted the probabil-
ity of collision with pedestrians. Therefore, safe distances
are determined by the uncertainty of the robot’s perception
of the environment, along with encoded preferences on pass-
ing distances, which do not change between SA-MPEPC and
MPEPC.

While the passing distance is similar, the qualitative be-
havior (pass on the left or the right) of SA-MPEPC does
show improved conformance to passing norms. In the US,
the expected behavior is for each agent to stay to the right,
so an oncoming pedestrian will be to the left when passing.
We found a significant increase (p < .001, z = 3.421) in the
percent of time SA-MPEPC passes an oncoming pedestrian
on their left.

This improvement in passing behavior comes from the

(a) MPEPC (b) SA-MPEPC

Figure 6: 2D histograms encoding the number of robot-
pedestrian interactions at each combination of normalized
lateral positions of the pedestrian (x) and robot (y). SA-
MPEPC has a dominant peak in the lower right corner, cor-
responding to both the pedestrian and robot being on their
own right sides of the corridor. In contrast, MPEPC has a
much weaker peak in the bottom right corner and more inter-
actions with a left-side robot and right-side pedestrian (top
right) or a left-side robot and left-side pedestrian (top left).

preference to stay to the right. Often, the robot is already
moving to the right, so an oncoming pedestrian, also mov-
ing on their right, can simply pass the robot with no devia-
tion from the trajectory. In more complex situations, where
the robot is not moving along the right side of the corridor,
perhaps due to clutter or other pedestrians, the learned norm
encodes a preference to move right. As a result, the gradient
in the navigation function will bias the robot to move right
to avoid the collision.

7 Discussion

In order to function well in our society, robots must be able
to learn and follow human social norms. We have shown
how a robotic wheelchair, Vulcan, designed for safe motion
in environments with many human pedestrians, can learn hu-
man social norms for travel in the shared environment. The
hybrid topological-metrical spatial representation we use is
critical for abstracting behavior in the environment, provid-
ing two major benefits: (a) tractable representation of ob-
served behavior, and (b) generalization of learned norms to
previously unseen environments.

Vulcan’s baseline motion planner (MPEPC (Park 2016))
can guarantee safe motion, but it optimizes safe progress to-
ward its target without a bias toward any lateral position. In
our experiments, Vulcan observes a bias in lateral positions
of moving pedestrians, and interprets this bias as a social
norm that it should follow. This social norm is embodied in
an extended motion planner (SA-MPEPC). Vulcan follows
this social norm, both as it moves along path segments and
also as it performs right or left turns at decision points in the
environment (Fig. 3).

We also observed that when Vulcan behaves according
to this social norm (using SA-MPEPC), human pedestri-
ans that Vulcan encounters follow the social norm more
strongly than they did in the original condition, illustrating
the mutually-reinforcing nature of social norms.
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