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Abstract

Artificial Intelligence (AI) has been used extensively in auto-
matic decision making in a broad variety of scenarios, ranging
from credit ratings for loans to recommendations of movies.
Traditional design guidelines for AI models focus essentially
on accuracy maximization, but recent work has shown that
economically irrational and socially unacceptable scenarios
of discrimination and unfairness are likely to arise unless
these issues are explicitly addressed. This undesirable behav-
ior has several possible sources, such as biased datasets used
for training that may not be detected in black-box models. Af-
ter pointing out connections between such bias of AI and the
problem of induction, we focus on Poppers contributions af-
ter Hume’s, which offer a logical theory of preferences. An AI
model can be preferred over others on purely rational grounds
after one or more attempts at refutation based on accuracy and
fairness. Inspired by such epistemological principles, this pa-
per proposes a structured approach to mitigate discrimination
and unfairness caused by bias in AI systems. In the proposed
computational framework, models are selected and enhanced
after attempts at refutation. To illustrate our discussion, we
focus on hiring decision scenarios where an AI system filters
in which job applicants should go to the interview phase.

1 Introduction
There is some common understanding today that artificial
intelligence (AI) systems should be accountable and behave
reasonably from an ethical point of view, e.g., see (Greene
et al. 2016). The widespread use of black-box AI algo-
rithms in all sorts of decision-making systems, from credit
scores to recommendation of products, may have unpre-
dictable and/or potentially destructive consequences on peo-
ple’s lives (O’Neil 2016). The challenges related with the
way AI models are created and over-trusted have caught the
attention of the research community across several areas.

AI decision-making pipelines can be roughly represented
schematically along these lines: Human bias → [Data →]
Algorithm → AI system → Decision making. Undesirable
behavior of AI systems may be a consequence of human
bias, which may be (unconsciously) unfair and affect sig-
nificantly the output of these systems. Namely, whether they
have embedded a hypothesis formulated by humans (say, a

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

decision tree), or generates hypotheses automatically from
training datasets, (human) biases may arise in the process
and can be further absorbed, propagated, and amplified at
scale by the resulting algorithms (Barocas and Selbst 2014).

These challenges have been observed in several scenarios
over the last few years (Olteanu et al. 2016), frequently with
considerable popular attention (Larson et al. 2016). An im-
portant scenario is algorithmic hiring decisions, in which AI
systems are used to filter in and out job applicants in initial
screening steps. A first problem is that the historical data of a
job applicant may not be all relevant or adequate to be used
for the purpose of finding a good hire. Second, even new
types of data are now being used (e.g., posts in a social net-
work), whose relevance and adequacy from an ethical per-
spective can be questionable as well. Third, the replacement
of several human decision makers, specially when they have
different and complementary views, for a single decision-
making algorithm, may imply in loss of diversity for the hir-
ing decision process. For all these reasons, building AI sys-
tems that are both economically- and ethically-acceptable
for hiring decisions is a challenging task.

Motivated by these questions of practical interest, the re-
search community has started to address such bias-of-AI
challenges. For example, when a structured dataset is avail-
able so that an AI decision function can learn from it, one
can also design an oversight process to explicitly seek (mine)
strong correlations (say, in the form of association rules)
over sensitive attributes (e.g., race). This may conveniently
unravel prejudice (e.g., a given race implies a good hire)
that, once found, can be mitigated before the system is de-
ployed. In a more general sense, AI rules or patterns may
be learned from a classical knowledge engineering process
as well (say, by interviewing a few domain experts), as op-
posed to machine learning from an existing dataset. In any
case, there is bias in learning from examples, and it is im-
plicitly related with the long-lived problem of induction in
epistemology. There are several relevant philosophers that
brought contributions to the problem — for an overview, we
refer the reader to (Vickers 2016). However, two of the out-
standing figures are David Hume and Karl Popper, and their
core contributions will suffice for the purpose of this paper.

Consider an empirical regularity or law that has been
learned from some portion of the world, say, “All graduate
white males are good hires.” After Hume’s contributions,



Popper has established that no finite amount of data, how-
ever large it may be, is enough to rationally justify such a
law. Nonetheless, whereas Hume ended up in skepticism
about knowledge, either scientific or commonsense, Pop-
per has devised on top of Hume’s ideas a view of science
centered on conjectures and refutations. This view offers a
logical theory of preferences, which enables one to select a
hypothesis over another on purely rational grounds — how
they withstand attempts at refutation. Interestingly, Popper’s
view can be fruitfully seen as a learning theory (Berkson and
Wettersten 1984), which will suit well into an AI system.

In this paper we will leverage on Popper’s epistemolog-
ical principles and borrow contributions from the (theoreti-
cal) computer science and optimization literature towards a
two-level framework for bias mitigation in AI systems. On
its first (higher) level, it enables exploring a portfolio of two
or more different decision functions (conjectured hypotheses
in the sense of Popper). The quality of a decision function
is evaluated according to its accuracy.1 The best function is
selected with higher probability whereas reasonable alterna-
tive functions are also being constantly considered and eval-
uated. The second level of the framework focuses on the en-
hancement of decision functions that turn out not to be satis-
factory for the target problem (after a number of attempts at
refutation), either due to low accuracy or to unfairness.2 For
scenarios where decision functions can be reformulated (i.e.,
they are not black-box models), we point to connections be-
tween the enhancement procedure and cut-generation proce-
dures, originated from the fields of constrained logical pro-
gramming and optimization in general.

The paper is structured is as follows. In §2 we briefly de-
scribe the hiring decisions scenario we will use for illustra-
tion. In §3 we introduce connections between the bias of
AI and the problem of induction. We review Hume’s con-
tributions and focus on Popper’s epistemological principles
of conjectures and refutations and their connections with
a learning theory to be built into an AI system. In §4 we
present an example in the hiring scenario in terms of a sim-
ple yet clear data model. In §5 we present the proposed com-
putational framework in some detail, illustrated in the same
scenario. In §6 we comment on bias-of-AI related work. Fi-
nally, in §7 we provide conclusions and discuss future work.

2 Use Scenario: Hiring Decision Algorithms
Hiring processes have a long tradition of explicit and im-
plicit human biases, which sometimes may lead to discrim-
inatory consequences. There are several kinds of bias that
may end up influencing a hiring decision. One example is
confirmation bias of first impression, i.e., when recruiters
make a first assessment in the beginning of the interview
and spend the rest of the time looking for reasons to sup-
port their initial impression (Wired 2015). Mitigation actions
have been introduced in the form of federal laws in order to
protect job applicants against discrimination based on age,

1We consider the basic definition of accuracy, in which system
outputs are compared against their ground truth values.

2Unfairness is characterized by unacceptable correlations be-
tween system outputs and sensitive attributes (e.g., race).

race, color, religion, sex, and national origin. However, hir-
ing discrimination is difficult to uncover, since answers to
questions can be inferred from indirect questions (e.g., ask-
ing the applicant when did she graduate can be used to infer
her age), leading to ethical and privacy issues.

Recently, companies started to use AI algorithms to fil-
ter job applications in their entry-level hiring process. Com-
pared to the traditional process, such automatic decision has
been claimed as a strategy to minimize human bias in the
process eventually (Florentine 2016), increasing diversity
and cost-efficiency (e.g., hiring selection process speed up).
Algorithms are helping companies to model historical pat-
terns of hiring from data describing “high-performance”’
or “ideal” employees so that they can find candidates with
similar profiles. However, bias coming from the traditional
hiring process is still coded in the data used to train those
systems. Thus, extracting insights about whether a person
is a good match for a job from structured data is not triv-
ial, and this task becomes even harder when associated with
unstructured data. For instance, some startups are offering
services that go from brain games that assess capabilities
as focus, risk-taking, and memory to platforms that analyze
audio (e.g., voice intonation), video (e.g., body language,
blink frequency), text (e.g., keywords), and social data posts
(from social networks to websites) to construct a psycholog-
ical profile of the candidate and compare it against the cul-
ture of the hiring company. It is not clear whether this kind of
data is a valid proxy for the ability of individual to perform
the job, and generalizations can be even more complicated
if significant difference in cultural backgrounds exists.

Finally, by using only the perspective of a single deci-
sion maker algorithm, we may lose the individuality or the
different criteria of multiple decision makers. For instance,
different members of a hiring committee may assign differ-
ent weights to relevant aspects describing a job applicant,
enabling then a fair assessment of her. That may not be cap-
tured well by a single model or algorithm.

In the next section, we show how problems that have been
already discussed by philosophers of science are related to
some of the current challenges faced in the development of
AI systems. We believe that this is a two-way process, in the
sense that the present discussion has potential to bring ma-
terial of interest to traditional epistemological discussions.

3 Bias of AI and the Problem of Induction
A commonsense dictionary definition for ‘bias’ is: (sense
one) “the action of supporting or opposing a particular per-
son or thing in an unfair way, because of allowing personal
opinions to influence your judgment”; and (sense two) “the
fact of preferring a particular subject or thing” (Cambridge
2008). While the former indicates an unfair judgement, the
latter refers to a preference. In fact, every decision making
process is about arriving at a reasonable preference (bias, in
the second sense).

Avoiding bias in the first sense (prejudice) is a challenge
from an ethics point of view. Yet, as we will see in this sec-
tion in a summarized way that suffices for the purpose of this
paper, it has strong connections with the long-lived problem



of induction in epistemology. It has been critically exam-
ined by David Hume in the 18th century (Hume 1902 1777),
and then by Karl Popper last century. After Hume’s remarks,
Popper formulated two variants he called the logical and the
psychological problems of induction (1985 1953, p. 107-8):3

• Logical. Are we rationally justified in reasoning from re-
peated instances of which we have had experience to in-
stances of which we have had no experience? Hume’s an-
swer is no, we are not justified, however great the number
of repetitions may be; and this is so for certain belief, as
well as for probable belief. Instances of which we have
had experience do not allow us to reason or argue about
the probability of instances of which we have had no ex-
perience, any more than to the certainty of such instances.

• Psychological. How is it that nevertheless all reasonable
people expect and believe that instances of which they
have had no experience will conform to those of which
they have had experience? Hume’s answer to the psycho-
logical version is because of ‘custom or habit’; or in other
words, because of the irrational but irresistible power
of the law of association. We are conditioned by repeti-
tion, and without such conditioning mechanism we could
hardly survive.

Popper accepts Hume’s answer to the logical version of the
problem. That is, we certainly are not justified in reasoning
from one or more instances to the truth of a universal regu-
larity or law (from which we should expect new or unseen
instances to abide by). Popper adds to it though the impor-
tant insight that we do are justified in reasoning to the falsity
of a law like “All graduate white males are good hires” from
a counterinstance (say, some graduate white guy who turns
out not to be a good hire), which if accepted as such, can dis-
prove or refute it. In fact, the emerging research community
working on ‘bias of AI’ challenges has started to approach
issues implicitly related to Hume’s logical problem of induc-
tion, as we will discuss later in §6 on related work.

Yet, Popper draws attention to a dilemma between
Hume’s answers. On the one hand, repetition has no power
whatsoever as an argument (that is, in reason). On the other
hand, it dominates our cognitive life or our ‘understanding’,4
so if we take Hume’s answer to the psychological problem
‘as is,’ however intuitive, it leads to the conclusion that our
knowledge is of the nature of rationally indefensible belief
and then can’t be distinguished from irrational faith. Popper
does not accept it at all, and has rather come up with an inge-
nious alternative. It opens an encouraging landscape for the
community working on bias-of-AI challenges, which can’t
afford staying with Hume’s skepticism either — otherwise
AI-based systems may not be rationally defensible.

Popper’s epistemological framework is meant to solve the
psychological problem of induction (and also the related for-
mulations, so-called “the pragmatic problem”) in a way that
satisfies “the principle of the primacy of the logical solu-
tion” (cf. Popper, 1985 1953). That is, rather than accepting

3Cf. also (Popper 1972, Chapter “Conjectural Knowledge”).
4And most importantly, for the purpose of this paper, it is at the

core of data-driven AI.

Hume’s irrationalist consequences, we rely on his answer to
the logical problem, which is stronger, and transfer it to the
psychological one as follows. As a first basis, Hume’s nega-
tive result has established for good that all our universal laws
or theories remain forever guesses, conjectures, hypotheses.
Nonetheless, on top of his own (extended) negative result,
namely, that ‘refutation’ is a logically valid operation, Pop-
per has developed a logical theory of preference — that is,
preference from the point of view of the search for truth. So
a purely intellectual preference, for one or another hypoth-
esis, can be drawn from how they stand against attempts
at refutation. Thereby, one can have purely rational argu-
ments to prefer some competing hypotheses to others. It is
also possible for our conjectural knowledge to improve. In
fact, we can learn by conjectures and refutations. Popper’s
ideas have been seen as offering a full-fledged learning the-
ory (Berkson and Wettersten 1984), which we leverage on
next as for bias mitigation in AI-based systems.

Conveniently put by Berkson and Wettersten (1984) as a
learning theory focused on problem solving, Popper’s view
goes as follows. A problem exists when an observation is
contrary to what is expected. This discrepancy stimulates ef-
forts to correct expectancies in order to make them compat-
ible with the previously surprising observation. The newly
formulated expectancies remain intact until observations are
made that are incompatible with them, at which point they
are revised again. This process of adjusting and readjusting
one’s expectations so that they agree with the observation
is an unending process. However, it is a process that, one
hopes, makes expectancies and reality increasingly compat-
ible (Ibid., p. 16). Since it is reasonable (and ethical) to act
based upon both the best of our knowledge at present and the
best of our critical effort to keep looking for holes or miss-
ing points in it, then one can make reasonable decisions by
drawing from the best hypothesis available at a given time,
namely, the one which is standing better our serious attempts
at refutation.5 In sum, we have the argument that a “less re-
futed” hypothesis should be expected to deliver better re-
sults, therefore, preferred. If we are able to collect new, in-
dependent evidence over time into an online computational
system, then what we have an online learning theory.

There are three key points in this epistemologically-
founded theory for online learning:

• Acceptance of evidence. The acceptance of a counterin-
stance or counterevidence as such (recall our graduate hire
counterinstance) is a question of methodological and even
ethical nature but not of logical nature. Essentially, scien-
tists have to opt/decide to act according to this method-
ological or ethical rule: if our hypothesis is threatened by
one or more counterinstances, we will never save it by any
kind of conventionalist stratagem but rather will take seri-
ously the responsibility to review and, if needed, to revise
it (cf. Popper, 1985 1934; Popper, 1985 1974). In AI, this
shall not be a problem, as long as a clear-cut separation

5So, the probability of a hypothesis has nothing to do with how
much data it has been trained upon by but only with how much
it has stood against attempts at refutations (using independent evi-
dence) in comparison with competing hypotheses.



between training and testing data is preserved; in other
words, hypotheses will be tested against a growing body
of independent evidence that is accumulated.

• Plurality of hypotheses. Suppose one has only one hy-
pothesis f (say, a binary classifier) to live by, and it has
been formed (say, by training) by considering some por-
tion of the world (a datasetD). If this hypothesis is threat-
ened by a counterinstance from dataset D′ ⊃ D, then in
principle it could be revised in some way (say, retraining)
to get better at the problem at hand. Yet, if no other hy-
pothesis f ′ 6= f is available, as new problem instances
come in, one has to apply their suspicious hypothesis f
anyway. With a portfolio of hypotheses f ∈ F , on the
other hand, if some hypothesis is continuously refuted for
a target problem, the online learning framework may be
able to handle it with another, “more natural” hypothe-
sis. Therefore, the portfolio as a whole has broader scope
to address a variety of problems. In fact, the question of
‘preference’ will arise mainly, and perhaps solely, w.r.t. a
set of competing hypotheses (Popper 1972, p. 13).

• Accuracy and fairness. Popper’s epistemological princi-
ples are geared for the empirical sciences (Popper 1985
1983), which shall include the sciences of the artificial
such as AI as long as some notion of truth (empirical ad-
equacy) is available. In AI, at a high level of abstraction,
we call it accuracy. Attempts at refutation should improve
knowledge of how ‘accurate’ our hypotheses are, so that
preferring one hypothesis over another, after one or more
such attempts, is a matter of accuracy. In AI, however,
as system outputs are often predictions about human be-
ings, accuracy has to explicitly interact with the value of
fairness. For this reason, we will consider that attempts at
refutation shall also stress whether the hypotheses embed-
ded in a system are able to make it a fair piece of AI.

4 The Hiring Decision Problem: An Example
We describe now a scenario of the hiring decision problem
that will be used to illustrate core concepts in our frame-
work. Table 1 shows examples of instances as well as their
associated outputs according to some decision function f (a
conjectured hypothesis in Popper’s sense).

Table 1: Simple scenario of the Hiring Decision Problem.
ID Gender School City ZIP Output
1 Male 15 NYC 10118 Yes
2 Female 15 Boston 02110 Yes
3 Female 19 Chicago 60603 No
4 Male 10 Atlanta 30302 Yes

Data model. Each instance of the problem describes a job
applicant (or candidate) represented by a vector in N×G×
N × C × R. Job applicant (i, g, s, c, r), to which we may
refer as instance i, is associated with identification number
(ID) i. It is of gender g in G = {male, female}, has s years
of schooling, has a degree from university c in C = {NYC,
Boston, Chicago, Atlanta}, and resides in an address with
ZIP code r in R. We assume that gender is an explicit sen-
sitive attribute (i.e., there should be no correlation between

the output of a decision function and gender); ID and years
of schooling are non-sensitive attributes, and ZIP code is
an implicit sensitive attribute due to correlation with race (a
sensitive attribute that does not belong to the data model).

A decision function f for the problem produces an out-
put f(i) ∈ {0, 1} for each instance i, with f(i) = 1 in-
dicating that i should go to the interview phase (i.e, output
is “Yes”) and f(i) = 0 recommending rejection (output is
“No”); that is, f in our case is always a binary classifier.

The proposed framework relies on a ground-truth table
qualifying the output produced by the decision functions
for each instance i. It consists of the desired output f∗(i)
for i and of a loss value li : {0, 1} → [−1, 1] associ-
ated with the correctness of the possible outputs. Namely,
li(f) = li(f(i)) is non-negative if f(i) is wrong and non-
positive otherwise. The absolute values of li are correlated
with the level of relevance and correctness of the associ-
ated decisions. For example, if i is a top job applicant, li(0)
should be close to 1 (i.e., this decision should be heavily pe-
nalized) and li(1) should be close to −1, whereas decisions
of f about borderline candidates may be associated with val-
ues li(f) which are closer to zero (e.g., 0.25 and −0.25 for
wrong and correct recommendations). Table 2 shows feed-
back values for the instances presented in Table 1.

Table 2: Ground-truth table for sample scenarios.
ID f∗(i) li(0) = li(No) li(1) = li(Yes)
1 No -1.00 1.00
2 Yes 0.25 -0.25
3 Yes 0.50 -0.50
4 No -1.00 1.00

We consider online scenarios, in the sense that new in-
stances are being constantly incorporated to the training set.
The arrival of each (batch of) incoming instance(s) corre-
sponds to Popper’s attempt at refutation principle.
Accuracy and fairness. Mistakes made by a decision func-
tion f may be assessed at two levels. At a more fundamen-
tal level, one may check whether f(i) is correct by direct
comparison with f∗(i). This type of error can be identified
by inspecting the behavior of f at a single instance and can
be directly interpreted as a accuracy problem. This kind of
mistake typically takes place because f adopted wrong in-
ferences, which may also have a discriminatory aspect; this
is the case if f(i) = 1, f(i′) = 0, and instances i and i′
differ solely by gender, for example.

At a higher level, one may identify fairness issues as-
sociated with decision function f . Differently from accu-
racy, fairness relies on the analysis of the behavior of f for
the whole dataset with respect to one or more sensitive at-
tributes. More precisely, we say that f is unfair with respect
to some sensitive attribute a if there is a significant corre-
lation between its output and a. For example, if among all
candidates from NYC with 20 years of schooling f accepts
80% of the male candidates and only 60% of the female can-
didates, gender discrimination is taking place.
Baseline and challenges. The baseline strategy for this
problem consists of a single offline decision function; a func-
tion is offline if its behavior does not change over time as



new instances and their feedback values are made available.
A decision function f may become outdated over time

in offline strategies, and even though this issue may be ad-
dressed if f is periodically retrained, decision makers typ-
ically lack a structured approach to decided when this pro-
cess is actually necessary (i.e. retraining needs may be ape-
riodic). Moreover, there is hardly a universally acclaimed
decision function for the hiring decision problem, as differ-
ent views and guidelines may lead to different conclusions
about what the best option may be. In these scenarios, hav-
ing a portfolio of candidate decision functions can be more
interesting than having just one. In short, knowing how to
select decision functions and when to update them are key
challenges for the baseline strategy, which we try to address
in the proposed framework.

5 A Framework for Bias Mitigation
The proposed framework is a two-level system whose first
level consists of a procedure to select a decision function so
that a good balance between exploration and exploitation is
achieved, and whose second level is targeted at the enhance-
ment of decision functions based on empirical knowledge
about issues with accuracy and/or fairness. The exposition is
illustrated with the hiring decision problem, but the frame-
work is general and may be applied to other scenarios.

Decision function selection
The primary goal of the first level of the framework is to
deliver an output for each incoming instance i. For this, it
employs and manages a portfolio F of candidate decision
functions. A key aspect to be addressed is the identification
of a suitable balance between exploration and exploitation.
Exploration refers to testing functions: namely, one wishes
to collect as much information about the functions as pos-
sible by applying them to several instances of the target
problem and having feedback on their accuracy. Conversely,
exploitation refers to utility maximization: given that some
function f ∈ F typically delivers better results than some
other function f ′ ∈ F , rational decision makers are more
likely to choose f instead of f ′. As the ground-truth table
is unknown by the time decisions are made, a reasonable
goal for the selection component is to achieve relative per-
formance guarantees, such as a bound on the ratio between
the number of wrong decisions made by the framework and
the number of mistakes made by the best function in F .6

Similar problems can be identified in several fields, such
as game theory, geometry, operations research, and statisti-
cal decision making. Recently, the work of Arora, Hazan,
and Kale provided an attempt to unify the proposed ap-
proaches within the same algorithmic framework, referred
to as the Multiplicative Weights Update method (MWU)
(2012). In general lines, MWU works as follows. Given a
set F of decision functions for a target problem P , each
candidate function f ∈ F is assigned a weight wf > 0.
The value of wf is initially set to 1 for each f and is mod-
ified after the arrival of each new instance i according to

6This metric is typically referred to as regret in statistical deci-
sion making theory.

the correctness of f(i), as we describe next. Anytime, terms
pf ← wf/

∑
f ′∈F wf ′ give a probability distribution D. As

each instance i is given as input to the framework, a selec-
tion phase takes place, in which a decision function f c ∈ F
is selected by sampling according toD (i.e., f is drawn with
probability pf ). All functions f ∈ F are applied to instance i
so that the result f(i) is known for all, but only f c(i) is re-
turned by the framework.

Once entries f∗(i) and li of the ground truth are gen-
erated, the weight wf of each decision function f is up-
dated to reflect changes on the empirical level of confi-
dence the system has on f . A possible expression is wf ←
wf [1− η `i(f(i)) ], where 0 < η ≤ 1

2 is a parameter of the
problem. In addition to actual instances, synthetic cases may
be generated to check whether the model has discriminatory
behavior with respect to some explicit sensitive attribute;
e.g., if i is a real instance and i′ is a synthetic instance differ-
ing from i only in the gender attribute, discrimination takes
place if f(i) 6= f(i′). The same procedure may be employed
with non-sensitive attributes, thus supporting the identifica-
tion of absurd behavior and/or indirect discrimination.7

As wf becomes small, the probability with which deci-
sion function f is selected decreases. Weight wf becomes
small if f makes wrong decisions for several instances (as-
sociated with high penalties), so wf can also be interpreted
as a proxy for the quality of f as a decision function for
problem P . Moreover, procedures for the identification of
unfairness may also be periodically employed by the frame-
work. Whenever wf becomes too small (e.g., goes below
some threshold value τ ) or unfair behavior is identified, f is
removed fromF and given as input to the Decision Function
Enhancement procedure on f , which we describe next.

Decision function enhancement
The second level of the framework is targeted at the en-
hancement of a decision function f that has been removed
from the portfolio F in the first level. In the context of AI
systems, such adjustments will ideally address the mistakes
that made f unacceptable for the target problem. In scenar-
ios where decision makers have no control over f , the only
alternative is to report the issues to the provider of f ; other-
wise, the following approaches can be considered.
Retrainable Black-Box decision functions In scenarios
where f is a black-box model that can be retrained, a possi-
ble strategy consists of the incorporation to f ’s training set
of instances for which f delivered wrong decisions. The idea
of this approach is to employ knowledge about previous mis-
takes made by the algorithm, with the hope that retraining
will be sufficient to mitigate or even eliminate some of the
issues that have been observed. However, there is no guar-
antee that f will eventually become completely free of all
mistakes, even after a large number of iterations. Moreover,
it is not clear how the incorporation of new instances to the
training set may unfairness.
Non-black-box decision functions If f can be modified,
more effective strategies may be employed. In particular,
constrained models become specially interesting in these

7For example, ZIP code may be correlated with race.



scenarios, as restrictions may help in the reduction of un-
desired effects such as unfairness. For example, in our sce-
nario, if f is a margin-based classifier, one may employ a
constrained optimization model to bound the correlation be-
tween subsets of attributes and the output of f for instances
of the training set (see e.g., 2017).

If all relevant constraints are known a priori and their in-
clusion in the underlying model leads to a computationally
tractable formulation, the desired decision function can be
directly constructed. This is typically not the case, though,
and this is where cut-generation algorithms, which have
been strongly investigated in the literature of constrained
optimization and constrained logic programming, can play
a key role. In the mathematical programming literature, cut-
generation algorithms are useful in scenarios where one does
not work with a full representation of the decision func-
tion f , but with a relaxation fr of f , which lacks some of
the original constraints and conditions. Relaxations are used
by convenience (e.g., in scenarios where the number of con-
straints is too large and having a smaller formulation is com-
putationally more interesting) and by necessity (e.g., when
the relevant constraints are unknown a priori), and both cases
may apply in scenarios where discrimination may take place.
For instance, an attribute that was initially considered non-
sensitive may be a proxy for some other sensitive attribute
that is not explicitly represented in the data model (e.g., in
our case, ZIP codes and race), and this correlation may be
identified only after the observation of new instances. In this
case, a function f that ignored this aspect previously can be
fixed by the inclusion of a new constraint to the formulation,
capable of mitigating this type of bias.

Zafar et al. employ a single subset containing all sensi-
tive attributes, but a more comprehensive approach would
require the inspection of all possible combinations of sen-
sitive attributes. For our example, given that there are two
sensitive attributes (Gender and ZIP), three subsets could
be inspected. More generally, in scenarios with s sensitive
attributes, O(2s) subsets may be created, which may be
prohibitively large in scenarios with relatively high num-
ber of dimensions. The use of relaxations combined with
cut-generation are convenient in these cases, as the resulting
models would be otherwise computationally intractable.

6 Related Work
Technical frameworks supporting the design of systems with
socially acceptable behavior have been proposed in the lit-
erature. For instance, Rossi and Greene et al. discuss the
challenges involved in the creation of “ethic algorithms” and
how they can be addressed by techniques in preference mod-
eling and reasoning, multi-agent systems, constraint pro-
gramming, constraint-based optimization, etc. (2016; 2016).
These contributions assume that systems of preferences can
be captured and formalized, so the main challenge lies in ag-
gregating and consolidating different preference lists in sce-
narios where two or more lists may be considered, and even-
tual conflicts will then be resolved in order to have an ethical
outcome. The technical framework we have proposed has a
different approach and follows different design guidelines.
First, our main goal is to devise a system capable of dealing

with hypotheses and problems for which discrimination and
unfairness may be observed and could be mitigated. These
challenges emerge at a more fundamental level than those
addressed by Rossi et al., as ethical issues related with bias,
unfairness, etc. do not appear due to differences in prefer-
ence, but due to issues with the data collection process, lack
of algorithmic transparency, etc..

Bias on data has been discussed by in many contexts from
social data used to support decision or to characterize hu-
man phenomena (Olteanu et al. 2016) to solutions focus on
discrimination discovery (Pedreschi, Ruggieri, and Turini
2010) to discrimination prevention (Zafar et al. 2017).

In addition to the work of Zafar et al., others have also
proposed constrained models to enforce fairness. For in-
stance, Celis, Huang, and Vishnoi investigate the prob-
lem of ranking a set of items subject to families of fair-
ness constraints (2017). Group-fairness constraints have also
been considered for multi-winner voting problems (Celis,
Straszak, and Vishnoi 2017). For an overview of the Mul-
tiplicative Weights Update method and its relationship with
several similar techniques in other areas, see e.g. (Arora,
Hazan, and Kale 2012). Recently, Celis employed a sim-
ilar algorithmic framework (i.e., based on stochastic con-
textual bandits) to control bias and discrimination in sys-
tems of online personalized recommendation (2017). The
literature in cut-generation algorithms is vast, with cele-
brated results in the area of mathematical programming for
problems with very special structural properties (see, e.g.,
(Grötschel, Lovász, and Schrijver 2012) and (Hooker and
Ottosson 2003).

7 Discussion and Future Work
In this paper, we discuss AI challenges enlighted by Karl
Popper’s epistemological principles and modeled into well-
known concepts from (theoretical) computer science and op-
timization. We have pointed out connections between bias of
AI and the problem of induction, focusing on Popper’s con-
tributions after David Hume’s. We have seen that it offers
a logical theory of preferences, that is, a hypothesis can be
preferred on purely rational grounds after one or more at-
tempts at refutation. Based on these ideas and their suit into
a learning theory, we have proposed a two-level computa-
tional framework. Decision functions (hypotheses in Pop-
per’s sense) are selected while keeping a good balance be-
tween exploration and exploitation. Those presenting low
accuracy and unfair behavior are continuously enhanced.

In future work, we plan to carry out a large study of the
hiring problem, followed by an extensive evaluation of our
proposed framework. Our goal is to add empirical results to
our epistemological argument, which will also be deepened
and improved as we further develop our research on bias
and philosophy of AI. As a final remark we recall that AI
systems, as they rely on human-generated data, will always
be susceptible to bias, sometimes prejudice. Solutions such
as ours, modeling epistemological (and ethical) principles
into a computational framework for mitigating bias, shall be
complemented in order to take into account social, legal and
other bias-of-AI challenges.
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