Transparency and Explanation in Deep Reinforcement Learning Neural Networks

Rahul Iyer
Robotics Institute
Carnegie Mellon University

Michael Lewis

School of Computing and Information
University of Pittsburgh

Abstract

Autonomous Al systems will be entering human society in
the near future to provide services and work alongside hu-
mans. For those systems to be accepted and trusted, the users
should be able to understand the reasoning process of the
system, i.e. the system should be transparent. System trans-
parency enables humans to form coherent explanations of the
systems decisions and actions. Transparency is important not
only for user trust, but also for software debugging and cer-
tification. In recent years, Deep Neural Networks have made
great advances in multiple application areas. However, deep
neural networks are opaque. In this paper, we report on work
in transparency in Deep Reinforcement Learning Networks
(DRLN). Such networks have been extremely successful in
accurately learning action control in image input domains,
such as Atari games. In this paper, we propose a novel and
general method that (a) incorporates explicit object recogni-
tion processing into deep reinforcement learning models, (b)
forms the basis for the development of object saliency maps,
to provide visualization of internal states of DRLNSs, thus en-
abling the formation of explanations and (c) can be incorpo-
rated in any existing deep reinforcement learning framework.
We present computational results and human experiments to
evaluate our approach.

Introduction

Autonomous agents have been increasingly used in multi-
ple applications ranging from search and rescue, civilian and
military emergency response, home and work environment
services, transportation and many others. As these agents
become more sophisticated and independent via learning
and interaction, it is critical for their human counterparts
to understand their behaviors, the reasoning process behind
those behaviors, and the expected outcomes to properly cal-
ibrate their trust in the systems and make appropriate de-
cisions (de Visser et al. 2014) (Lee and See 2004) (Mer-
cado et al. 2016). Indeed, past studies have shown that hu-
mans sometimes question the accuracy and effectiveness of
agents actions due to the human’s difficulties understanding
the state/status of the agent (Bitan and Meyer 2007)(Seppelt
and Lee 2007)(Stanton, Young, and Walker 2007) and the
rationales behind the behaviors (Linegang et al. 2006). Al-
though there are multiple definitions of agent transparency

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Yuezhang Li
Google Inc.

Huao Li
School of Computing and Information
University of Pittsburgh

Ramitha Sundar and Katia Sycara
Robotics Institute
Carnegie Mellon University

(Chen et al. 2014) (Lyons and Havig 2014), we use, with
minor variation, the definition proposed by Chen and col-
leagues (Chen et al. 2014): “Agent transparency is the qual-
ity of an interface (e.g. visual, linguistic) pertaining to its
abilities to afford an operators comprehension about an in-
telligent agent’s intent, performance, future plans, and rea-
soning process”. The goal of transparency is not to relay all
of a systems capabilities, behaviors, and decision-making ra-
tionale to the human. Ideally, agents should relay clear and
efficient information as succinctly as possible to the human,
thus enabling her to maintain a proper understanding of the
system in its tasking environment.

Developing methods to enable autonomous agents to
be transparent is very challenging, because ease of trans-
parency seems to be inversely proportional to agent sophis-
tication. Recently Deep Neural Networks (DNNs) have al-
lowed agents to reach almost human performance in mul-
tiple tasks such as computer vision, natural language pro-
cessing and control tasks. More specifically, recent work
has found outstanding performances of deep reinforcement
learning (DRL) models on Atari 2600 games, by using only
raw pixels to make decisions. (Mnih et al. 2015). However,
DNNs are extremely opaque i.e., they cannot produce hu-
man understandable accounts of their reasoning processes
or explanations. Therefore, there is a clear need for deep RL
agents to dynamically and automatically offer explanations
that users can understand and act upon.

In this paper, we propose and evaluate a method by which
DRLNs automatically produce visualization of their state
and behavior that is intelligible to humans. In contrast to
the vast DRL literature where objects and their salience are
not explicitly considered (Sutton 1996) (Mnih et al. 2015)
(Mnih et al. 2016), we develop techniques to explicitly in-
corporate object features and object valence, i.e. positive or
negative influence in an agent’s decisions, into DRLN ar-
chitectures. In particular, we propose a new Object-sensitive
Deep Reinforcement Learning (O-DRL) model that can ex-
ploit object characteristics such as presence and positions of
game objects in the learning phase. This new model can be
incorporated with most existing deep RL frameworks such
as DQN (Mnih et al. 2015) and A3C (Mnih et al. 2016).

Most crucially, the method also produces object saliency
maps that use the valence of the objects to reason about
the agent’s rewards and decisions and automatically produce

object-level visual explanations why an action was taken.
While a high proportion of RL applications such as Atari
2600 games contain objects with different gain or penalty
(for example, enemy ships and fuel vessels are objects with
different valence in the game “Riverraid”), the previous al-
gorithms are designed under the assumption that various
game objects are treated equally. therefore, those algorithms
cannot take advantage of object valence and its influence on
the reward function.

Our contributions are threefold: First, we propose a
method to incorporate object characteristics into the learning
process of deep reinforcement learning. Second, we propose
a method to produce object-level visual explanation for deep
RL models. Third, we evaluate the approach both via com-
putational and human experiments.

Related Work

Reinforcement learning is defined as learning a policy for
an agent to interact with an unknown environment. The
rich representation given by deep neural network improves
the efficiency of reinforcement learning (RL). A variety of
works thus investigate the application of deep learning on
RL and propose a concept of deep reinforcement learning.
Mnih et al. (Mnih et al. 2015) proposed a deep Q-network
(DQN) that combines Q-learning with a flexible deep neu-
ral network. DQN can reach human-level performance on
many of Atari 2600 games but suffers substantial overesti-
mation in some games (van Hasselt, Guez, and Silver 2015).
Thus, a Double DQN (DDQN) was proposed by Hasselt et
al. (van Hasselt, Guez, and Silver 2015) to reduce overes-
timation by decoupling the target max operation into action
selection and action evaluation. Wang et al. proposed a duel-
ing network architecture (DuelingDQN) (Wang, de Freitas,
and Lanctot 2015) that decouples the state-action values into
state values and action values to yield better approximation
of the state value.

There is recent work on explaining the prediction result of
black-box models for computer vision. Erhan et al. (Erhan et
al. 2009) visualized deep models by finding an input image
which maximizes the neuron activity of interest by carry-
ing out an optimization using gradient ascent in the image
space. It was later employed by (Le 2013) to visualize the
class models, captured by a deep unsupervised auto-encoder.
Zeiler et al. (Zeiler and Fergus 2014) proposed the Decon-
volutional Network (DeconvNet) architecture, which aims
to approximately reconstruct the input of each layer from
its output, to find evidence of predicting a class. Recently,
Simonyan et al. (Simonyan, Vedaldi, and Zisserman 2013)
proposed pixel saliency maps to deduce the spatial support
of a particular class in a given image based on the derivative
of class score with respect to the input image. Ribeiro et al.
(Ribeiro, Singh, and Guestrin 2016) proposed a method to
explain the prediction of any classifier by local exploration,
and apply it on image and text classification. All these mod-
els work at pixel level, and cannot explain the prediction at
object level.

Object recognition aims to find and identify objects in an
image or video sequence, where objects may vary in size and
scale when translated or rotated. The excellent performance

of convolutional neural networks over the past several years
has dramatically improved object recognition (Krizhevsky,
Sutskever, and Hinton 2012),(Sermanet et al. 2013), (Hinton
et al. 2012), (Szegedy et al. 2015), (Song et al. 2014).

Reinforcement Learning

Reinforcement learning solves the sequential decision mak-
ing problems by learning from experience. Consider the
standard RL setting where an agent interacts with an envi-
ronment € over discrete time steps. In the time step ¢, the
agent receives a state s; € S and selects an action a; € A
according to its policy m, where S and A denote the sets of
all possible states and actions respectively. After the action,
the agent observes a scalar reward r; and receives the next
state Sy 1.

In the Atari games, the input current state is an image.
The agent chooses an action from the possible control ac-
tions (Press the up/down/left/right/A/B button). After that,
the agent receives a reward (how much the score goes up or
down) and the next image input.

The goal of the agent is to choose actions to maximize
its rewards over time. In other words, the action selection
implicitly considers the future rewards. The discounted re-
turn is defined as R, = > -, 7" 'r; where y € [0,1] is a
discount factor that trades-off the importance of recent and
future rewards.

For a stochastic policy 7, the value of an action a; and the
value of the states are defined as follows.

Q™ (st,a¢) = E[R¢|s = st,a = ay, 7] (D
Vﬂ—(st) = EaNTr(st)[Qﬂ—(Stv at)})

The action value function (a.k.a., Q-function) can be com-
puted recursively with dynamic programming:

Qﬂ(st’ at) = E5t+l [Tt =+ ’yEat+1NW(St+1)[Qﬂ-(8t+1’ at-H)]]
(3)

Policy based methods directly model the policy (Williams
1992), while in value-based RL methods, the action value
(ak.a., Q-value) is commonly estimated by a function ap-
proximator, such as a deep neural network (Mnih et al.
2015).

The actor-critic (Sutton and Barto 1998) architecture is a
combination of value-based and policy-based methods. Our
object recognition method can be incorporated with any of
these RL methods.

Object-sensitive Deep Reinforcement Learning

We use template matching to recognize objects in images
because it is easy to implement and provides good perfor-
mance. Template matching is a computer vision technique
used to locate a template image in a larger image. It re-
quires two components — source image and template image
(Brunelli 2009). The source image is the one that needs to
be matched to the template image. The template image is
the patch image. To identify the matching area, a patch is
used to slide through the source image (up to down, left to

84x84@(4+k)

84x84@32 42x42@32

Max Pooling
2x2 kernel

Convolution
5x5 kernel

42x42@32

Convolution
5x5 kernel

Q-values
@512 foreach
action

21x21@32 10x10@64 10x10@64 10x10@64,

/

e e

Max Pooling Convolution Max Pooling Convolution Fully Output
2x2 kernel 4x4 kernel 2x2 kernel 3x3 kernel ConnectedLayer

Figure 1: A neural network architecture for Object-sensitive Deep Q-network (O-DQN). A screen image is the input which is
passed to the object recognizer to extract object channels. Then, the combined channels are given as input to the convolutional

neural network to predict Q-values.

right) and calculate the current source image patch similar-
ity to the template image. We used OpenCV (Itseez 2015) to
implement the template matching.

We used object channels to incorporate features of objects
in the input images. Object channels are defined as follows:
if we have detected k objects in an image, we add k addi-
tional channels to the original RGB channels of the original
image. Each channel represents a single type of object. In
each channel, we assign 1 in the corresponding position for
the pixels belonging to the detected object, and 0 otherwise.
In this way, we successfully encode locations and difference
in the types of various objects in an image.

The network architecture is shown in Figure 1. Here, we
get the screen image as input and pass it to the object rec-
ognizer to extract object channels. We also use a convolu-
tional neural network (CNN) to extract image features in the
same way as in DQN. The object channels as well as the
original image are given to the network to predict Q-values
for each action. This method can be adapted to different ex-
isting deep reinforcement learning algorithms, to result for
example in Object-sensitive Double Q-Network, and Object-
sensitive Advanced Actor-critic model.

We use the same network architecture for these DRL and
O-DRL methods, shown in Figure 1. We use four convolu-
tional layers with 3 max pooling layers followed by 2 fully-
connected layers. The first convolutional layer has 32 5 * 5
filters with stride 1, followed by a 2 * 2 max pooling layer.
The second convolutional layer has 32 55 filters with stride
1, followed by a 2 x 2 max pooling layer. The third convolu-
tional layer has 64 4 x 4 filters with stride 1, followed by a
2 % 2 max pooling layer. The fourth and final convolutional
layer has 64 3+ 3 filters with stride 1. The first full-connected
layer has 512 hidden units. The final layer is the output layer,
which differs in different models.

We use 4 history frames to represent current state as de-
scribed in (Mnih et al. 2015). For object representation, we
use the last frame to extract object channels. In order to make
objects distinct from one another, we use the normalized re-
wards corresponding to the maximum reward received in the

game, instead of the clip strategy used in (Mnih et al. 2015).
This is because the reward clip strategy assigns +1 for all
rewards that are larger than 1 and -1 for all rewards that are
smaller then -1, which makes different objects hard to dis-
tinguish.

We implemented deep-Q networks (DQN)(Mnih et al.
2015), double deep-Q networks (DDQN) (van Hasselt,
Guez, and Silver 2015), dueling deep-Q networks (Duel-
ing)(Wang, de Freitas, and Lanctot 2015) and advanced
actor-critic model (A3C)(Mnih et al. 2016) as baselines.
We also implemented their object-sensitive counterparts by
incorporating object channels. In our experiments, all the
object-sensitive DRL methods perform better than their non-
object counterparts (Li, Sycara, and Iyer 2017).

DQN Transparency via Object Saliency Maps

We present a method to provide transparency for Deep Neu-
ral Networks, called object saliency maps. Object saliency
maps provide visualization of the decisions made by RL
agents. These visualization aim to be intelligible to humans.
To generate intelligible visualizations that would help with
explanations of DQN agent behaviors, we need to deter-
mine which pixels the model pays attention to when mak-
ing a decision (Simonyan, Vedaldi, and Zisserman 2013).
For each state s, the model takes an action ¢ where a =
argmazq c AQ(s,a’). We would like to rank the pixels of s
based on their influence on Q(s, a). Since the Q-values are
approximated by a deep neural networks, the Q-value func-
tion Q(s,a) is a highly non-linear function of s. However,
given a state sg, we can approximate (s, a) with a linear
function in the neighborhood of sy by computing the first-
order Taylor expansion:

Q(s,a) ~wls +b, 4)
where w is the derivative of Q(s, a) with respect to the state
image s at the point (state) sy and form the pixel saliency
map:

9Q(s, a)

Y=g ®

(a) Screenshot of the State

(b) Pixel Saliency Map

(c) Object Saliency Map

Figure 2: An example of original state, corresponding pixel saliency map and object saliency map produced by a double DQN

agent in the game “Ms. Pacman.”

Another interpretation of computing pixel saliency is that
the value of the derivative indicates which pixels need to be
changed the least to affect the Q-value.

However, pixel-level representations are not intelligi-
ble to people. Figure 2(a) shows a screenshot from the
game Ms.Pacman. Figure 2(b) is the corresponding pixel
saliency map produced by an agent trained with the Dou-
ble DQN(DDQN) model. The agent chooses to go right in
this situation. Although we can get some intuition of which
area the deep RL agent is looking at to make the decision,
it is not clear what objects the agent is looking at and why
it chooses to move right. On the other hand, Figure 2 makes
more intelligible the objects that the DQN is paying atten-
tion to.

By visual inspection, we see that object saliency provides
better transparency than pixel saliency. To understand the
influence of objects on agent decisions, we need to rank the
objects in a state s based on their effect on Q(s,a). How-
ever, calculating the derivative of Q(s, a) with respect to the
objects is nontrivial. Therefore, we use a simpler method.
For each object O found in s, we mask the object with back-
ground color to form a new state s, as if the object does not
appear in this new state. We calculate the Q-values for both
states, and the difference of the Q-values actually represents
the influence of this object on Q(s, a).

w = Q(87 a) - Q(807a) (6)

In this way we can derive that positive w actually rep-
resents a “good” object which means the the object gives
positive future reward to the agent. Negative w represents
“bad” object since after we remove the object, the Q-value
gets improved.

Figure 2(c) shows an example of the object saliency map.
While the pixel saliency map only shows a vague region of
the model’s attention, the object saliency map clearly shows
which objects the model is paying attention to and the rela-
tive importance (via shading) of each object.

The computational cost of computing an object saliency
map is proportional to the number of detected objects. If
there are k objects, the computational cost is 2k forward

pass calculation of the model, which is affordable since k
is generally not too large, and one forward pass is fast in
model testing time.

Human Experiments

In order to test whether the object saliency map visualization
can help humans understand the learned behavior of Pac-
man, we performed an initial set of experiments. The goals
of the experiment were to: 1) test whether object saliency
maps contain enough information to allow humans to match
them with corresponding game scenarios, 2) test whether
participants could use object saliency maps to generate rea-
sonable explanations of the behavior of the Pacman and
3) test whether object saliency maps allow participants to
correctly predict the Pacman’s next action. This requires a
deeper causal understanding of what may influence the Pac-
man in his decisions.

Each experiment consists of two tasks:

Matching Task In each trial, the participants are shown
twice, a 5-second video clip of Pacman gameplay generated
by O-DDQN. During the video clip, Pacman decides and
takes particular actions. The last decision made produces
the crucial movement of the clip (eg Pacman moves right),
with the clip ending just after the crucial movement. Three
frames from the object saliency map are then shown to par-
ticipants (see Fig. 3(b)). The center frame is the frame where
the Pacman makes the crucial decision and the other two
are frames from before and after that moment. In the task,
participants are asked to judge whether the saliency maps
accurately represent the video they just saw. In the match-
ing cases, the saliency maps indeed were generated from the
video clip the participant saw. In the non-matching cases, the
three saliency map frames were generated from a different
video clip. In distractor/non-matching clips, the Pacman oc-
cupies the same area of map as in the target video, but makes
different movements. This is done to avoid the case where
the participants solely focus on the location of the Pacman
as a matching criterion, disregarding the movements and en-
vironmental factors.

(a) Screen-shots

Ll ‘a .

(b) Object Saliency Maps

Figure 3: An example of the stimulus materials participants saw in the test 9 of the prediction task. 75% participants in the
screen-shot group thought Pacman would go left to eat the cherry at the left side. 60% participants in the object saliency maps
group predicted the Pacman would keep going down for the dark elements (the pellets) below.

Following the match decision, if the participants’ answer
is "match”, they are asked to give an explanation for the Pac-
man’s movements based on the video and saliency maps. In
other words, participants are asked to provide a teleological
explanation explaining why Pacman acted as she did. For ex-
ample, "Pacman moved up to eat more energy pellets while
avoiding the ghost coming from below.”

The matching task consisted of 2 training trials and 20 test
trials, half (10 trials) presenting matched video and saliency
maps, the other half presenting non-matched pairs in a sin-
gle randomly ordered sequence. Dependent variables were
correctness of matches and agreement between explanations
and saliency maps.

Prediction Task In each trial, the participants are shown
a video clip not used in the matching task. Each clip ends
at the point where the Pacman must choose a crucial move.
The participants are divided equally into two experimental
conditions. In the screen-shot condition, after the video clip,
participants see 3 actual screen-shots from the video end-
ing before the crucial move is taken. In the object saliency
map condition, the participants see three object saliency map
frames (corresponding to the screen-shot frames) after view-
ing the video clip (see Fig. 3). At the decision point in the
third frame Pacman’s choices (up, down, left, right) may
be limited by barriers indicated on the response forms. Par-
ticipants are asked to predict Pacman’s movement among
the feasible directions based on the three previous frames
(screenshots or saliency maps), and then give an explana-
tion for their prediction which includes their judgment as to
which elements of the game influenced the Pacman’s deci-
sion (indicating these elements by circling them on a hard-
copy of the screenshot or saliency map), and explain why
Pacman made that decision.

The prediction task consisted of 2 training trials and 10
test trials. Each participant was assigned to either the screen-
shot group or the saliency map group. Dependent variables
include whether predictions were correct, and whether ex-
planations were consistent with the saliency maps.

Method 40 participants were recruited from the Univer-
sity of Pittsburgh. The video clips and frames were presented
through a projector, and participants were asked to write
their answers down on answer sheets. The answer sheet in-
cluded frames of each trial for participants to mark the ele-

ments they believe influenced Pacman’s decision and space
to explain that decision.

Results The average matching accuracy of the partici-
pants was 61.0% (SD = 14.0%). A learning effect was
found with participants having higher accuracy (65.5%) in
the last half of the trials than the first half (56.5%) (¢(39) =
3.10,p = 0.04). Comparing hit and false alarm rates, partic-
ipants reported more “matches” when the video and image
stimulus matched (£(18) = 2.91,p < 0.001). If the 40 par-
ticipants are treated as a binary classifier and the percentage
of their answers as an output score, a receiver operating char-
acteristic (ROC) curve (Fawcett 2006) can be plotted for
true positive rates versus false positive rates across a range
of threshold parameters (as Fig. 4 shows). The area under the
curve is 0.81 which indicates a good classification between
matching and non-matching situations. In summary, human
participants were able to link the object saliency maps with
the game scenarios.

For the more difficult prediction task, there was no sig-
nificant difference in accuracy between the object saliency
map group (58.0% 4 12.8%) and the control group(56.5% +
10.4%). However, the main effect of trials (F'(9,342) =
11.18, p < 0.001) and the interaction between trials and
groups (F'(9,342) = 2.72, p = 0.005) were both highly
significant suggesting that characteristics of the trials had
a strong influence on performance. Thus we conducted a
simple effect analysis to examine differences among the 10
test scenarios (see Fig. 5). Results show that the screen-shot
group has high predictive accuracy in test 2 (p = 0.027),
while the object saliency map group has higher accuracy in
tests 3 and 9 (p = 0.007,p = 0.025). Those three trials can
help provide a deeper insight into the mechanism of how ob-
ject saliency maps could help humans understand Pacman’s
learned behavior.

Discussion The result of our human experiments show
that object saliency maps can be linked to corresponding
game scenarios by participants, a prerequisite if they are to
provide explanations of behavior. Object saliency maps and
screen shots proved equally helpful to humans in predicting
DRLN’s behaviors.

For the prediction task the group viewing screen shots
had access to rich contextual information including obsta-
cles in the environment and the identity of objects making

1 mscReEn

1 —I—o—oia 0.9
=09 1

= 0.8 |
g 0.8 0.7
207 ¢
o6 z 06
g o5 § 0.5
% 0.4 <04
gos3 03
502 0.2
o1
0 S
1 2 3 4 5 6 7 8 9 10

B SALIENCY

0 01 02 03 04 05 06 07 08 09 1 0

False Positive Rate (1 - Sensitivity)
Test Cases

Figure 4: ROC curve of the matching task, AUC =0.81. Figure 5: The mean accuracy of participants in each test cases
of the prediction task. Error bars are one Standard Error from
Means.

the association between the frames they viewed and rules of
the game explicit. The object saliency participants, by con-
trast, lacked clear identity of objects or environmental fea-
tures but viewed the valence of objects affecting the decision
(via the object shading). That these complementary repre-
sentations led to equal performance suggest they are both
of value and deserve closer attention. The large differences
in performance found between trials, however, suggests that
examining the conditions under which each provides more
accurate prediction could lead to better understanding and
use of object saliency maps in explanation.

Test 9 provides a good example (see Fig. 3). The Pacman
goes down and faces a dilemma whether to turn left or keep
going down. 60% participants who saw the object saliency
maps predicted Pacman would continue going down, and
objects circled and explanations focused on the dark ele-
ments or dots below. In contrast, 75% participants in the
screen-shot group predicted Pacman would go left, and all
except one of their explanations mentioned the cherry at the
left side. In the scenarios generated by O-DDQN, the Pac-
man did go down for the dots. Test 9 is a typical case in
which there are multiple influencing elements and it is hard
for humans to predict Pacman’s behavior based on informa-
tion from the game screen and their own knowledge of the
rules and ideas about gameplay. However, displaying object
saliency enables us to directly identify those objects affect-
ing the program’s decision. In other situations when the Pac-
man may make what we judge to be suboptimal choices (e.g.
the Pacman chose a wrong direction and was eaten by a
ghost), an object saliency map could be crucial to helping
users and system developers understand some of the ratio-
nale behind such behaviors.

In watching a program such as O-DDQN play Pacman it
is tempting to interpret its actions in human terms of seeking
cookies and avoiding ghosts. This in fact is what we asked
participants in the screen-shot group to do. O-DDQN, how-
ever, has no knowledge of game rules and has simply learned
to maximize its reward. In many cases due to the reward
structure of the game its decisions may happen to match our
own and we can attribute teleological causes, however, in

others the strangeness of its decision making is revealed and
we must turn to tools such as the saliency map for help. Such
tools offer a better chance to improve the model when the
agent executes unexpected or abnormal behaviors (e.g. de-
bugging and testing of the DRLN). Alternately, the agent’s
policies could be examined to identify why they may have
been learned and what benefits they might confer leading to
a deeper understanding of the domain and improved deci-
sion making.

Performance of the object saliency group on the predic-
tion task may have suffered due to insufficient training and
limitations inherent in group testing. We believe that a more
comprehensible tutorial and longer training section might
lead to better understanding of the object saliency map and
improved performance in both tasks. As Fig. 5 shows, the
performance pattern of participants in the prediction task de-
pends crucially on situations. If those readily predicted from
screen shots could be discriminated from those not amenable
to naive explanation, saliency maps could be tested and used
under more favorable conditions.

Conclusion and Future Work

In this paper, we developed techniques for integrating object
recognition into Deep Reinforcement Learning models. Ad-
ditionally we developed a technique for computing object-
based saliencey maps. We evaluated the utility of this tech-
nique for visualization of agent decisions in the Ms Pacman
game and via human experiments. One interesting future di-
rection is how to use object saliency maps as a basis to auto-
matically produce human intelligible explanations in natural
language, such as “I chose to go right to avoid the ghost”.
Another direction is to test the ability of object features in
a more realistic situation. For example, how to incorporate
object features to improve the performance of self-driving
cars.

Acknowledgement

This research was supported by awards W91 1NF-13-1-0416
and FA9550-15-1-0442.

References

Bitan, Y., and Meyer, J. 2007. Self-initiated and respondent
actions in a simulated control task. Ergonomics 50(5):763—
788.

Brunelli, R. 2009. Template Matching Techniques in Com-
puter Vision: Theory and Practice. Wiley Publishing.

Chen, J. Y.; Procci, K.; Boyce, M.; Wright, J.; Garcia,
A.; and Barnes, M. 2014. Situation awareness-based
agent transparency. Technical report, ARMY RESEARCH
LAB ABERDEEN PROVING GROUND MD HUMAN
RESEARCH AND ENGINEERING DIRECTORATE.

de Visser, E. J.; Cohen, M.; Freedy, A.; and Parasuraman,
R. 2014. A design methodology for trust cue calibration
in cognitive agents. In International Conference on Virtual,
Augmented and Mixed Reality, 251-262. Springer.

Erhan, D.; Bengio, Y.; Courville, A.; and Vincent, P. 2009.
Visualizing higher-layer features of a deep network. Univer-
sity of Montreal 1341:3.

Fawcett, T. 2006. An introduction to roc analysis. Pattern
Recogn. Lett. 27(8):861-874.

Hinton, G. E.; Srivastava, N.; Krizhevsky, A.; Sutskever, 1.;
and Salakhutdinov, R. R. 2012. Improving neural networks
by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580.

Itseez. 2015. Open source computer vision library. https:
//github.com/itseez/opencv.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-

works. In Advances in neural information processing sys-
tems, 1097-1105.

Le, Q. V. 2013. Building high-level features using large
scale unsupervised learning. In Acoustics, Speech and Sig-
nal Processing (ICASSP), 2013 IEEE International Confer-
ence on, 8595-8598. IEEE.

Lee,J. D., and See, K. A. 2004. Trust in automation: Design-
ing for appropriate reliance. Human factors 46(1):50-80.

Li, Y.; Sycara, K.; and Iyer, R. 2017. Object sensitive deep
reinforcement learning. In 3rd Global Conference on Artifi-
cial Intelligence. EPiC Series in Computing.

Linegang, M. P.; Stoner, H. A.; Patterson, M. J.; Seppelt,
B. D.; Hoffman, J. D.; Crittendon, Z. B.; and Lee, J. D. 2006.
Human-automation collaboration in dynamic mission plan-
ning: A challenge requiring an ecological approach. In Pro-
ceedings of the Human Factors and Ergonomics Society An-
nual Meeting, volume 50, 2482-2486. SAGE Publications
Sage CA: Los Angeles, CA.

Lyons, J. B., and Havig, P. R. 2014. Transparency in
a human-machine context: approaches for fostering shared
awareness/intent. In International Conference on Virtual,
Augmented and Mixed Reality, 181-190. Springer.

Mercado, J. E.; Rupp, M. A.; Chen, J. Y.; Barnes, M. J.; Bar-
ber, D.; and Procci, K. 2016. Intelligent agent transparency

in human—agent teaming for multi-uxv management. Hu-
man factors 58(3):401-415.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 518(7540):529-533.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap,
T. P; Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016.
Asynchronous methods for deep reinforcement learning.
CoRR abs/1602.01783.

Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. Why
should i trust you?: Explaining the predictions of any clas-
sifier. In Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, 1135-1144. ACM.

Seppelt, B. D., and Lee, J. D. 2007. Making adaptive cruise
control (acc) limits visible. International journal of human-
computer studies 65(3):192-205.

Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.;
and LeCun, Y. 2013. Overfeat: Integrated recognition, lo-
calization and detection using convolutional networks. arXiv
preprint arXiv:1312.6229.

Simonyan, K.; Vedaldi, A.; and Zisserman, A. 2013.
Deep inside convolutional networks: Visualising image
classification models and saliency maps. arXiv preprint
arXiv:1312.6034.

Song, H. O.; Girshick, R. B.; Jegelka, S.; Mairal, J.; Har-
chaoui, Z.; Darrell, T.; et al. 2014. On learning to localize
objects with minimal supervision. In ICML, 1611-1619.

Stanton, N. A.; Young, M. S.; and Walker, G. H. 2007. The
psychology of driving automation: a discussion with pro-
fessor don norman. International journal of vehicle design
45(3):289-306.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction, volume 1. MIT press Cambridge.

Sutton, R. S. 1996. Generalization in reinforcement learn-
ing: Successful examples using sparse coarse coding. In
Advances in neural information processing systems, 1038—
1044.

Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich,
A. 2015. Going deeper with convolutions. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 1-9.

van Hasselt, H.; Guez, A.; and Silver, D. 2015. Deep
reinforcement learning with double g-learning. CoRR
abs/1509.06461.

Wang, Z.; de Freitas, N.; and Lanctot, M. 2015. Dueling net-
work architectures for deep reinforcement learning. arXiv
preprint arXiv:1511.06581.

Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine learning 8(3-4):229-256.

Zeiler, M. D., and Fergus, R. 2014. Visualizing and under-
standing convolutional networks. In European conference
on computer vision, 818—-833. Springer.

