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Abstract

Machine learning is a tool for building models that accurately
represent input training data. When undesired biases concern-
ing demographic groups are in the training data, well-trained
models will reflect those biases. We present a framework for
mitigating such biases by including a variable for the group
of interest and simultaneously learning a predictor and an ad-
versary. The input to the network X, here text or census data,
produces a prediction Y, such as an analogy completion or in-
come bracket, while the adversary tries to model a protected
variable Z, here gender or zip code.
The objective is to maximize the predictors ability to predict
Y while minimizing the adversary’s ability to predict Z. Ap-
plied to analogy completion, this method results in accurate
predictions that exhibit less evidence of stereotyping Z com-
pared to non-adversarial approaches. When applied to a clas-
sification task using the UCI Adult (Census) Dataset, it results
in a predictive model that does not lose much accuracy while
achieving very close to equality of odds (Hardt, et al., 2016).
The method is flexible and applicable to multiple definitions
of fairness as well as a wide range of gradient-based learning
models, including both regression and classification tasks.

1 Introduction
Work on training machine learning systems that output fair
decisions has defined several useful measurements for fair-
ness: Demographic Parity, Equality of Odds, and Equality of
Opportunity. These can be imposed as constraints or incor-
porated into a loss function in order to mitigate dispropor-
tional outcomes in the system’s output predictions regarding
a protected demographic, such as sex.

In this paper, we examine these fairness measures in the
context of adversarial debiasing. We consider supervised
deep learning tasks in which the task is to predict an output
variable Y given an input variable X , while remaining un-
biased with respect to some variable Z. We refer to Z as the
protected variable. For these learning systems, the predictor
Ŷ = f(X) can be constructed as (input, output, protected)
tuples (X,Y, Z). The predictor f(X) is usually given ac-
cess to the protected variable Z, though this is not strictly
necessary.
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We speak to the concept of mitigating bias using the
known term debiasing1, following definitions provided by
Hardt et al. (2016) and refined by Beutel et al. (2017).

Definition 1. DEMOGRAPHIC PARITY. A predictor Ŷ sat-
isfies demographic parity if Ŷ and Z are independent.

This means that P (Ŷ = ŷ) is equal for all values of the
protected variable Z: P (Ŷ = ŷ) = P (Ŷ = ŷ|Z = z).

Definition 2. EQUALITY OF ODDS. A predictor Ŷ satisfies
equality of odds if Ŷ and Z are conditionally independent
given Y .

This means that, for all possible values of the true label
Y , P (Ŷ = ŷ) is the same for all values of the protected
variable: P (Ŷ = ŷ|Y = y) = P (Ŷ = ŷ|Z = z, Y = y)

Definition 3. EQUALITY OF OPPORTUNITY. If the output
variable Y is discrete, a predictor Ŷ satisfies equality of op-
portunity with respect to a class y if Ŷ and Z are indepen-
dent conditioned on Y = y.

This means that, for a particular value of the true label
Y , P (Ŷ = ŷ) is the same for all values of the protected
variable: P (Ŷ = ŷ|Y = y) = P (Ŷ = ŷ|Z = z, Y = y)

We present an adversarial technique for achieving
whichever one of these definitions is desired.2 A predictor
f will be trained to model Y as accurately as possible while
still satisfying one of the above equality constraints. Demo-
graphic parity will be achieved by introducing an adversary
g which will attempt to predict a value for Z from Ŷ . The
gradient of g will then be incorporated into the weight up-
date rule of f so as to reduce the amount of information
about Z transmitted through Ŷ . Equality of odds will be
achieved by also giving g access to the true label Y , thereby
limiting any information about Z which Ŷ contains beyond
the information already contained in Y .

1Note that “debias” may not be quite the right word, as all bias
is not removed.

2Achieving equality of odds and demographic parity are gener-
ally incongruent goals: for example, the optimal equality of odds
predictor is the perfect predictor (Ŷ = Y ), but this predictor does
not satisfy demographic parity unless Y ⊥ Z. See also Kleinberg,
Mullainathan, and Raghavan (2016) for incongruency between cal-
ibration and equalized odds.



We consider the case where the protected variable is a dis-
crete feature present in the training set as well as the case in
which the protected variable must be inferred from latent
semantics (in particular, gender from word embeddings). In
order to accomplish the latter we adapt a technique presented
by Bolukbasi et al. (2016) to define a subspace capturing the
semantics of the protected variable, and then train a model
to perform a word analogies task accurately, while unbiased
on this protected variable. A consequence of this technique
is that the network learns “debiased” embeddings, embed-
dings that have the semantics of the protected variable re-
moved. These embeddings are still able to perform the anal-
ogy task well, but are better at avoiding problematic exam-
ples such as those shown in Bolukbasi et al. (2016).

Results on the UCI Adult Dataset demonstrate the tech-
nique we introduce allows us to train a model that achieves
equality of odds to within 1% on both protected groups.

We also compare with the related previous work of Beutel
et al. (2017), and find we are able to better equalize the dif-
ferences between the two groups, measured by both False
Positive Rate and False Negative Rate (1 - True Positive
Rate), although note that the previous work performs better
overall for False Negative Rate.

We provide some discussion on caveats pertaining to this
approach, difficulties in training these models that are shared
by many adversarial approaches, as well as some discussion
on difficulties that the fairness constraints introduce.

2 Related Work
There has been significant work done in the area of debias-
ing various specific types of data or predictor.

Debiasing word embeddings: Bolukbasi et al. (2016) de-
vises a method to remove gender bias from word embed-
dings. The method relies on a lot of human input; namely, it
needs a large “training set” of gender-specific words.

Simple models: Lum and Johndrow (2016) demonstrate
that the straightforward technique of removing the protected
variable from the training data fails to yield a debiased
model (since other variables in the training set can be highly
correlated with the protected variable), and devise a method
for learning fair predictive models, where fair is defined
as obeying DEMOGRAPHIC PARITY, and in cases when the
learning model is simple (e.g. linear regression). Hardt et al.
(2016) discuss the shortcomings of focusing solely on DE-
MOGRAPHIC PARITY, present alternate definitions of fair-
ness, and devise a method for deriving an unbiased predic-
tor from a biased one, in cases when both the output variable
and the protected variable are discrete.

Adversarial training: Goodfellow et al. (2014) pioneered
the technique of hooking together multiple networks with
competing goals in order to force the first network to
“deceive” the second network, and apply this method to
the problem of creating real-life-like pictures. Beutel et
al. (2017) apply an adversarial training method to achieve
EQUALITY OF OPPORTUNITY in cases when the output vari-
able is discrete. They also discuss the ability of the adver-
sary to be powerful enough to enforce a fairness constraint
even when it has access to a very small training sample. The

Figure 1: The architecture of the adversarial network.

work does not quite extend to EQUALITY OF ODDS, which
enforces that the accuracy is equally high in all demograph-
ics.

Our work is at the intersection of these: we devise an ad-
versarial method that accounts for all three of Hardt’s defi-
nitions of fairness, discrete and continuous output and pro-
tected variables, and can be applied both to classical super-
vised tasks and to debiasing unsupervised models such as
word embeddings.

3 Adversarial Debiasing
We begin with a model, which we will call the predictor,
trained to accomplish the task of predicting Y given X . As
in Figure 1, we assume that the model is trained by attempt-
ing to modify weights W to minimize some loss LP (ŷ, y),
using a gradient-based method such as stochastic gradient
descent.

We attach another model to the output layer of this net-
work that attempts to predict a value for Z. We call this the
adversary. This is the part of the network corresponding to
the discriminator in a typical GAN (Goodfellow et al. 2014).
We will suppose the adversary has loss term LA(ẑ, z) and
weights U . We vary the inputs of the adversary depending
on the definition of fairness we wish to achieve.

• For DEMOGRAPHIC PARITY, the adversary gets the pre-
dicted label Ŷ . Intuitively, this allows the adversary to try
to predict the protected variable using nothing but the pre-
dicted label. The goal of the predictor is to prevent the
adversary from doing this.

• For EQUALITY OF ODDS, the adversary gets Ŷ and the
true label Y .

• For EQUALITY OF OPPORTUNITY on a given class y, we
can restrict the training set of the adversary to training
examples where Y = y. 3

In order for gradients to propagate correctly, Ŷ above
refers to the output layer of the network, not to the dis-
crete prediction; for example, for a classification problem,
Ŷ could refer to the output of the softmax layer.

We update U to minimize LA at each time step during
training, according to the gradient∇ULA. Instead of updat-
ing W according to ∇WLP , we modify it according to the
expression:

∇WLP − proj∇WLA
∇WLP − α∇WLA (1)

where α is a tuneable hyperparameter that, as will be dis-
cussed in Section 6, can vary at each time step, and we define



Figure 2: Diagram illustrating the gradients in Eqn. 1 and the
relevance of the projection term projhg. Without the projec-
tion term, in the pictured scenario, the predictor would move
in the direction labelled g+h in the diagram, which actually
helps the adversary. With the projection term, the predictor
will never move in a direction that helps the adversary.

projvx = 0 if v = 0.
The middle term proj∇WLA

∇WLP prevents the predic-
tor from moving in a direction that helps the adversary de-
crease its loss, while the last term α∇WLA ensures that the
predictor will attempt to increase the adversary’s loss. Both
terms are useful in the training process: without the projec-
tion term, it is possible for the predictor to end up helping
the adversary (see Fig. 2); without the last term, the predictor
will also never hurt the adversary, and, due to the stochas-
tic nature of many gradient-based methods, will likely end
up helping the adversary anyway. The end result is that,
when the algorithm finishes training, the desired definition
of equality should be satisfied.

Notice that our definitions and method make no assump-
tions about the nature of the output and protected variables:
in particular, they work with both regression and classifica-
tion models, as well as with both discrete and continuous
protected variables.

4 Properties
We note several properties of the above method that we be-
lieve distinguish it from past work.

1. Generality: The above method can be used to en-
force DEMOGRAPHIC PARITY, EQUALITY OF ODDS, or
EQUALITY OF OPPORTUNITY as described in Hardt et
al. (2016). Further, it applies without modification to the
cases when the output variable and/or protected variable
are continuous instead of discrete.

2. Model-agnostic: The adversarial approach described can
be applied regardless of how simple or complex the pre-
dictor’s model is, as long as the model is trained using a
gradient-based method, as many modern learning models
are. Further, as we will discuss later, at least in some situ-
ations, we suggest that the adversary does not need to be
nearly as complex as the predictor—a simple adversary
can be used with a complex predictor.

3. Optimality: Under certain conditions, we show that if the
predictor converges, it must converge to a model that sat-
isfies the desired fairness definition. Since the predictor
also attempts to decrease the prediction loss LP , the pre-
dictor should still perform well on the target task.
3This last technique of restricting the training set is discussed

at length by Beutel et al. (2017), so we only mention it here.

5 Theoretical Guarantees
Proposition 1. Let the predictor, the adversary, and their
weights W , U be defined according to Section 3 Let
LA(W,U) be the adversary’s loss, convex in U , concave
in W ,4 and continuously differentiable everywhere. Suppose
that:

1. When the predictor’s weights are W0, the predictor gives
the same output Ŷ regardless of input X . (For example,
when W0 = 0).

2. There are some weights U0 that minimize LA when the
weights for Ŷ have no effect on the output: For all W ,
LA(W,U0) = minU LA(W0, U).

3. Predictor and adversary converge to W ∗ and U∗ respec-
tively.

Then, LA(W
∗, U∗) = LA(W

∗, U0). That is, the adversary
gains no advantage from using the weights for Ŷ .

Proof. Since the adversary converges, LA(W
∗, U∗) ≤

LA(W
∗, U0): otherwise, since LA is convex in U , the ad-

versary’s weights would move toward U0. In other words,
the adversary’s minimum is the point at which the adversary
gains an advantage from using Ŷ . Similarly, since the pre-
dictor converges, LA(W

∗, U∗) ≥ LA(W0, U
∗): Otherwise,

the predictor would be able to increase the adversary’s loss
by moving toward W0, and the projection term and nega-
tive weight on∇WLA in Eqn. 1 would push the predictor to
move towards 0. Then:

LA(W
∗, U0) ≥ LA(W

∗, U∗) (as stated above)
≥ LA(W0, U

∗) (as stated above)
≥ LA(W0, U0) (by definition of U0)
= LA(W

∗, U0) (by definition of U0)

so we must have LA(W
∗, U∗) = LA(W

∗, U0).

Note that, in this proof, the adversary can be operating
in a few different ways, as long as it is given Ŷ as one of
its inputs; for example, for demographic parity, it could be
given only Ŷ ; for equality of odds, it can be given both Ŷ
and Y .

We will show in the next propositions that the adversary
gaining no advantage from information about Ŷ is exactly
the condition needed to guarantee that desired definitions of
equality are satisfied.

Proposition 2. Let the training data be comprised of triples
(X,Y, Z) drawn according to some distribution D. Sup-
pose:

1. The protected variable Z is discrete.
2. The adversary is trained for DEMOGRAPHIC PARITY; i.e.

the adversary is given only the prediction ŷ.

4We understand that these assumptions are not satisfied in most
use cases involving neural networks; however, as with most the-
oretical analyses of machine learning models (see, for example,
Goodfellow et al. (2014) or Kingma and Ba (2014); the former
makes even stronger assumptions), assumptions of concavity are
necessary for any proofs to work



3. The adversary is strong enough that, at convergence, it
has learned a randomized function A that minimizes the
cross-entropy loss E(x,y,z)∼D[− logP (A(ŷ) = z)]; i.e.
the adversary in fact achieves the optimal accuracy with
which you can predict Z from Ŷ

4. The predictor completely fools the adversary; in particu-
lar, the adversary achieves loss H(Z), the entropy of Z.

Then the predictor satisfies DEMOGRAPHIC PARITY; i.e.,
Ŷ ⊥ Z.

Proof. Notice that if the adversary draws A(ŷ) according to
the distribution Z|Ŷ = ŷ, then its loss is exactly the condi-
tional entropy

H(Z|Ŷ ) = E[− logP (Z = z|Ŷ = ŷ)]

= E[− logP (A(ŷ) = z|Ŷ = ŷ)]

where the expectation is taken over (x, y, z) ∼ D. Now
suppose for contradiction that Ŷ is dependent on Z. Then
H(Z|Ŷ ) < H(Z), so the adversary can achieve loss less
than H(Z), contradicting assumption (4).

Proposition 3. If assumptions (2)-(4) above are replaced
with the analogous equality of odds assumptions; in partic-
ular, that the adversary is given ŷ and y, and the adversary
cannot achieve loss better than H(Z|Y ) then the predictor
will satisfy EQUALITY OF ODDS; i.e., (Ŷ ⊥ Z)|Y

Proof. Analogous to the above. Notice that if the adversary
draws A(ŷ, y) ∼ (Z|Ŷ = ŷ, Y = y), then its loss is exactly
the conditional entropy

H(Z|Ŷ , Y ) = E[− logP (Z = z|Ŷ = ŷ, Y = y)]

= E[− logP (A(ŷ) = z|Ŷ = ŷ, Y = y)]

where the expectation is again taken over (x, y, z) ∼ D.
But if Ŷ is conditionally dependent on Z given Y , then
H(Z|Ŷ , Y ) < H(Z|Y ), so the adversary can achieve loss
less than H(Z|Y ).

Note that Propositions 2 and 3 work analogously in the
case of continuous Y and Z, with the probability mass
function P replaced with the probability density function
p, and the discrete entropy H replaced by the differential
entropy h(X) = E[− log p(x)], since the relevant property
(h(A) = h(A|B) iff A ⊥ B) holds for differential entropy
as well. They also work analogously when the adversary A
is restricted to a limited set of predictors.

For example, an adversary using least-squares regression
trying to enforce equality of odds can be thought of as one
that outputs A(ŷ, y) ∼ N(µ(ŷ, y), σ2) where µ(ŷ, y) is
the output of the regressor, and σ2 > 0 is a fixed con-
stant. Note now that the differential entropy h(Z|Ŷ , Y ) =
E[− log p(z|ŷ, y)] is nothing more than the expected log-
likelihood, and so the function µ that minimizes this quantity
is the optimal least-squares regressor. Thus, for example, if
we restrict µ to be a linear function of (ŷ, y), and the other

conditions of Proposition 3 hold, then an analogous argu-
ment to the above propositions shows that Ŷ has no linear
relationship with Z after conditioning on Y .

These claims together illustrate that a sufficiently power-
ful adversary trained on a sufficiently large training set can
indeed accurately enforce the demographic parity or equal-
ity of odds constraints on the predictor, if the adversary
and predictor converge. Guaranteed convergence is harder
to achieve, both in theory and practice. In the practical sce-
narios below we discuss methods to encourage the training
algorithm to converge, as well as reasonable choices of the
adversary model that are both powerful and easy to train.

6 Experiments
All models were trained using the Adam optimizer (Kingma
and Ba 2014) for both predictor and adversary.

Toy Scenario
We generate a training sample (x(i), y(i), z(i))

n

i=1 (where z
is the protected variable) as follows. For each i, let r ∈ 0, 1
be picked uniformly at random, and let v ∼ N(ri, 1).
Let u,w ∼ N(vi, 1) vary independently. Then x(i) =
(r, u), y(i) = [w > 0], z(i) = r. (where [ ] denotes an in-
dicator function). Intuitively, the variable that we are trying
to predict, y, depends directly on v and r. We are given as
inputs the protected variable r, and a noisy measurement of
v. The end goal would be to train a model that predicts y
while being unbiased on r, effectively removing the direct
signal for r from the learned model.

If one trains generically a logistic regression model to pre-
dict y given x, it outputs something like y = σ(0.7u+0.7r),
which is a reasonable model, but heavily incorporates the
protected variable r. To debias, We now train a model that
achieves DEMOGRAPHIC PARITY. Note that removing the
variable r from the training data is insuffucient for debias-
ing: the model will still learn to use u to predict y, and u
is correlated with r. If we use the described technique and
add in another logistic model that tries to predict z given
y, we find that the predictor model outputs something like
y = σ(0.6u − 0.6r + 0.6). Notice that not only is r not in-
cluded with a positive weight anymore, the model actually
learns to use a negative weight on r in order to balance out
the effect of r on u Notice that u − r ∼ N(0, 2); i.e., it is
not dependent on r, so we have successfully trained a model
to predict y independently of r.

Word Embeddings
We train a model to perform the analogy task (i.e., fill in the
blank: man : woman :: he : ?).

It is known that word embeddings reflect or amplify prob-
lematic biases from the data they are trained on, for exam-
ple, gender (Bolukbasi et al. 2016). We seek to train a model
that can still solve analogies well, but is less prone to these
gender biases. We first calculate a “gender direction” g us-
ing a method based on Bolukbasi et al. (2016) which gives a
method for defining the protected variable. We will use this
technique in the context of defining gender for word em-
beddings, but, as discussed in Bolukbasi et al. (2016), the



biased debiased
neighbor similarity neighbor similarity
nurse 1.0121 nurse 0.7056
nanny 0.9035 obstetrician 0.6861
fiancée 0.8700 pediatrician 0.6447
maid 0.8674 dentist 0.6367
fiancé 0.8617 surgeon 0.6303
mother 0.8612 physician 0.6254
fiance 0.8611 cardiologist 0.6088
dentist 0.8569 pharmacist 0.6081
woman 0.8564 hospital 0.5969

Table 1: Completions for he : she :: doctor : ?

technique generalizes to other protected variables and other
forms of embeddings. Following Bolukbasi et al. (2016), we
pick 10 (male, female) word pairs, and define the and de-
fine the bias subspace to be the space spanned by the top k
principal components of the differences, where k is a tune-
able parameter. In our experiments, we find that k = 1 gives
reasonable results, so we did not experiment further.

We use embeddings trained from Wikipedia to gener-
ate input data from the Google analogy data set (Mikolov
et al. 2013). For each analogy in the dataset, we let x =
(x1, x2, x3) ∈ R3d comprise the word vectors for the first
three words, y be the word vector of the fourth word, and
z be projgy. It is worth noting that these word vectors com-
puted from the original embeddings are never updated nor
is there projection onto the bias subspace and therefore
the original word embeddings are never modified. What is
learned is a tranform from a biased embedding space to a
debiased embedding space.

As a model, we use the following: let v = x2 + x3 − x1,
and output ŷ = v − wwT v, where our model parameter
is w. Intuitively, v is the “generic” analogy vector as is
commonly5 used for the analogy task. If left to its own de-
vices (i.e., if not told to be unbiased on anything), the model
should either learn w = 0 or else learn w as a useless vector.
By contrast, if we add the adversarial discriminator network
(here, simply ẑ = wT

2 ŷ), we expect the debiased prediction
model to learn that w should be something close to g (or
−g), so that the discriminator cannot predict z = projgy.
Indeed, both of these expectations hold: Without debiasing,
the trained vector w is approximately a unit vector nearly
perpendicular to g : wT g = 0.08, ||w|| = 0.82; with debias-
ing, w is approximately a unit vector pointing in a direction
highly correlated with g : wT g = 0.55, ||w|| = 0.96. Even
after debiasing, gendered analogies such as man : woman
:: he : she are still preserved; however, many biased
analogies go away, suggesting that the adversarial training
process was indeed successful. An example of the kinds of
changes in analogy completions observed after debiasing are
illustrated in Table 16.

5see e.g. Mikolov et al. (2013)
6The presence of nurse in the second position may seem wor-

rying, but it should be noted that in this particular set of word em-
beddings, nurse is the nearest neighbor to doctor; no amount of

Feature Type Description
age Cont Age of the individual
capital gain Cont Capital gains recorded
capital loss Cont Capital losses recorded
education num Cont Highest education level (numerical

form)
fnlwgt Cont # of people census takers believe that

observation represents
hours per week Cont Hours worked per week
education Cat Highest level of education achieved
income Cat Whether individual makes > $50K an-

nually
marital status Cat Marital status
native country Cat Country of origin
occupation Cat Occupation
race Cat White, Asian-Pac-Islander, Amer-

Indian-Eskimo, Other, Black
relationship Cat Wife, Own-child, Husband, Not-in-

family, Other-relative, Unmarried
sex Cat Female, Male
workclass Cat Employer type

Table 2: Features in the UCI dataset per individual. Features
are either continuous (Cont) or Categorical (Cat). Categori-
cal features are converted to sparse tensors for the model.

UCI Adult Dataset
To better align with the work in Beutel et al. (2017), we at-
tempt to enforce EQUALITY OF ODDS on a model for the
task of predicting the income of a person – in particular,
predicting whether the income is > $50k – given various
attributes about the person, as made available in the UCI
Adult dataset (Asuncion and Newman 2007).

Details on the features that the dataset provides are
available in Table 2. We use both categorical and con-
tinuous columns as given, with exception to the fnlwgt
feature, which we discard. We convert the remain-
ing columns into tensors where the categorical columns
are sparse tensors, age is bucketized at boundaries
[18, 25, 30, 35, 40, 45, 50, 55, 60, 65], and the rest of the con-
tinuous columns are real-valued.

As discussed before, to enforce equality of odds, we give
the adversary access to the true label y. The adversary will
learn the relationship between y and z regardless of what the
predictor does; further, if the predictor’s predictions ŷ give
more information about z than is already contained in y, the
adversary will be able to improve its loss. Thus, the predic-
tor, in attempting to fool the adversary, will move toward
making sure that ŷ does not give such additional informa-
tion; in other words, toward equality of odds.

Our protected variable z is a binary-valued variable for
the two sexes annotated, MALE and FEMALE. Our predic-
tor model is straightforward logistic regression: ŷ = σ(w1 ·
x + b), where σ is the sigmoid function. Our adversary
model takes the form of the following logistic-regression-
like model:

s = σ
(
(1 + |c|)σ−1(ŷ)

)
ẑ = w2 · [s, sy, s(1− y)] + b

debiasing will change this.



where c and b are learnable scalars, w2 is a learnable vec-
tor, and σ−1 is the inverse of the sigmoid function (logit
function) σ−1(t) = log t − log(1− t). Intuitively, we want
our adversary to be able to learn functions of the form
ẑ = f(y, [ŷ > 0.5]) (i.e. dependent only on the boolean pre-
dicted value [ŷ > 0.5]), and thus enforce equality of odds.
Here, the adversary would learn such a function by making
c extremely large. We add 1 to |c| to make sure the adver-
sary never tries to ignore ŷ by setting c = 0, which could
be a difficult local minimum for the adversary to escape7.
This adversary is both general enough to be used whenever
y and z are both discrete8, and powerful enough that devi-
ation from true equality of odds should cause the adversary
to be able to decrease its loss.

Without tweaking, this algorithm ran into issues with lo-
cal minima, and the resulting models were often closer to
demographic parity than equality of odds. We implemented
a technique that helped: by increasing the hyperparameter α
in Eqn. 1 over time, the predictor had a much easier time
learning to deceive the adversary and therefore more strictly
enforce equality of odds. We set α =

√
t (where t is the step

counter), and to avoid divergence we set the predictor’s step
size to η ∝ 1/t, so that αη → 0 as is preferred for stochastic
gradient-based methods such as Adam.

We train the model twice, once with debiasing and once
without, and present side-by-side confusion matrices on the
test set for income bracket with respect to the protected vari-
able values Male and Female, shown in Table 3, and we
present the false positive rates (FPR) and false negative rates
(FNR) in Table 4. Note that false negative rate is equal to 1−
true positive rate, so the trade-offs are directly comparable
to the (x, y) values of an ROC curve.

Without Debiasing With Debiasing
Female Pred 0 Pred 1 Female Pred 0 Pred 1
True 0 4711 120 True 0 4518 313
True 1 265 325 True 1 263 327
Male Pred 0 Pred 1 Male Pred 0 Pred 1

True 0 6907 697 True 0 7071 533
True 1 1194 2062 True 1 1416 1840

Table 3: Confusion matrices on the UCI Adult dataset, with
and without equality of odds enforcement.

We notice that debiasing has only a small effect on over-
all accuracy (86.0% vs 84.5%), and that the debiased model
indeed (nearly) obeys equality of odds: as shown in Table
4, with debiasing, the FNR and FPR values are approxi-
mately equal across sex subgroups: 0.0647 ≈ 0.0701 and
0.4458 ≈ 0.4349. Although the values don’t exactly reach
equality, neither difference is statistically significant: a two-
proportion two-tail large sample z-test yields p-values 0.25
for y = 0 and 0.62 for y = 1.

7This value added to |c| is an adjustable hyperparameter; we
found reasonable results using the value 1 and thus not feel the
need to experiment further.

8If y and z are multi-class, then the sigmoid becomes a softmax,
but everything else remains the same.

Female Male
Without With Without With

Beutel et al. (2017) FPR 0.1875 0.0308 0.1200 0.1778
FNR 0.0651 0.0822 0.1828 0.1520

Current work FPR 0.0248 0.0647 0.0917 0.0701
FNR 0.4492 0.4458 0.3667 0.4349

Table 4: False Positive Rate (FPR) and False Negative Rate
(FNR) for income bracket predictions for the two sex sub-
groups, with and without adversarial debiasing.

7 Conclusion
In this work, we demonstrate a general and powerful method
for training unbiased machine learning models. We state and
prove theoretical guarantees for our method under reason-
able assumptions, demonstrating in theory that the method
can enforce the constraints that we claim, across multiple
definitions of fairness, regardless of the complexity of the
predictor’s model, or the nature (discrete or continuous) of
the predicted and protected variables in question. We ap-
ply the method in practice to two very different scenarios: a
standard supervised learning task, and the task of debiasing
word embeddings while still maintaining ability to perform
a certain task (analogies). We demonstrate in both cases the
ability to train a model that is demonstrably less biased than
the original one, and yet still performs extremely well on the
task at hand. We discuss difficulties in getting these mod-
els to converge. We propose, in the common case of discrete
output and protected variables, a simple adversary that is us-
able regardless of the complexity of the underlying model.

8 Future Work
This process yields many questions that require further work
to answer.

1. The debiased word embeddings we have trained are still
useful in analogies. Are they still useful in other, more
complex tasks?

2. The adversarial training method is hard to get right and
often touchy, in that getting the hyperparameters wrong
results in quick divergence of the algorithm. What ways
can be used to stabilize training and ensure convergence,
and thus ensure that the theoretical guarantees presented
here can work?

3. In general, do more complex predictors require more
complex adversaries? It would appear that in the case of y
and z discrete, a very simple adversary suffices no matter
how complex the predictor. Does this also apply to con-
tinuous cases, or would a simple adversary be too easy to
deceive for a complex predictor?
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