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Abstract

We examine moral machine decision-making, inspired by a
central question posed by Rossi regarding moral preferences:
can AI systems based on statistical machine learning (which
do not provide a natural way to explain or justify their deci-
sions) be used for embedding morality into a machine in a
way that allows us to prove that nothing morally wrong will
happen? We argue for an evaluation held to the same stan-
dards as a human agent, removing the demand that ethical
behavior is always achieved. We introduce four key meta-
qualities desired for our moral standards, and then proceed
to clarify how we can prove that an agent will correctly learn
to perform moral actions given a set of samples within cer-
tain error bounds. Our group-dynamic approach enables us to
demonstrate that the learned models converge to a common
function to achieve stability. We further explain a valuable
intrinsic consistency check made possible through the deriva-
tion of logical statements from the machine learning model.
In all, this work proposes an approach for building ethical AI
systems, from the perspective of artificial intelligence, and
sheds important light on understanding how much learning is
required for an intelligent agent to behave morally with neg-
ligible error.

1 Introduction
In her 2016 article “Moral Preferences” (Rossi 2016),
Francesca Rossi raises the question of how morality could
be embedded into machines. Considering ongoing automa-
tion, the growing autonomy of AI systems, and their deploy-
ment in safety-critical applications, it becomes increasingly
urgent to find answers to this question. Rossi suggests seven
largely independent research directions which help to shed
light on the larger issue. One of these questions concerns
the correctness of moral decisions learned with statistical
approaches, such as neural networks, under the prior as-
sumption that moral decisions can be formalized in this way.
Since it is arguably hard to inspect the inner workings of a
trained statistical learning model, ensuring that the model
behaves as intended—even in situations not anticipated by
its creators—is of particular importance.

The argument we present here is threefold. First, prov-
ing anything about morality in a wholly objective fashion
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is impossible1, since morals emerge from societies and are
only meaningful in the group context that gives rise to them
(Section 2). In other words, while we can identify desirable
meta-characteristics of a moral system (Section 3), the same
cannot be said for capturing the moral rules themselves.
Second, even if we were to ignore our first point and as-
sume that we are able to derive arbitrary amounts of train-
ing data, making sure that a statistical learning system has a
small generalization error is difficult. The model that is be-
ing trained to perform actions must be specifically tailored
to the problem at hand and given large quantities of training
data (Section 4). Third, we propose a group-dynamic (multi-
agent feedback) approach as an alternative to ensuring that
the trained model behaves morally. Since we should not sub-
ject machines to higher standards than humans, it suffices to
show that the learned morals converge to a common deci-
sion function (Section 5). We further argue that it should be
possible to derive logical statements from the machine learn-
ing model, providing machines with an intrinsic consistency
check (Section 6). We conclude with a proposed system ar-
chitecture for a group of autonomous agents.

Bottom-up learning methods such as deep neural net-
works will likely be a crucial component in future AI sys-
tems, including those obliged to render morally relevant de-
cisions. While trained statistical models are reputed to be
difficult to analyze in terms of an underlying decision pro-
cess, in this paper we aim to demonstrate that they may still
be suitable for morally relevant tasks.

2 Limits of Provability
Before we can address the principal question of how we can
prove that an agent will act morally, we must first recognize
that any attempt at answering this question will face limita-
tions. A complete solution would require some objective no-
tion of morality: some measure by which any action could be
judged as either moral or immoral in a general setting. How-
ever, current theories of ethics make this an impossible task,
simply because the morality of an action is dependent on the
ethical framework in which it is judged. For instance, there
are many imaginable scenarios where Immanuel Kant’s de-
ontological ethics theory is at odds with John Stuart Mill’s

1What we mean to say is that there are no fine-grained moral
laws, not that there is no objectivity in moral laws whatsoever.



utilitarian ethics. Hence, there can be no blanket solution to
the problem. The morality of an action can only be proved
with respect to some particular ethical theory, if at all.

Of course, there are many possible situations where well-
established ethical frameworks will be in agreement. In such
cases one could argue that there is an objectively moral de-
cision that is not specific to any particular framework. How-
ever, due to the complexities and intricacies of the various
ethical frameworks, scenarios where these theories are all
in agreement may be highly constrained. Conflicting judg-
ments of morality begin to arise more often once the contexts
in which decisions are made become too general. It is then
the generality of the application which prohibits provably
moral decisions, with respect to multiple theories of ethics.
One may only be able to prove results on the morality of an
agent’s actions if the environment in which it is making de-
cisions is sufficiently constrained, and the moral framework
is specified. Hence, to be able to prove desirable properties
of our moral agent independent of any framework we will
establish a set of guiding meta-moral qualities and assume a
constrained application. The nature of this constrained learn-
ing is discussed in Section 4. A proposed solution to evalu-
ating moral behaviour more generally will be the topic of
Section 5.

3 Standards Demanded of a Moral Agent
First, we consider the standards that a machine must meet
in order to be a proper moral agent. If it is required that the
machine be perfectly comprehensible and that we can en-
sure that it does no wrong before introducing it into society,
then this task is infeasible. Meeting this requirement would
demand that we can deterministically predict not only this
agent’s set of learned moral principles, but also the external
conditions that would inform how it applies these principles
to the myriad of moral decisions it would be faced with.

Instead, we first make a precise statement of exactly what
benchmarks a machine ought to meet to be considered a
moral agent. Currently, humans only have themselves as ex-
amples of autonomous moral agents. As such, we hold that
a machine should not be required to meet any standards that
humans may not meet themselves. This stipulation removes
the need to prove the means by which an agent learns moral
principles or behavior, focusing solely on the behavior and
moral rules themselves. Furthermore, it removes the con-
straint of being able to prove that a machine will never do
any wrong, as we do not hold humans to the same standard.
Similar to the argument for self-driving cars, it is unimpor-
tant that machines be morally infallible (if this were even
possible)—only that they do at least as well as humans. In
addition, this stipulation ignores the demand that artificial
agents behave in an acceptably moral manner until being
provided with sufficient time to properly learn the moral val-
ues of its society. Finally, if we hold machines to the same
standards as humans, then it is not the case that every ma-
chine converge to behavior that is ideal for its community,
only that a population of such machines would largely abide
by the moral laws of their society.

Next, we define a short list of meta-moral qualities that
we demand machines possess, in order to be considered

proper moral agents. This list is by no means meant to be
exhaustive—rather it is meant to be as sparse as possible—
but should certainly include:

1. Robustness: whatever moral architecture is developed
must allow a machine to change its moral principles. What
is considered ‘good’ may differ from community to com-
munity or over time. As such, artificial moral architecture
must be adaptive. It is desired that an agent expresses this
quality in two ways. First, it is desired that an untrained
agent be able to adopt the moral laws of any society. Sec-
ond, a trained agent should be able to eventually adopt
new principles when transplanted for one society to an-
other. This allows a machine to behave in a way that is
relevant to its cultural environment.

2. Consistency: we hold that, regardless of what moral prin-
ciples a machine learns, these principles are at least inter-
nally consistent.

3. Universality: taking a page from Kant’s book, we hold
that a machine’s learned moral principles be universally
applicable to all members of its society.

4. Simplicity: note that there is a concern with the combina-
tion of the above qualities: it is possible that a moral agent
develop an extensive list of moral principles—all of which
are consistent and may be universally implemented—yet
overly restrictive and arbitrary. This stands in conflict with
the first quality, and would make it plausible for a com-
munity of agents to sacrifice diversity for the sake of ho-
mogeneity (a quality we know to be undesirable for pro-
ductivity and progress). As such, we make the additional
assertion that a machine should always endeavor to op-
erate on the smallest number of “firm” moral principles
possible.
These qualities allow the moral agent to, at once, adopt a

subjective set of principles that are relevant to the particular
society it inhabits, while also ensuring that the moral agent
has some objective ground upon which it can internally eval-
uate the strength of its principles independently of society.

4 Sufficient Conditions for a Provably Moral
Behaviour

Having laid out the meta-qualities that we wish an agent to
have, and holding that there is no objective measure for par-
ticular moral laws, we now turn back to the original question
posed by Francesca Rossi. Can we, at least in theory, prove
that an agent will correctly learn to perform moral actions
given a set of samples within certain error boundaries? The
answer is yes: assuming that we can generate an arbitrary
amount of training samples in order to learn what actions to
take, machine learning theory hands us sufficient conditions
under which such a function can be learned with small error.

From a theoretical perspective, the process of acquiring
moral behavior (i.e. learning moral principles) within a sta-
tistical learning framework can be formalized as approxi-
mating a function f : C → A, where C is the set of possible
moral contexts and A is the set of actions available to the
agent. As a somewhat contrived example, consider an epi-
demic, where C describes properties of a disease (e.g., mor-
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Figure 1: Importance of model selection. (a) depicts the ground truth f(c) oblivious to the learner. Colored regions represent
actions ai. The underlying functions fi are radial basis functions (RBFs) centered at the white crosses, over which f is the
argmax, resulting in a Voronoi diagram. Colored circles correspond to training samples. (b) shows f as learned by a multi-
layer perceptron. Dashed contour lines correspond to the ground truth. The function in (c) is learned with a variant of the
learning vector quantization (LVQ) algorithm (Kohonen 1995), where the underlying assumption that the actions are assigned
as nearest neighbors to prototypes results in a smaller generalization error (e.g., compare the center dark violet region in (b).

tality rate and contagiousness), andA is a set of actions such
as administering an unsafe vaccine or isolating patients, each
with their own merits, costs, and dangers. An optimal strat-
egy would, depending on the context, perform the action
which minimizes the number of deaths.

In an offline-learning scenario, the agent receives a set
of samples S ⊂ C × A describing morally optimal be-
havior, with the goal to minimize the training error be-
tween a learned f̂ and the set of samples. For finite actions
A = {a1, . . . , an} this process can be modeled as a multi-
class learning problem, which—among other methods—can
be solved by learning n separate functions, where individual
fi : C → R correspond to the utility of action i in the given
moral context. The function f̂ selects the best among the
learned actions, i.e. f̂(c) = aj , where j = argmaxi f̂i(c).

To ensure morally optimal behavior, the learned f̂i must
have a small generalization error. As a direct result of the
first no free lunch (NFL) theorem (Wolpert and Macready
1997), a small generalization error can only be guaranteed if
the hypothesis space H containing the optimal f is special-
ized (Ho and Pepyne 2002). The NFL is formalized as∑

f∈H

P
(
dym | f,m, a1

)
=
∑
f∈H

P
(
dym | f,m, a2

)
, (1)

where dym is a sorted set containing the error for each train-
ing sample y, m is the number of training samples and a1,
a2 are static learning algorithms subject to sensibility con-
straints laid out in (Wolpert and Macready 1997). Corre-
spondingly, if all f in the hypothesis space are equally likely
to be the “true” ground truth, a learning algorithm which
performs particularly well on a subset H1 ⊂ H must, on
average, perform worse for the remaining H for eq. (1) to
hold.

For example, if we have prior knowledge that f resides
in a hypothesis space H produced by a parametric mathe-

matical model, we can expect to fit the model parameters
to our data with relatively small generalization error. On the
other hand, for unconstrained H—that is, the set of all pos-
sible functions mapping from C to A—we cannot, on av-
erage, expect to perform better than a function in that space
found by a random optimizer. While the NFL theorem seems
counter-intuitive given recent advances of machine learning
approaches, the effectiveness of neural networks and back
propagation can potentially be explained as an implicit re-
striction of H to a set of “naturally occurring” functions
(Lin, Tegmark, and Rolnick 2017). In the context of learning
moral actions, these implicit restrictions are far too vague to
make any guarantees.

So, moral actions, for which a small generalization error is
crucial (cf. section 3), can only be learned in the framework
presented above if we assume that the “true” strategy is part
of a well-assessable function family for which a matching
machine learning algorithm exists. The example depicted in
fig. 1 illustrates this: while both algorithms classify the train-
ing samples with zero error, the more constrained model and
learning algorithm result in a significantly reduced general-
ization error.

Assuming that we are able to develop a model and the
corresponding hypothesis space, H, we may ask how many
samples have to be (uniformly) sampled from the input
space C to guarantee a certain maximum generalization er-
ror ε. Here, machine learning theory provides the concept
of probably approximately correct (PAC) learning (Valiant
1984). For a discretized hypothesis space of size |H|, a max-
imum error ε, and success probability 1 − δ, a lower bound
for the required sample countm is given as (Shalev-Shwartz
and Ben-David 2014)

m ≥ 1

ε

(
ln
(
|H|
)
− ln

(
δ
))
. (2)

Essentially, for a model with d parameters, and k dis-
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Figure 2: Networks of agents. Development of a learned moral decision function f̂ in a single- and multi-agent environment
(a, b) while transitioning through multiple subgroups. If the communication graph of a multi-agent system is connected (c), the
value represented by the agents—here a learned moral decision function f̂—will converge to a single point (d).

cretization steps per parameter, m is linear in d, since
O
(
ln
(
kd
))

= O
(
d
)
. In practice far fewer samples may be

required; however, no guarantees can be made other than
those in eq. (2) without more specific information aboutH.

While the above theories provide a set of sufficient con-
straints for the problem at hand, finding a consistent model
and acquiring a large set of training samples may prove to
be harder than the problem that machine learning aims at
solving in the first place—namely having to explicitly model
top-down moral decisions. Yet, not all hope is lost: even if a
learning framework does not strictly fulfill the above crite-
ria, we next propose strategies for evaluating a learned moral
function in the context of multi agent systems and the con-
sistency of learned moral rules.

5 Proving Stability: Analyzing Networks of
Agents

A single learning agent can satisfy some of the qualities out-
lined in Section 2 by itself; it can be designed with a learning
algorithm sufficiently robust to adapt to a new set of moral
principles, it may internally check its moral principles to en-
sure consistency, and it can be designed to search for the
simplest set of morals possible by itself. However, a single
agent may struggle with the meta-quality of universality. For
example, an agent deployed to a society with multiple sub-
groups may continually adapt to each individual subgroup,
rather than properly generalizing to the set of morals encom-
passing the complete society, as shown in fig. 2a. Typically,
this problem would be solved by gradually decreasing the
learning rate of the agent, but such an approach would re-
move the agent’s ability to generalize to a new society, vio-
lating our standard of robustness. Instead, we propose us-
ing a multiagent system to explore the moral space from
multiple perspectives simultaneously, and require that the
agents eventually converge to a stable set of moral princi-
ples (fig. 2b). The agents in the system will essentially oper-
ate under Kant’s categorical imperative: “Act only in accor-
dance with that maxim through which you can at the same
time will that it become a universal law” (Kant 1993).

In the multiagent model, each agent would be designed

as a learner which accepts context-action pairs (cl, al) as
input, and learns a set of moral principles such that the
agent is capable of selecting a morally acceptable action am
when presented with a context cm. By learning from the pro-
vided samples of human morality, each agent will individu-
ally learn a set of moral principles. Convergence of multiple
agents to a single set of moral principles is then similar to
the consensus problem in coordinating multiagent networks.
For a continuous-time system, the solution to the consensus
problem is defined as (Ren, Beard, and Atkins 2005)

ẋi = −
∑

j∈Ji(t)

αij(t)(xi(t)− xj(t)). (3)

This algorithm essentially works as a weighted average of
all agents in the system, as an agent i compares its cur-
rent value, xi(t) to each value represented by all connected
agents, xj(t), j ∈ Ji(t), where Ji(t) is the set of all other
agents currently connected to agent i. If the moral space
the system is exploring is able to be modeled in such a way
where the derivative and difference operators can be defined,
this equation is directly applicable to the multiagent system.
For cases where those operators cannot easily be defined, the
learning algorithm can be adopted to mirror this equation.
Each time an agent i takes an action ai, it would broadcast
the context-action pair (ci, ai) to all other connected agents
in the set Ji(t). Each connected agent j can then use the
(ci, ai) pair as a new sample point for learning, and adapt its
morals to be similar to agent i. In addition to fulfilling our
desired property of universality, the solution to the consen-
sus problem described by fig. 3 results in a provably stable
consensus in a multiagent system. As long as the agents are
in contact with each other frequently enough2, convergence
is guaranteed (Ren, Beard, and Atkins 2005), as shown in
figs. 2c, 2d.

However, complete consensus in a multiagent system may
not be desirable. For example, there could be two subgroups
in society with disjoint moral principles, and a full consen-
sus across all agents would lead to a set of morals which does

2Where communication does not occur for longer periods, we
arrive at the “multi-society” case discussed in the next paragraph.



not properly satisfy the needs of either subgroup. To address
this problem, inspiration can be taken from how humans de-
velop differing morals. Humans learn morality by observing
and learning from the moral actions of others, but we do not
take an average of all observed actions. Instead, we model a
level of trust in other humans, and use that level of trust to
determine how to learn from another person’s actions (Hahn
2017). By determining which actions to learn from, humans
can form separate sets of moral principles specialized to spe-
cific contexts. Trust modeling can be adapted to a moral mul-
tiagent system in a similar manner, to allow specialization
for different societies. Simulations have shown that using a
Bayesian model of trust can result in either agreeing clusters
or polarized disagreeing clusters when modeling the validity
of information received from other agents (Olsson 2013). In
the context of a moral multiagent system, agents could at-
tempt to model the probability that other agents in the sys-
tem are attempting to follow the same set of moral principles
as themselves. Agents can use a basic Bayesian calculation
to model this probability,

P (M | a) = P (a |M)P (M)

P (a |M)P (M) + P (a | ¬M)P (¬M)
, (4)

where M is the event that an observed agent is acting
morally (at least according to the observing agent’s current
moral principles), and a is an action taken by the observed
agent. Using eq. (4), if agent i observed agent j taking ac-
tion aj , agent i would estimate if aj is a valid moral action
based on xi(t)—i’s current moral principles. If aj is deemed
moral by i, i can increase its trust in j, which would increase
the consensus weighting parameter αij from eq. (3). Con-
versely, if aj is deemed immoral, i can decrease its trust in
j, reducing αij . In cases where j is deemed fully immoral
relative to i, the αij parameter could be set to zero, causing
i to ignore all of j’s actions.

Using a Bayesian approach to model the possible moral-
ity of other agents in the system, agents would be allowed
to form disagreements in their definitions of moral princi-
ples, while enforcing convergence to one or more clusters of
agents via the αij parameter. Allowing multiple clusters in-
creases the overall universality and robustness of the multia-
gent system, by ensuring any necessary morally specialized
agents can be formed. Since artificial agents in the system
are learning directly from humans (initially trained offline
using human data), the system is expected to converge to
a stable point within the space of human moral principles,
while satisfying the meta-moral qualities desired of a moral
agent.

Any agent which is able to learn from other agents can be
used in this system and will achieve consensus with the other
agents within a cluster, i.e. there is guaranteed convergence
to a common moral preference function. The agent’s ability
to learn is the only property which governs whether this con-
vergence will occur, whereas the communication frequency
and trust models dictate which clusters will result from con-
vergence. It is important to note that agents in the system
may in fact be humans and not just artificial agents. Regard-
less, we would still expect convergence, since humans are
also exposed to moral actions from which they can learn.

(a)

(b)

Figure 3: Illustration of the extraction of logical expressions
from a neural network. Whereas there is no consistent vari-
able assignment satisfying the expressions in (a), the net-
work in (b) has a possible variable assignment (a = 0, b = 0,
c = 1).

6 The Consistency of Learned Moral Rules
Another means of evaluating the learned principles an agent
develops is to consider the consistency of the rules it learns.
Assume, for instance, that we are working with a hierarchi-
cal learning system, such as a neural network. We can label
the input layer (which corresponds to the morally relevant
variables) as atomic formulas. From there, we may assign a
logical sentence built out of these atoms that best fits each
node and evaluate the internal consistency of these groups of
sentences.3 The result is a self-checking system that raises
an internal red flag any time an inconsistency is found be-
tween the sentences of this network, at each layer of the neu-
ral network (fig. 3). If a red flag is raised, then the agent must
change or discard one of its conflicting moral principles.

One concern with this approach is that it is not compu-
tationally feasible to constantly assign and evaluate all the
sentences each time the weights in the network are updated,
since such neural networks can be extremely large. How-
ever, the goal is not to guarantee that inconsistency never
occurs. It is only to evaluate these networks as best as possi-
ble. Again, we turn to the standards that people meet as justi-
fication that this is sufficient for machine agents as well. It is
infeasible to demand that a human moral agent be perfectly
consistent in order to participate in society—only that they
reevaluate their principles once an inconsistency is found.
Figure 4 provides an overview of the architecture resulting
from the above considerations. The agent is bootstrapped
with a classically learned machine learning (ML) model,
subject to the constraints laid out in Section 4. When de-
ployed, the agent uses its model to make moral decisions.
Observations of moral actions in the environment, triples
(c, a, α), where α is the trust in the agent the action origi-
nated from, are integrated into an updated model. This up-
dated model is constantly checked for logical consistency,
and newly deduced moral rules are used to further enhance
the model. Furthermore, in addition to sole interaction with
the environment, we propose to run an internal multi-agent
simulation akin to Section 5, to ensure that the moral rules

3Note that we do not propose a comprehensive analysis of the
learned model. We instead extract individual logical statements,
which is more feasible than the general problem of explaining the
learned decision process.
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Figure 4: Proposed agent architecture. Left part of the diagram refers to an initial training phase, right part to the agent as it
would be deployed in an actual environment. See text for description.

indeed lead to stability. Once the updated model passes these
checks, it is swapped with the current model.

7 Discussion and Conclusion
To summarize, we hold that an artificial moral agent be held
to the same standards as a human agent. We do not demand
that such an agent justify the means by which it learns its
moral principles, nor do we demand that an agent always
act in a manner that society deems ethical. However, we do
demand that any moral framework possesses the short list of
meta-qualities we have outlined.

Acknowledging the limits of learning moral behavior, we
may nevertheless prove how much learning is required in or-
der for a moral agent to behave morally with negligible error.
Furthermore, we may prove that an artificial moral agent can
be expected to adopt human morals when introduced into a
society of human agents, by using Bayesian models of trust
to inform its moral decisions. In addition to being able to
evaluate the moral behavior of an agent, we may also eval-
uate the moral principles an agent learns by evaluating their
internal consistency.

Similar to other researchers, we have imagined a train-
ing phase in which agents may learn how to act ethically.
Conitzer et al. (2017) also discuss moral decision-making
frameworks where machine learning uses a set of moral
decision problem instances labeled with human judgments.
They comment on the challenge of identifying all the key
features for the training. In our case, we have advocated ad-
herence to four central properties as the basis for consider-
ing the actions as morally acceptable, though we also ac-
knowledge the difficulties in identifying moral features with
greater specificity. Other researchers have examined verifi-
ably ethical behavior of agents. Dennis, Fisher, and Win-
field (2015) focus on the case of robots and promote the
value of model checking methods. Another paper related to
our work is Armstrong (2015), which discusses the relative
advantages of using predetermined ethical preferences, as

opposed to enabling agents to learn values (including those
from their environments). We believe that hard-coded val-
ues sacrifice robustness and run the risk of introducing hu-
man bias on the part of the developer. The learning-based
approach has the advantage of being flexible, and Section 5
addresses the concern that an AI agent will not adopt human
values when placed in a human society. The advantage of
logical representations to enable ethical judgment by agents
is also promoted in Cointe, Bonnet, and Boissier (2016); our
work hopes to use these representations to construct the in-
ternal consistency checker outlined in Section 6. Anderson
and Anderson (2015) suggest that a consensus of ethicists
should determine what is morally acceptable for an agent’s
behavior. Provided that a framework uses the Bayesian mod-
els of trust outlined in Section 5, self-made decisions from
agents should already align with society’s values without the
need for such a prescribed code of ethics.

We also propose a list of “next steps” for this research
area. First, we must construct metrics for measuring various
moral factors, so that a proper training set may be developed
for learning. Second, a proof of concept must be developed
for the online consistency checker proposed. Finally, it is
our hope that once these first two implementation challenges
are solved, we may build a multi-agent system to verify that
convergence of moral behavior really does happen over time.
Once these technical hurdles have been overcome, we will
be much closer to artificial moral agents that not only act in
accordance with human values, but are active participants in
developing ethics in society.
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