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Abstract

The potential lack of fairness in the outputs of machine learn-
ing algorithms has recently gained attention both within the
research community as well as in society more broadly. Sur-
prisingly, there is no prior work developing tree-induction al-
gorithms for building fair decision trees or fair random forests.
These methods have widespread popularity as they are one
of the few to be simultaneously interpretable, non-linear, and
easy-to-use. In this paper we develop, to our knowledge, the
first technique for the induction of fair decision trees. We show
that our “Fair Forest” retains the benefits of the tree-based ap-
proach, while providing both greater accuracy and fairness
than other alternatives, for both “group fairness” and “indi-
vidual fairness.” We also introduce new measures for fairness
which are able to handle multinomial and continues attributes
as well as regression problems, as opposed to binary attributes
and labels only. Finally, we demonstrate a new, more robust
evaluation procedure for algorithms that considers the dataset
in its entirety rather than only a specific protected attribute.

1 Introduction
As applications of Machine Learning becomes more perva-
sive in society, it is important to consider the fairness of
such models. We consider a model to be fair with respect to
some protected attribute ap (such as age or gender), if it’s
predicted label ŷ with respect to a datumn x is unaffected
by changes to ap. Removing ap from x is not sufficient to
meet this goal in practice, as ap’s effect is still present as a
latent variable (Pedreshi, Ruggieri, and Turini 2008). In this
work, we look at adapting decision trees, specifically Ran-
dom Forests, to this problem. Given an attribute ap that we
wish to protect, we will show how to induce a “Fair Forest”
that provides improved fairness and accuracy compared to
existing approaches.

Decision Trees have become one of the most widely
used classes of machine learning algorithms. In particular,
C4.5 (Quinlan 1993) and CART (Breiman et al. 1984) tree in-
duction approaches, combined with ensembling approaches
like Random Forests (Breiman 2001) and Gradient Boost-
ing (Friedman 2002), have proven to be potent and effective
across a broad spectrum of needs and tasks. These methods
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are one of the few to be simultaneously interpretable, non-
linear, and easy-to-use.

Random Forests have proven to be particularly effective. In
a study of over one-hundred datasets, Random Forests were
found to be one of the best performing approaches — even
when no hyperparameter tuning is done (Fernández-Delgado
et al. 2014). XGBoost, a variant of gradient boosting, has
been used in the winning solutions to over half of recent
Kaggle competitions (Chen and Guestrin 2016).

Tree-based algorithms also provide a rare degree of inter-
pretability . Single trees within an ensemble can be printed in
a human-readable form, allowing the immediate extraction of
the decision process. Further still, there are numerous ways
to extract feature importance scores from any tree-based ap-
proach (Louppe et al. 2013; Breiman 2003). Being able to
understand how a model reaches its decision is of special util-
ity when we desire fair decision algorithms, as it gives us a
method to double-check that the model appears to be mak-
ing reasonable judgments. This interpretability has already
been exploited in prior work to understand black-box mod-
els (Hall and Gill 2017).

Given the wide-ranging benefits and successes of tree-
based learning, it is surprising that no prior work has focused
on designing fair decision tree induction methods. Other
methods for constructing fair models will be reviewed in sec-
tion 2. In section 3 we propose, to the best of our knowledge,
the first fair decision tree induction method. Our design is
simple, requiring only minimal changes to existing tree in-
duction code, thereby retaining the desirable property that
the trees tend to “just work” without hyperparameter tuning.
Our experimental methodology is discussed in section 4, in-
cluding the introduction of novel fairness measures which are
suitable for use with multinomial and continuous attributes.
Finally, experimental results are summarized in section 5,
including a new experimental procedure to evaluate fair al-
gorithms against all possible features rather than single pro-
tected attributed. We end with our conclusions in section 6.

2 Related Work
One approach to building fair classifiers is based on data
alteration, where the original corpus is altered to remove or
mask information about the protected attribute. Some of the
first work in fairness learning followed this approach, and
attempted to make the minimum number of changes that



removed the discriminative protective information (Kamiran
and Calders 2009). Others have attempted to re-label the data
points to ensure a fair determination (Luong, Ruggieri, and
Turini 2011).

Another approach is to regularize the model in such a way
that it is penalized for keeping information that allows it to
discriminate against the protected feature. Some of the earli-
est work was to develop a fair version of Naive Bayes algo-
rithm (Calders and Verwer 2010). Others have taken to cre-
ating a differentiable regularization term, and applying it to
models such as Logistic and Linear Regression (Kamishima,
Akaho, and Sakuma 2011; Bechavod and Ligett 2017; Berk
et al. 2017; Calders et al. 2013). Our new fair induction algo-
rithm is a member of this group of regularization-based ap-
proaches, but unlike prior works has no parameters to tune.

One final group of related approaches is to build new rep-
resentations, which mask the protected attribute (Dwork et
al. 2012). The use of neural networks have become popu-
lar for this task, such as variational auto encoders (Louizos
et al. 2016) and adversarial networks (Edwards and Storkey
2016). One of the seminal works in this field used an au-
toencoder with three separate terms in the loss (Zemel et al.
2013), and provides one of the largest comparisons on three
now-standard datasets. We replicate their evaluation proce-
dure in this work.

There is an important commonality in all of these prior
works. The research is done with respect to datasets and
attributes where there is a prior normative expectation of
fairness. These are problems usually of social importance,
and protected attributes are intrinsic characteristics like age,
gender and nationality. But what if focusing on such problems
has inadvertently biased the development of fair research?
The mechanism for inducing fairness should work for any
attribute, not just those that align with current societal norms,
and must not be over-fit to the protected attributes used in
research. We evaluate our approach with respect to every
possible feature choice, to ensure that the mechanism of
producing fairness is not over-fit to the data.

3 Fair Forests
We propose a simple regularization approach to constructing
a fair decision tree induction algorithm. This is done by alter-
ing the way we measure the information gain G(T, a), where
T is a set of training examples, and a is the attribute to split
on. We will denote the set of points in each of the k branchs
of the tree as Ti...k. This normally is combined with an impu-
rity measure I(T ), to give us

G(T, a) = I(T )−
∑

∀Ti∈splits(a)

|Ti|
|T |
· I(Ti) (1)

The information gain scores the quality of a splitting at-
tribute a by how much it reduces impurity compared to the
current impurity. The larger the gain, the more pure the class
labels have become, and thus, should improve classification
performance. In the CART algorithm, the Gini impurity (2) is
normally used for categorical targets.

IGini(T ) = 1−
∑

∀Ti∈splits(label)

(
|Ti|
|T |

)2

(2)

This greedy approach to feature selection has proven effec-
tive for decades, helping to cement the place of tree-based al-
gorithms as one of the most popular learning methods. How-
ever, this does not take into account any notion of fairness,
which we desire to add. In this work we do so by altering the
information gain scoring itself, leaving the whole of the tree
induction process unaltered.

We begin by noting we need to make two slight alterations
for our approach. First, we will use the Impurity score to mea-
sure both the class label, and now additionally the protected
attribute under consideration. We will denote these two cases
as I l, and Ia, and the Gain with respect to the label and pro-
tected attribute as Gl and Ga respectively. Additionally, we
will impose the constraint that the impurity measure must re-
turn a value normalized to the range of [0, 1]. For the Gini
measure this becomes

IaGini(T ) =
1−

∑
∀Ti∈splits(a)

(
|Ti|
|T |

)2
1− |splits(a)|−1

(3)

We require that the impurity score Ia(·) produce a normal-
ized score so that we can compare scores on a similar scale
range, regardless of which features are selected. We then
use this to define a new fair gain measure Gfair(T, a), which
seeks to balance predictive accuracy with the fairness goal
with respect to some protected attribute af .

Gfair(T, b) = Gl(T, b)−Gaf (T, b) (4)

Intuitively, (4) will discourage the selection of any feature
correlated with both the protected attribute and the target
label. It remains possible for such a feature to still be selected
if no other feature is better suited.

3.1 Gain for Numeric Features
To our knowledge, no work has yet explored making a con-
tinuous feature the protected attribute. We can derive this nat-
urally in our new fair induction framework. In CART, trees’
numeric target variables are optimized by finding the binary
split that minimizes the weighted variance between each split.
We use this same notion to define a gainGr(T, a) that is used
when either the predictor or protected attribute is continuous.

Because we are interested in fairness, we look at changes
in the mean value of the splits compared to their parent. Even
if variances differ, if they retain similar means the impact on
the fairness is minimal. To produce a scaled value, we look at
the number of standard deviations from the previous mean is
for each of the new splits, and assume that being more than
three standard deviations is the maximum violation. This gain
is defined in (5), where σb,Ti indicates the standard deviation
of attribute b for all datums in the set Ti, and µb,Ti

has the
same meaning but for the mean of the subset.

Gr(T, b) = 1−1

3

∑
Ti∈split

|Ti|
|T |

min

(
|µb,T − µb,Ti |

σb,T
, 3

)
(5)

We emphasize that the standard deviation of the parent T
is used, not that of any sub-population Ti. This is because
we want to measure drift with respect to the current status.
Re-writing the continuous splitting criteria in this fashion



also produces a score normalized to the range [0, 1]. We can
now continue to use the Gfair(T, b) function with continuous
attributes as either the label target, or the protected attribute.

This framework now gives us a means to induce decision
trees, and thus build Random Forests, for all scenarios: clas-
sification and regression problems, and protected features ei-
ther nominal or numeric. We emphasize that this approach to
regularizing the information gain has no tunable parameters
as given. This is to keep with the general utility of decision
trees in that they often “just work.”

While adjusting hyperparameters such as maximum tree
depth may be used to improve classification accuracy, the re-
sults of a decision tree are often effective without any kind
of parameter tunning. This is important for practical use and
adoption. Many fairness based systems require an additional
two to three hyperparameters to tune (Kamishima, Akaho,
and Sakuma 2011; Bechavod and Ligett 2017; Zemel et al.
2013), on top of whatever hyperparameters come with the
original model. This increases the computational require-
ments in practice, especially when used with a classic grid-
search approach.

4 Methodology
There is currently considerable discussion about what it
means for a machine learning model to be fair, which metrics
should be used, and whether or not they can be completely
optimized (Skirpan and Gorelick 2017; García-Martín and
Lavesson 2017; Hardt, Price, and Srebro 2016).

We choose to use the same evaluation procedure laid out
by Zemel et al. (2013). This makes our results comparable
with a larger body of work, as their approach and metrics
have been widely used through the literature (Landeiro and
Culotta 2016; Bechavod and Ligett 2017; Dwork et al. 2017;
Calders et al. 2013). We present both of their metrics — Dis-
crimination and Inconsistency1 — in a manner compatible
with both classification and regression problems, while also
extending Discrimination to a broader set of scenarios. We
will also discuss the datasets used, their variants tested, and
the models we will evaluate.

4.1 Metrics
The first metric we will consider is the Discrimination of
the model, measured by the average difference between the
average predicted scores for each attribute value.

Discrimination =

∣∣∣∣∣
∑

xi∈Tap
ŷi

|Tap |
−

∑
xi∈T¬ap

ŷi

|T¬ap |

∣∣∣∣∣ (6)

Discrimination measures a macro-level quality of fairness, as
such it is sometimes termed “group fairness.” However, the
definition in (6) is limited to only binary protected attributes.
For this work, we will also look at a generalization of Dis-
crimination to k-way categorical variables. This is done by
re-formulating Discrimination to consider the sub-population

1Zemel et al. refer to their metric as ‘consistency,’ but de-
fine it in a way that only makes sense for classification. We use
Inconsistency = 1−Consistency. This form is applicable to both
classification and regression tasks.

differences from the global mean. This is equivalent to the
original definition when k = 2, and is given by (7). (See the
Appendix for a proof of equivalence.)

Discrimination =
2

k

k∑
i=1

∣∣∣∣∣
∑

xj∈T ŷj

|T |
−
∑

xj∈Ti
ŷj

|Ti|

∣∣∣∣∣ (7)

We will also consider the discrimination with respect to
a continuous variable. With ap denoting a protected contin-
uous attribute, let xi(ap) be the value of feature ap for da-
tum xi. We will then define our new Maximum Discrim-
ination (MaxD) metric as the largest discrimination score
achieved for some binary split of ap by some threshold t.
This is given in equation (8), and gives us a concise definition
extending Discrimination to regression tasks. When a contin-
uous attribute is manually discretized into a binary problem,
as is done in prior work, we obtain by definition that MaxD
≥ Discrimination.

MaxD = argmax
t

∣∣∣∣∣
∑

xi(ap)<t ŷi

|xi(ap) < t|
−
∑

xi(ap)≥t ŷi

|xi(ap) ≥ t|

∣∣∣∣∣ (8)

Given our novel extensions of the Discrimination scores
(7) and (8), we can evaluate this property for any feature.
Importantly though, these metrics are population level mea-
sures of fairness. Satisfying the Discrimination metric does
not guarantee that no bias exists. To measure the potential
for bias within sub-populations of the data set, we look at the
Inconsistency metric (9).

Inconsistency =
1

N

N∑
i=1

∣∣∣∣∣∣ŷi − 1

k

∑
j∈k-NN(xi)

ŷj

∣∣∣∣∣∣ (9)

Inconsistency compares the prediction of the model with that
of nearby points, and is sometimes referred to as “individual
fairness.” This is under the assumption that nearby points
should produce similar predictions, and is optimized when
the score is as close to zero as possible.

Discrimination and Inconsistency are both evaluating the
fairness of a model, and hence do not consider the true su-
pervised label y. Maximizing fairness involves minimizing
these two scores, at a potential cost to the model’s predic-
tive utility. We measure the predictive utility of each model
with accuracy or Root Mean Squared Error (RMSE) for clas-
sification and regression problems respectively. For classifi-
cation problems, we also consider the Delta metric, where
Delta = Accuracy− Discrimination.

For corpora with a test set, these metrics will all be evalu-
ated on the given test set. Otherwise, we will evaluate these
scores on 10-fold cross validation. For Inconsistency, we will
measure it using nearest neighbors from all folds, but using
the predicted scores obtained from cross validation. This is
in keeping with prior work (Zemel et al. 2013).

4.2 Data Sets
To evaluate our work, we will use three classification datasets
used by Zemel et al. (2013), the German Credit, Adult, and
Heritage Health datasets. For regression we will also use the
Health dataset, which was originally a regression problem



(how many days will someone stay in the hospital?) that was
converted to classification (will they stay one or more days?).

Table 1 summarizes the size, protected attribute, feature
count, and task type for each dataset. For the German and
Health datasets, the protected attribute age is originally en-
coded as a numeric feature, but, because prior work did not
support continuous protected attributes, they converted it to a
binary categorical feature. We replicate this in our work, but
will also investigate using the original continuous version of
age.

Table 1. Summary of the datasets used.

Dataset Samples Protected Featuers Task

German Credit 1,000 Age ≥ 25 20 Good/Bad Credit
Adult Income 45,222 Male/Female 14 Income ≥ 50k
Heritage Health 147,471 Age ≥ 65 149 Stay ≥ 1 day
Heritage HealthR 147,471 Age ≥ 65 149 Days in stay

4.3 Models Evaluated
When listing results, we will compare with standard CART
decision trees (DT) and Random Forests (RF). Our fair vari-
ants of these methods will be denoted as DTF and RFF .

Since our new fair tree induction can directly protect the
original non-discretized form, we also evaluate in that man-
ner. Models DTF

c and RFF
c indicate a fair decision tree and

Random Forest trained to protect the continuous age attribute.
When we do this, we will continue to evaluate the models’
Discrimination with the originally proposed threshold.

From Zemel et al. (2013), we compare against their pro-
posed Learning Fair Representations (LFR) approach and
their baseline approaches: Logistic Regression, fair Logistic
Regression (LRF ) (Kamishima, Akaho, and Sakuma 2011)
and fair Naive Bayes (NBF ) (Kamiran and Calders 2009).

5 Experiments
In this section we present the results of our experiments. We
remind the reader that for all experiments, we perform no
parameter turning for any of our tree-based models. This is
in line with practical use, and is a benefit for users in both
runtime and simplicity. In these experiments we will show our
Fair Forests can be used in the standard classification scenario
with a binary protected attribute. In addition, we can use a
continuous protected attribute and achieve similar results,
and apply both methods to a numeric prediction target. All
code was written in Java using the JSAT library (Raff 2017).

5.1 Binary Target, Binary Protected
For the classification tasks, the results for our various decision
tree variants can be seen compared to the baselines in Table 2.
We can see that our new Fair Forests win in almost every
metric.

Looking at just the tree-based results, we can make two in-
teresting observations. First, that the ensembling and random
feature sub-sampling used by Random Forests appears to im-
prove the fairness of CART trees, both when they do and do
not consider our fairness regularization. This is a positive in-
dication for the general use of Random Forests compared to

single decision trees. Second, that our fairness regularizer can
actually improve accuracy. This was observed on the German
and Health datasets. We do not observe this phenomena with
any other fairness approach. While a positive result, we cau-
tion that this should not be a general expectation. It is always
possible that the protected attribute may truly be predictive of
the target task. In such cases we would expect performance
to decrease, which we observe on the Adult income dataset.

This result is also important when we contrast to the Lo-
gistic Regression model and its fair variant. On every dataset
tested, the fair variant of LR has worse predictive accuracy
than the standard model. Our fair trees do not suffer in the
same way, indicating they are a more robust approach to
building fair models.

The baseline results shown from Zemel et al. (2013) re-
quired a grid-search, and were selected to maximize the Delta
score. In this regard our Fair Forests almost dominate the ta-
ble. The Fair Forest is second best only once to NBF on the
Adult Income corpus, with a relative difference of merely
2.3%. NBF achieves this by obtaining higher accuracies, but
also a higher Discrimination.

On both measures of fairness, Discrimination and Incon-
sistency, our fair Random Forest dominates the table with em-
pirical zeros. The best non-tree approach in this regard is the
LFR algorithm, which obtains empirical zeros on the Health
dataset and near-zeros for Discrimination on the German and
Adult datasets. However, LFR’s Inconsistency increases to
0.06 and 0.19 for each respectively.

5.2 Binary Target, Continuous Protected
In all prior literature we are aware of, the protected attribute
is always presented as a binary feature. Our fair tree induction
approach allows us to mark a continuous feature as protected
directly, without first having to discretize it. We can test
this ability with the German and Health datasets, where the
protected attribute (age) is originally a numeric feature. The
results comparing this approach with the classic binary age
attribute are shown in Table 3. In this table Discrimination is
based on the original thresholds used to binarize the age.

Here we can see that the Random Forest using the contin-
uous age (RFF

c ) and the one using binary age (RFF ) have
equivalent performance. This appears to be a net effect of the
added fairness Random Forests naturally provide. In this case
it becomes more informative to look at the results from the
standard decision tree, where non-zero Discrimination still
occurs.

For both DTF and DTF
c , we can see they continue to re-

duce the Discrimination and Inconsistency with respect to
the original decision tree approach. In these cases, DTF

c ap-
pears to uniformly outperform DTF in regards to the fairness
metrics, with only a 0.003 change in accuracy. On the Ger-
man dataset we can also see that DTF

c has improved upon the
MaxD score from the DTF , dropping from 0.0216 down to
0.0054. This is reasonable to expect, as DTF is optimizing
fairness with respect to a specific value of age, where DTF

c
is attempting to be fair with respect to all age values.

Further reading of the table indicates the MaxD score for
DTF

c (0.005) is smaller than the Discrimination score of the



Table 2. For each classification task, we show Accuracy, Delta, Discrimination, and Inconsistency, in that order. Scores are for our new method
and prior work. Best results shown in bold, second best in italics.

German Adult Health

Acc Delta Discrim Incon Acc Delta Discrim Incon Acc Delta Discrim Incon

DT 0.6890 0.6509 0.0381 0.2140 0.8364 0.4801 0.3563 0.4417 0.8404 0.8196 0.0207 0.2062
DTF 0.6990 0.6908 0.0082 0.0070 0.7511 0.7444 0.0067 0.0033 0.8474 0.8473 0.0001 0.0001
RF 0.6970 0.6911 0.0059 0.0020 0.8501 0.5463 0.3038 0.3944 0.8472 0.8464 0.0007 0.0005
RFF 0.7000 0.7000 0.0 0.0 0.7530 0.7530 0.0 0.0 0.8474 0.8474 0.0 0.0
NBF 0.6888 0.6314 0.0574 0.3132 0.7847 0.7711 0.0136 0.4366 0.6878 0.5678 0.1200 0.4107
LR 0.6790 0.5517 0.1273 0.3050 0.6787 0.4895 0.1892 0.2703 0.7547 0.6482 0.1064 0.2767
LRF 0.5953 0.5842 0.0111 0.1284 0.6758 0.6494 0.0264 0.2234 0.7212 0.7038 0.0174 0.3777
LFR 0.5909 0.5867 0.0042 0.0592 0.7023 0.7018 0.0006 0.1892 0.7365 0.7365 0.0000 0.0000

Table 3. Classification results on German and Health datasets, where
the protected age attribute is left as a numeric feature, rather than
being converted to a binary categorical one. Best results in bold,
second best in italics.

German Health

Acc MaxD Discrim Incon Acc MaxD Discrim Incon

DTF 0.6990 0.0216 0.0082 0.0070 0.8474 0.0001 0.0001 0.0001
DTF

c 0.6960 0.0054 0.0047 0.0040 0.8474 0.0 0.0 0.0
RFF 0.7000 0.0 0.0 0.0 0.8474 0.0 0.0 0.0
RFF

c 0.7000 0.0 0.0 0.0 0.8474 0.0 0.0 0.0

DTF approach (0.008). This means DTF
c has a greater degree

of fairness with respect to age for all possible age splits, than
DTF does with regard to its single age split of interest. We
explain this result by noting that DTF ’s single split focus
at age ≥ 25 means discrimination can occur in nearby age
ranges (e.g., 26-30, or 21-24), and this permissible “border”
discrimination can generalize into the test set. Ultimately,
while protecting the binary age attribute works well compared
to the naive DT in Table 2, these results demonstrate the
benefit of protecting the original numeric attribute: we can
provide better fairness with respect to the threshold of interest,
as well as every possible other threshold.

5.3 Continuous Target
One of the benefits of Decision Trees or Random Forests is
that they can be applied to both classification and regression
problems. In this section we will show that our fair induction
strategy improves fairness in such scenarios, both when pro-
tecting on a continuous or a binary attribute. We do this using
the original version of the Health dataset (see Table 4).

When phrased as a regression problem, we see lower Dis-
crimination scores for both the standard Decision Tree and
the Random Forest, which leaves little room for improve-
ment. When comparing Discrimination against the binary
age threshold (age ≥ 65), and the Maximum Discrimination
against age, we see the fair variants of our algorithms per-
form better than their non-fair counterparts. While the DTF

and DTF
c happen to perform slightly better than their counter-

parts RFF and RFF
c , the differences are in an epsilon range.

Either way, these results show that we can use our approach

Table 4. Results using the Regression version of the Health dataset,
where Mean Squared Error is the target metric. Best results shown
in bold, second best in italics.

MSE Discrim MaxD Incon

LR 2.722 0.0011 0.0024 0.4163
DT 2.904 0.0006 0.0057 1.0285
DTF 2.662 0.0005 0.0005 0.0964
DTF

c 2.663 0.0003 0.0007 0.0695
RF 2.735 0.0021 0.0022 1.0464
RFF 2.664 0.0006 0.0006 0.1366
RFF

c 2.664 0.0007 0.0010 0.0690

for regression problems and protect both categorical and con-
tinuous attributes.

5.4 Visualizing the Impact of Fairness
One of the benefits of tree-based approaches to prediction is
the ability to interpret the models. In particular, we note that
one can measure the relative importance of a feature using a
variety of approaches. Using the Mean Decrease in Impurity
(MDI) measure (Louppe et al. 2013), we show the relative
importance of features on the German and Adult datasets.
These are shown in Figure 1 and Figure 2 respectively, where
“Fair” is the relative importance of features used by our Fair
Forest induction algorithm and “Standard” indicates the nor-
mal Random Forest induction process using CART-style trees.
These results allow us to see that our simple regularizer can
have a wide range of impact, depending on the dataset and
protected attribute.

On the German dataset in Figure 1, we see a dramatic
change in what the model considers importance, with the
the most important variable being checking-status under the
Standard model but housing under the Fair model. For almost
all features in this corpus, we see a reversing of importance:
if it was important under the naive model, it becomes less-so
under the Fair model, and vice versa. The only exception to
this being the savings-status attribute, and to some degree,
property-magnitude.

The Adult dataset has a markedly different and surpris-
ing behavior. Under both the Fair and Naive model, the rela-
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Figure 1. Feature importance from German dataset.
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Figure 2. Feature importance from Adult dataset.

tionship attribute continues to be the most important. How-
ever, the Fair model dramatically reduces the relative impor-
tance of most other features. Many of these (e.g. capital-loss,
capital-gain, education) would likely be features we expect
to reliably predict the target attribute, Income. While our in-
tuition may be that these variables should be unbiased and
naturally fair predictors, the underlying distribution of this
dataset indicates they were too highly correlated with the pro-
tected Gender attribute, and thus were rarely selected for use.

We expect that the ability to perform such investigation
into feature importance pre/post fairness will become a valu-
able tool for those who wish to build fair models in produc-
tion environments. Changes in feature importance can give
us underlying insights into non-linear correlations that would
escape simple analysis. The information itself may allow a
decision maker to discover deficiencies or unintended biases

Table 5. Discrimination statistics for all features in each dataset.
First row is the Discrimination without any protection. The second
row shows Discrimination when protecting each feature individually,
and third row shows the associated model accuracy.

German Adult Health

µ σ µ σ µ σ

Raw Discrim 0.0081 0.0137 0.2971 0.1652 0.0066 0.0101
Prot. Discrim 0.0000 0.0000 0.1253 0.0776 0.0000 0.0000
Prot. Accuracy 0.7000 0.0000 0.8044 0.0108 0.8474 0.0000

in their data collection process, based on these unexpected
changes. For example, the non-use of the capital-gain/loss
features may tell us that we need to collect more data specifi-
cally from women with capital investments.

5.5 Fairness vs the Mechanism

We now evaluate the ability of our model to reduce Discrim-
ination for every attribute individually, across each dataset.
This helps us to determine that our approach is not overly
specific to the choice of attributes such as age and gender. To
our knowledge this is the first such evaluation in the fairness
literature.

First we train a standard Random Forest, and measure the
Discrimination for each attribute using (7) or (8) as appropri-
ate. From these we record the average and standard deviation
of the “Raw” discrimination. Then we train a new Fair For-
est D times for D features, testing the model when each fea-
ture is selected as the protected attribute. We then measure
the Discrimination of the protected feature and the accuracy
of the resulting model. The mean and standard deviation are
then calculated from the protected feature Discriminations.
The results of this are shown in Table 5.

Across all three datasets and every feature, the Fair Forest
approach was always able to decrease the Discrimination with
respect to the protected attribute. For the German and Health
datasets, it is able to reduce the Discrimination to zero for
all features, and always results in the same accuracy. For the
Adult dataset, the original protected attribute of Gender was
the only attribute which could be reduced to a Discrimination
of zero. The Adult dataset is the only one producing a wide
impact in the amount of Discrimination removed, and the
resulting accuracy of the model (decreasing from 0.85 down
to 0.80 on average).

6 Conclusion
We have developed, to the best of our knowledge, the first
fair variant of the Random Forest algorithm. This Fair Forest
can be used for classification and regression problems, and
protected k-category features as well as numeric attributes, a
first in the fairness literature. In doing so we have extended
the measure of discrimination to these cases. We have shown
our method produces state-of-the art results on three common
benchmark datasets, while requiring no parameter tuning to
use, and is able to uniformly reduce Discrimination across
any feature in each corpus.
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Appendix
A.1 Proof of k-way Discrimination
Here we prove that (6) and (7) are equivalent when k = 2.

To simplify, let the predictive mean for the points T be µ,
and for each subset Ti be µi. Writing out for k = 2 for (7),
we get

Discrimination = |µ− µ1|+ |µ− µ2|
Setting (6) and (7) equal to each other we get

|µ1 − µ2| = |µ− µ1|+ |µ− µ2|
Assume, without loss of generality, that µ1 > µ > µ2. In

this case we can use the absolute value to re-write as
|µ1 − µ2| = |µ1 − µ|+ |µ− µ2|

and then equivalently simplify as
µ1 − µ2 = (µ1 − µ) + (µ− µ2)

µ1 − µ2 = µ1 − µ2 + µ− µ
µ1 − µ2 = µ1 − µ2

.
Thus we obtain the same solution given a fixed ordering

of the µs. The absolute value operation allows us to re-order
the contained terms to match any distinct order of µs. For the
case that µ1 = µ2, then it must be that µ = µ1, and all terms
will zero out. Therefor, we prove that (6) = (7).



A.2 Why Define Gain on Mean over Variance?
We take a moment to further expound upon why we have
re-written the gain of numeric attributes with respect to the
difference in means, when the original CART approach uses a
criteria based on a reduction in variance. This original CART
splitting condition can be defined by

argmin
t

1

t

t∑
i=1

t∑
j=1

1

2
(xi−xj)2+

1

n−t

n∑
i=t+1

n∑
j=t+1

1

2
(xi−xj)2

(10)
Where t is the splitting point, and xi ≤ xi+1. This mea-

sures the sum of weighted variances between the two sets
of points. This could be converted into our normalized gain
form. Using the same notation, this would be

Gv(T, b) = 1−
∑

Ti∈split

|Ti|
|T |

σ2
b,Ti

σ2
b,T

(11)

Using (11) would have the desirable property of being
equivalent to the solution found by (10), and thus producing
the same trees when there is no protected attribute. The prob-
lem with using this approach is that it does not align with our
fairness goal, and can fail to produce fair trees when protect-
ing numeric attributes.
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Figure 3. Example of how splitting by variance fails to align with
reducing bias. This split would receive a large penalty under a
variance criteria, but both splits have the same mean — resulting in
no discrimination.

To demonstrate how this happens, consider the plot in
Figure 3. Here we show the protected attribute’s value on
the x-axis, and the attribute we are splitting on on the y-axis.
Choosing a split of y ≥ 0.5, we see the data cleanly splits
into two groups.

If we consider the variance-based gain defined by (11),
this split would receive a large penalty. The split dramatically
reduces the variance of the Split 2 group, which produces a
large gain. Because it is the protected attribute, we subtract
the gain — and thus a large penalty is applied.

Note though that the goal is to avoid discrimination in the
predictions produced by the tree. Yet in this case, both splits
have the same mean of zero, only their variances differ. If
we were to think of the problem as predicting the protected
attribute’s value from the tree, we use the mean value of the
attribute in the leaf nodes. The variance is forgotten anyway,
and so we are penalizing a split which will not keep any
significant information as it is.

Thus we prefer the intuition afforded by our new gain
measure (5), which would produce no penalty for this split
choice. The means would be the same, and so no predictive
difference would occur with this split. Thus we find this split
preferable for the protected attribute, as it would not aid in
distinguishing the protected attribute at prediction time.


