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Abstract

In this paper we propose a framework for conceptualizing
and demonstrating a good-faith effort when developing au-
tonomous systems. The framework addresses two fundamen-
tal problems facing autonomous systems: (1) the disconnect
between human-mental models and machine-based sensors
and algorithms; and (2) unpredictability in complex systems.
We address these problems using a mix of education — ex-
plicitly delineating the mapping between human concepts and
their machine equivalents in a structured manner — and data
sampling with expected ranges as a testing mechanism.

Introduction
In this paper we argue that the difficulty in demonstrating
reasonable good-faith effort to ensure correct behavior when
developing autonomous systems is a human problem, not
a problem with the underlying technology. In particular, it
is the inherent impreciseness in human language and men-
tal models — and a mis-match between these and the un-
derlying technology — that is at the core of the challenge
in developing reliable autonomous systems. We believe that
we cannot even begin to define what constitutes an “ethical”
system without first addressing this problem.

We propose a semi-formal language framework — based
on demonstrating reasonable effort through an educational
model — that begins to address this problem from the hu-
man side. Specifically, our framework aims to reduce the
impreciseness in human language by simultaneously mak-
ing human-level specifications more structured (and precise)
and by directly tying them to the underlying statistics, sen-
sors and algorithms (the “education” component).

Mapping a complex autonomous system to a semi-formal
language understandable by humans all in one go would be
daunting. For this reason our framework starts from the bot-
tom (simple nouns and verbs) and works up to more complex
statements. Our levels are chosen to make it easier to map
human terms to technical descriptions at the same level.

We assume here that the developer of the autonomous sys-
tem is ethical and wants to to design a system that is safe,
reliable, and does what it is supposed to do, to the best of
their abilities. We look at ethics through the lens of the legal
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concept of fault (Smart, Grimm, and Hartzog 2017), draw-
ing on the law’s notion of reasonable effort to establish pro-
tocols and guidelines for ensuring techniques are not used
blindly. Our goal is to allow developers to explicitly demon-
strate their efforts — what their assumptions are, efforts they
went to to ensure safety, and their expected behavior of the
system.

Our discussion will be agnostic to the specific
AI/Machine Learning algorithms and sensor technol-
ogy used. We largely treat these elements as black boxes
with inputs and outputs that can be measured, sampled,
and statistically characterized. We note, however, that
algorithms that have transparency and explainability would
make it much easier to establish the mapping from human
terms to technology, and might be particularly well-suited
for novice developers.

Related work
There is a rapidly growing interest in explainable AI
(XAI) (Langley et al. 2017; Biran and Cotton 2017) fueled,
in part, by the recent successes to techniques like deep neu-
ral networks and other “black box” AI techniques. XAI aims
to make AI techniques that are currently opaque to humans
more transparent, but providing human-understandable ex-
planations of the decisions that the AI system made. While
this work is very much in the same spirit as the work pre-
sented in this paper, it is complementary to it. Explainable
AI systems will make the work described in this paper easier,
but it will not supplant it. We still need to do the work of edu-
cating the humans involved in the design and deployment of
autonomous systems about their capabilities and responses,
and help them make sure nothing is lost in translation from
sloppy human descriptions to precise computer software.

The work in this paper draws from the idea of formal
specification in software engineering (Sommerville 2015,
chapter 27), which attempts to remove the ambiguity in soft-
ware specifications with a similar intent to our attempts to
remove it from autonomous systems. Although there has
been a considerable amount of work in using formal lan-
guages in robotics (Winkler et al. 2011; Simmons and Apfel-
baum 1998; Klavins 2003; Coste-Maniere and Turro 1997;
Risler and von Stryk 2008, for example), the vast majority of
this has been to ensure correct behavior. Our goal is differ-
ent: we want to provide evidence that the humans involved



in the design, implementation, and deployment of the system
did their very best to get things right.1

We also draw inspiration from the field of software test-
ing (Ammann and Offutt 2016; Crispin and Gregory 2009)
and, in particular, from the idea of unit tests (Osherove
2013), integration tests, and regression tests. The main idea
that we take from this prior work is that it is not enough to
write software (to control an autonomous system); we must
also write formal tests to verify that the software does what
we expect it to (and causes the behaviors that we expect).
Not only do we need to explicitly specify the tests that we
will perform, we must also explicitly declare the input data
(sensor readings and environments, simulated or real) that
the software will be tested on. Unit tests validate the behav-
ior of single components in the system (such as a face de-
tector). Integration tests validate the behavior of the whole
system (which is a collection of the individual components).
Regression tests ensure that the overall system behavior does
not change when we make changes to the individual com-
ponents, or how they are composed. The data sets define the
operating conditions under which we have tested the system,
and under which we expect it to be used when it is deployed.

Finally, we draw lessons from legal regimes that attribute
fault and, ultimately, financial liability, to actors that unrea-
sonably fail to protect against forseeable risks of harm when
designing complext technologies (Vladeck 2014). Tort law
provides a private cause of action against those who negli-
gently cause harm to another. In assessing culpability, courts
look to forseeable risk and how burdensome it is to mitigate
or protect against those risks (American Law Institute 2010).
If the risk is greater than the burden of precation against
those risks, then failure to take those precautions will be
seen as negligent. In other words, courts demand reasonable
behavior, a corollary to ”good faith efforts,” from people
who build products and release them into the world. This
means anticipating reasonable misuse, misunderstandings,
and harm likely caused by other people while using a prod-
uct (Hogan 1994). One way to act reasonably is to remedy
information asymmetries of other relevant parties through
education. Education efforts play an important role in law
and policy and could also form a bedrock ethic and rule for
parties that create, deploy, and use autonomous systems.

Framework
In this section we broadly outline a framework for shared
communication and education for autonomous systems. We
first define the stakeholders involved in a deployed au-
tonomous system, and what their roles are. Next, we define
a language framework for communication between these
stakeholders, using the language framework to establish
what types of information need to be communicated be-
tween the different stakeholders. We frame Good Faith Ef-
fort as the development of “unit tests” for each of the ele-
ments in the language framework. Finally, we break failures
in autonomous systems into four types that can be explained
within this overall framework.

1Of course, we also care about correct behavior in our robot
systems. However that is not the focus of this paper.

Stakeholders
Our stakeholder descriptions are meant to capture the three
different roles that arise when developing an end-to-end ap-
plication. These are broad categories defined by goals and
skill sets.

1. End-users: These are the people using a specific applica-
tion developed based on the technology. They are experts
in their domain area, but are not expected to have any
deep understanding of the underlying technology. They
may be required to undergo training to use the technol-
ogy effectively depending on the difficulty of using the
tool/technology. Their goal is to accomplish their domain-
specific task.

2. Procures or merchants: These are people who put to-
gether the application-specific use of the underlying, low-
level technology. They understand the end-use case and
underlying low-level technology well enough to write the
application, but are not necessarily domain experts or
low-level technology experts. Their role is to bridge the
gap between end-user needs and abilities and the avail-
able low-level technologies that can be used to meet those
needs. Their goal is to define end-user needs than turn that
into design specs that can be realized using existing tech-
nology.

3. Developers: These are the people developing the low-
level technology components (the actual algorithms and
sensors). They focus on improving the algorithms and
sensors, but are (largely) agnostic as to the use they will
be put to. They might use one (or more) specific applica-
tion domains as test cases to drive development, but are
not experts on application-specific needs. Their goal is to
improve both the efficiency of their algorithms or sensors
and their applicability.

Obviously, these are not always clearly-defined cate-
gories, and an individual (or group) may straddle more than
one category, but for our purposes the point is to emphasize
the different goals for each category. In our framework end-
users work with procurers, and procurers work with devel-
opers, but end-users do not directly interact with developers.
We focus here on the second case — procurers working with
developers — because techniques for defining the end-user
to procurer relationship have been well-studied (Sedlmair,
Meyer, and Munzner 2012).

Language framework
The point of our language framework is to make explicit
the gap between human representations and machine ones.
We are not proposing a formal predicate language here, but
a framework that lies between that and open-ended human
speech. The goal is to educate the developer on the specific
needs of the procurer.

We first define the elements of the framework and then the
details of what this means for the stakeholder relationship.
The procurers initially specify their goals to the developers
with the following four elements:

1. Syntax (nouns, verbs, modifiers): Nouns are the list of
objects or items in the real world that are necessary for the



stakeholder to accomplish their task. These are items that
must be recognized or manipulated (or both). Verbs are
actions that operate on the nouns, again, either actions that
must be recognized and/or actions that need to be taken.
Modifiers are attributes of nouns or verbs that matter to
the stakeholder.

2. Semantics (recognition, action): These are explicit ex-
pressions of relationships — built out of the nouns,
verbs, and modifiers — that the stakeholder re-
quires. They can consist of recognition relationships
(e.g., is noun + modifier-value + verb hap-
pening?) and action relationships (e.g., action-verb
apply-to-noun).

3. Assumptions (modifiers, nouns, likelihoods of seman-
tic events): This is a bracketing of the expected values for
the above elements. For modifiers, this is expected values
the modifiers take on (e.g., hot maps to 35+ degrees Cel-
sius). For nouns, this can be a list of exemplars for that
noun or brackets (e.g., boxes are expected to be of a cer-
tain size and made of cardboard). For semantic events this
is an estimate of how likely a recognition event is, and
preferences for action relationships.

4. Scenarios: These are end-to-end exemplars of the ex-
pected behavior of the system (use-cases in traditional
human-computer interaction). They include a description
of the environment (what nouns are where and with what
modifiers/verbs) and a sequence of recognition and action
events.

Armed with this semi-formal problem description, the de-
velopers are responsible for educating the procurers on how
the underlying sensors and algorithms will be mapped to el-
ements one and two. Specifically, for each noun and recog-
nition verb, the developer must clearly disclose what sensors
are being used — and how — to recognize that noun/activity.
Similarly, the developers must specify how action verbs are
mapped to actuators and sensors.

Good-faith effort as unit tests
At this point, good-faith effort can be demonstrated by de-
veloping data and tests for each of the syntactic terms given
by the procurer (we call these unit tests2. Note that each term
now has both a human-level and an algorithm/sensor level
description; this helps with defining tests that cover both as-
pects.

Building on the unit tests, the procurer then provides
specific semantic-level tests, with variation drawn from the
given assumptions. For these tests, the developer can sep-
arate “syntax” correctness from semantic, focusing on the
logic.

The assumptions and scenarios, together, document the
expected use of the overall system. Provided the procurer
has adequately captured the end-user’s needs and expected
use, this serves as documentation of the conditions the sys-
tem were tested under.

2This is an abuse of the formal definition of unit test, but the
intent is similar.

Failure cases
Using the above framework, we can break autonomous sys-
tem failures into four categories. We include here failures at
both the end-user to procurer interface and the procurer to
developer.

1. Syntactic failures occur when there is a mismatch be-
tween the precision of artificial sensors and the robustness
of human senses. A syntactic failure indicates the need for
an additional “unit test”.

2. Semantic failures occur when the human-articulated
goals and intentions for autonomous systems are not
translated correctly into logic/algorithms. These can arise
either because the procurer failed to include that seman-
tic relationship in the original specification, or because
of an algorithmic/logic failure. This indicates that either
the specification needs to be updated, there is an inconsis-
tency in the specification, or the inference/logic algorithm
is incorrect.

3. Testing failures occur when a necessary assumption or
scenario test is simply missing from the test set. This is
largely the developer’s fault, but could also be the fault
of the procurer for not fully articulating all of the desired
use cases. Testing failures can also occur when the neces-
sary syntactic or semantic tests are not conducted appro-
priately or are otherwise invalid.

4. Warning failures occur when users are not appropriately
made aware of avoidable problems caused by the unpre-
dictability of systems (the developer to the procurer or the
procurer to the end-user). Warning failures are, in many
ways, the inverse of semantic failures. Warning failures
flow from developer to procurer to end-user, while seman-
tic failures flow from procurer to developer.

Example
In this section we walk through an example of a security
guard robot patrolling a factory. The robot patrols the in-
side of the factory and raises an alert if it finds a person (or
persons) in the factory. The exception to this is the security
guard (who has a pass).

The first step is for the procurer to define the syntax of
the system (left hand of Table 1). For each element, the de-
veloper must specify how this will be implemented. At this
point, the developer and procurer can work together to refine
the definitions and assumptions. Take equipment: The pro-
curer would be responsible for listing types of equipment
that are expected to be found in the warehouse (boxes, ta-
bles/benches, fork lifts). The developer would be respon-
sible for listing known failures for lasers (which are used
to identify equipment): E.g., Tall, skinny objects and bright
daylight. The procurer would then either modify their as-
sumptions list (all tall skinny objects must be in containers,
all tables must have drapes/backing, no full-sunlight lit ar-
eas) or the developer might adjust their equipment detection,
for example, adding a vertical laser scanner.

The developer can then develop unit tests, including tests
designed to capture potential failure tests (eg, flagging if the
overall detected light levels indicate the laser will fail). Note



Noun/verb/mod Implementation
Person Line of sight infra red camera

Person-shaped blob
Equipment Knee-height laser-scan detects obstacle

Not wall
Space Defined by blue-print

Doors, windows marked
Security Pass RFID tag

Detectable within ten feet
Patrol Visit all physically accessible places

Rate of n sq meters covered per hour
Minimal back-tracking

Confront Move within 3 feet of detected person
Issue request for pass

Raise alarm Send wireless signal
Detect Laser/camera registers new object

Persistent (seen from multiple locations)
Verify pass Known RFID tag read by scanner
Person pose Vertical, prone, sitting
Lighting Dim, lights on

Table 1: Nouns and verbs for a robot patrol application.

Recognition Frequency/likelihood
Detect Equipment Change Always/low likelihood
Detect Person Always/medium likelihood
Action Condition
Patrol Space Always
Confront Person After detect person
Verify Pass After Confront Person
Raise Alarm After Confront Person

and Verify Pass failed

Table 2: Semantic statements and their likelihoods.

that the unit tests do not have to be all or nothing; for exam-
ple, a people detector may only need to have a false positive
and a false negative rate within given bound.

The next step is for the procurer to specify the semantics
(Table 2. Each of these statements require a simple unit test
to verify that the appropriate sequence of behaviors is cor-
rectly implemented, as well as a more exhaustive set of tests
to determine if actions happen that shouldn’t.

At this point a failure in the semantics becomes apparent,
because the robot will continuously detect and confront a
person in the space. The procurer would have to add another
verb — track — to address this problem. A similar seman-
tic issue arises with two detected people; this would require
an addition to the semantics and an additional modifier for
number of people.

The next step is to add in assumptions, such as (modi-
fier) that a person might be trying to crouch down to hide,
or sitting in a chair. This assumption might be addressed by
adding in more unit tests. Other assumptions might include:
The security guard only patrols once an hour and always
turns the lights on. These might induce additional semantic-
level statements and corresponding tests, such as explicitly
defining what the robot should do if the security guard pa-

trols more often or doesn’t turn the light on. These assump-
tions might also contain environmental expectations, such
as that the robot can view every part of the space. Combined
with a bound on equipment size, this can lead to a negative
test, where the robot raises an alarm if there is a sufficiently
large portion of the space it can’t view.

The final step in this framework is example end-to-end
scenarios (described in the language framework above),
complete with sample environments and expected variations
on modifiers. For example, a patrol use-case might be in-
formally described as: Define what it means for a robot to
successfully patrol a space, taking into account the ware-
house space, size, and equipment occupancy. The sample
environments make this concrete by defining: Bounds on the
size of the overall space, number of corners allowed in the
walls, ranges for number and type of equipment and their
spacing, how often equipment is added/deleted/moved, and
minimum/maximum spacing between equipment. The mea-
sure of success is defined by: The robot must be able to visit
every part of the space within a specified amount of time and
detect new equipment with a given probability, and trigger
no more than one false alarm for every n patrols.

The procurer might use the same environmental definition
as above for a detect-intruder use-case. In this case, the pro-
curer would define the use-case as: Generate an alarm when
a single intruder (person) enters the space, attempts to steal
an object, then leaves. The procurer must specify bounds on
where the person enters and leaves the building, how fast
they travel within the space, and where in the space the item
is located. Success is defined as an 80% detection rate per-
haps scaled by overall warehouse size.

By using the given environmental variations — and the
false positive/false negative rates of the unit tests — the
developer can largely run these tests in simulation. While
simulation is not ideal, testing with uniform coverage of ex-
pected conditions is better than nothing.

Test and training data sets
In traditional manufacturing and design (particularly where
safety is an issue) the industry develops standards — often
based on measurable physical properties — for managing
liability and risk. To some extent these standards are a codi-
fied history of what not to do as well as a list of good prac-
tices. Cribs and car seats are an extreme example of this —
the standards are updated very frequently, usually with edge
cases that just haven’t arisen in the past.

For physical systems it is relatively easy to develop mea-
surable standards (eg, the tensile strength of rebar should be
x in a wall of height y). These standards rely on the pre-
dictability of intermediate values in those physical systems
— this makes it easier to simply bracket desirable and un-
desirable values. Unfortunately, autonomous systems lack
this predictability; giving it example a and c, with b lying
somewhere in between, usually doesn’t guarantee that the
response to b also lies somewhere in between the responses
for a and c.

We argue here that test and training data sets built in the
proposed manner could serve as a standards mechanism for
autonomous systems — provided they are documented and



shared openly, and updated with new cases as they arise. La-
beling the test and training sets with the language framework
in Section would identify the intent of the tests. As failure
edge cases are discovered they would be added to the test
set. Ensuring that the components (particularly at the syn-
tactic level) passed the tests would document a good-faith
effort at meeting those standards.

Bias
Bias in training and test sets is notoriously difficult to detect
— and algorithms will learn them if they are present in the
data set. One approach to dealing with biases in, for exam-
ple, hiring or evaluation practices, is to make a list of de-
sirable attributes/skills, describe how they are required for
the job, then explicitly map evaluation criteria to the at-
tributes/skills (in Science and Engineering 2012). Our ap-
proach is similar to this: Write down the task, how the sensor
will be used to do the task, and demonstrate how the sensors
will be used to accomplish the task. In parallel, define the
data set attributes that will be used to verify the system is
performing as expected.

Discussion
Nothing we have outlined here is necessarily deep or surpris-
ing — it is essentially lifting best-practices from software
engineering and adapting it to a situation where ground truth
must be modeled with statistical variation and sampling (the
unit tests).

What is novel is the insistence that every human state-
ment be paired with its corresponding computational/sensor
equivalent, at the appropriate level (nouns/verbs to unit tests,
assumptions to mid-level tests, environment/use-cases to ex-
plicit variations/statistical expectations). This is the educa-
tion component of our argument. Procurers must educate
developers on the behavior they want and nail down the ex-
pected operating conditions. Developers must communicate
how the sensors and algorithms are implementing the de-
sired behaviors.

The proposed framework will not magically “fix” au-
tonomous systems. Any reasonably complex system oper-
ating in the real world is going to behave unpredictably at
some point. The goal with this framework is to make it easier
to identify at what level the failure occurred, then introduce
additional tests/modify the framework to address that fail-
ure. Over time, these tests can be developed into standards
for common low-level behaviors in autonomous systems —
just like we currently have standards for tensile strength in
steel.
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