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1. Introduction

Ordinary differential equations and partial differential equations are fundamental tools in
mathematics, used to model a wide variety of dynamic systems in science and engineering, see
papers [2, 6, 16, 17]. Fractional differential equations are a generalization of classical differential
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equations, where the order of differentiation can be fractional or non-integer. These equations have
gained significant attention due to their ability to model complex systems exhibiting memory and
hereditary properties, which are not adequately captured by integer-order differential equations and
systems [4, 5, 9, 10, 18–20, 23, 24, 35]. The Caputo derivative, one of the commonly used definitions
in fractional calculus [13, 22], is particularly useful for initial value problems, making it suitable for
physical applications. One important application of fractional differential equations is in the study of
beam deflection equations and systems. Beams are structural elements that withstand loads applied
laterally to their axis. The classical beam theory, often modeled by fourth-order ordinary differential
equations, describes the bending and deflection of beams under various loads [2,3,26,32,34]. However,
incorporating fractional derivatives into these models can provide a more accurate representation
of materials with viscoelastic properties and non-local behavior, which are common in advanced
engineering materials and complex structures. This leads to fractional differential models that can
better predict the deflection and dynamic response of beams, offering deeper insights and improved
design capabilities in engineering and applied physics.

To provide context, we reference some published papers related to our work. For instance, in [32],
Q. Wang and L. Yang studied the existence of positive solutions for the following nonlinear fourth-
order system which is used to describe the deformation of an elastic beam:

u(4)(t) + β1u′′(t) − α1u(t) = f1(t, u(t), v(t)), t ∈ (0, 1),
v(4)(t) + β2v′′(t) − α2v(t) = f2(t, u(t), v(t)), t ∈ (0, 1),

under the conditions

u(0) = u(1) = u′′(0) = u′′(1) = 0,
v(0) = v(1) = v′′(0) = v′′(1) = 0,

where, fi ∈ C([0, 1] × R+ × R+,R+), R+ = [0,+∞), and βi, αi ∈ R verify: βi < 2π2, −β2
i /4 6 αi,

αi/π
4 + βi/π

2 < 1, i = 1, 2.
By giving a cone P in C([0, 1]×C([0, 1], the authors proved existence of positive solution results.

Then, by constructing over a product cone, they established another positive solution result.
In [31], the authors investigated the existence and uniqueness of solutions for the following system

which contains sequential Caputo derivatives:{
(cDα + λcDα−1)x(t) = f (t, x(t), y(t), IP1

0+ x(t), IP2
0+ y(t)), t ∈ (0, 1) ,

(cDβ + µcDβ−1)y(t) = f (t, x(t), y(t), Iq1
0+ x(t), Iq2

0+y(t)), t ∈ (0, 1) ,

with  x(0) = x′(0) = 0, x′(1) = 0, x(1) =
∫ 1

0
x(s)dH1(s) +

∫ 1

0
y(s)dH2(s),

y(0) = y′(0) = 0, y′(1) = 0, y(1) =
∫ 1

0
x(s)dK1(s) +

∫ 1

0
y(s)dK2(s),

where, α, β ∈ (3, 4], λ, µ > 0, p1, q1, p2, q2 > 0, f , g : [0, 1] × R4 → R are continuous functions, IJ
0+ is

the Riemann-Liouville integral of order ν, (with ν = p1, q1, p2, q2), and the Riemann-Stieltjes integrals
with given bounded variation functions H1,H2,K1,K2. Such systems can be applied in biosciences,
see [4] and its references. The authors obtained existence and uniqueness results for solutions of
the system.
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In [11], the authors were concerned with the existence and uniqueness of solutions for the
following coupled system of differential equations with several sequential derivatives:

Dα1 Dα2 Dα3 Dα4 x(t) = H1(t, x(t), y(t)) + a1 f1(x(t)) + b1g1(Dα1 Dα2 x(t)), t ∈ J = [0, 1] ,
Dβ1 Dβ2 Dβ3 Dβ4y(t) = H2(t, x(t), y(t)) + a2 f2(y(t)) + b2g2(Dβ1 Dβ2y(t)), t ∈ J = [0, 1] ,

x(0) = x(1) = Dα1 Dα2 x(1) = Dα4 x(0) = 0,
y(0) = y(1) = Dβ1 Dβ2y(1) = Dβ4y(0) = 0,

(1.1)

where, Dα1 ,Dα1 ,Dα2 ,Dα3 ,Dα4 ,Dβ1 ,Dβ1 ,Dβ2 ,Dβ3 ,Dβ4 are Caputo fractional derivatives. The conditions
0 < αi 6 1, 0 < βi 6 1, i = 1, ..., 4, along with the sequential aspect of the derivatives, guarantee
that the studied system has a fractional derivative order included in [3, 4]. They also supposed that
α2 +α1 < α4, β1 + β2 < β4, f j : R→ R , g j : R→ R, and H j : [0, 1]×R2 → R , j = 1, 2 are continuous
functions, and

Hi(t, 0, 0) , 0, fi(0) , 0, gi(0) , 0, i = 1, 2.
In [12], K. Bensassa et al. studied the existence and uniqueness of solutions and stability in the

sense of Ulam Hyers of the system{
Dα1 Dα2u(x) = f1 (x, u(x), v(x)) + a1g1(x, u(x)) + b1h1(x,Dδu(x)),
Dβ1 Dβ2v(x) = f2 (x, u(x), v(x)) + a2g2(x, u(x)) + b2h2(x,Dδu(x)),

(1.2)

under the conditions 
u(0) = u(1) = a,

u′(0) = u′(1) = 0,
v(0) = v(1) = b,

v′(0) = v′(1) = 0,

(1.3)

where, for i = 1, 2, ai, bi ∈ R, Dαi ,Dβi ,Dδ are some fractional derivatives, 0 < δ ≤ 1 fi ∈ C([0, 1]×R×
R,R) , gi, hi ∈ C([0, 1] × R,R).

Based on the above-cited studies and, in particular, paper [32], in the present paper we shall be
concerned with the following problem involving Caputo sequential derivatives:{

Dα1 Dβ1u1(x) = F1(x, u1(x), u2(x)),Dδ−1u1(x),Dδu1(x)),
Dα2 Dβ2u2(x) = F2(x, u1(x), u2(x)),Dδ−1u2(x),Dδu2(x)),

(1.4)

under the conditions {
ui(0)) = ui(1) = ai ∈ R,

Dβiui(0) = Dβiui(1) = 0,
(1.5)

where, Dαi ,Dβi ,Dδ are Caputo fractional derivatives.
To guarantee the absence of semi-group and commutativity properties on the Caputo derivatives,

and to obtain, under different conditions, the above Wang and Yang fourth-order system as a particular
case, we also suppose that αi and βi satisfy the conditions 2 < αi ≤ 3, 0 < βi ≤ 1. We suppose also that
1 < δ ≤ 2. This condition allows us to obtain the above problem of Wang and Yang [32] as a limiting
case of (1.4). For i = 1, 2, Fi : [0, 1] × R4 → R are some continuous functions.

It is important to note that the problem we are investigating is more significant than the works cited
above, and differs from most of them by incorporating Caputo derivatives in the initial conditions.
This inclusion adds a layer of complexity and realism to our problem, enhancing its relevance and
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applicability in physical contexts. These conditions allow for better capturing of memory effects and
non-local behaviors of the system while offering compatibility with observable initial conditions and
efficient numerical methods.

Furthermore, our system includes two general functions, F1 and F2, which extend the applicability
of the system beyond previously studied problems, providing a more comprehensive framework for
understanding beam deflection dynamics. This broader approach allows for modeling more complex
scenarios, thereby offering deeper insights and improved predictive capabilities in engineering and
applied physics.

Moreover, our system (1.4) bridges the gap between classical beam deflection theories
and modern viscoelastic models. Specifically, if we take the particular case where
Fi(x, u1(x), u2(x)),Dδ−1u1(x),Dδu1(x)) = fi(x, u1(x), u2(x)) − aiu

′′

i + biu
′

i, δ = 2, αi = 3, βi = 1, then
our system (1.4) can be reduced to the above fourth-order ODEs used to describe the deformation of
an elastic beam [32].

Additionally, (1.4) provides a robust tool for studying a wide range of physical phenomena with
greater precision and insight. This makes our work both practically relevant and theoretically enriching.

In the second part of our paper, we will use the Tanh method [14, 15] to find new
traveling wave solutions for the following coupled beam problem with conformable fractional Khalil
derivatives [1, 21]:  T 2α

t u + T 4β
x u + H(u, v, ...) = 0,

T 2α
t v + T 4β

x v + L(u, v, ...) = 0,
(1.6)

where, 0 < α, β ≤ 1, and H, L are two given functions.
The connection between these two parts lies in the use of fractional calculus to extend and enhance

classical models, demonstrating the versatility and power of fractional derivatives—both Caputo and
conformable—in addressing and solving advanced mathematical problems. This unified approach
showcases how different fractional derivatives can be effectively applied to study and solve a variety of
complex systems.

The choice of the Tanh method is justified by its relative simplicity and straightforward
application, often requiring less computational effort compared to other methods. This makes it
an efficient tool for finding solutions. Additionally, it provides explicit analytical solutions, which
are valuable for understanding the qualitative behavior of the solutions and for validating numerical
simulations. By yielding exact traveling wave solutions, the Tanh method helps in gaining insights
into the physical phenomena described by the equations, such as wave propagation, solitons, and other
localized structures. These advantages make the Tanh method a valuable tool in the study of traveling
waves in nonlinear systems. For more details on this method and other important similar techniques,
one can refer to papers [25, 27, 33].

The paper is organized as follows: In Section 2, we provide an overview of fractional calculus
including Caputo fractional derivatives. In Section 3, we delve into the application of fixed point
theory. We introduce the necessary concepts to study our system. Section 4 is devoted to the study of
existence and uniqueness of solutions for our system, and an example is presented. In Section 5, we
employ conformable fractional derivatives, as defined by Khalil, to examine another system consisting
of two coupled evolution equations. Using the Tanh method, we derive new progressive waves. We
discuss the advantages of this method and its efficacy in finding explicit analytical solutions. In the
final section, we summarize the key findings of our study, emphasizing the connection between the
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two parts. We highlight how the use of fractional calculus extends and enhances classical models,
demonstrating its versatility in addressing complex mathematical problems.

2. Preliminaries

We recall the following notions of fractional calculus that are needed in the proof of our results,
see [13, 22].

Definition 1. The fractional integral of order α > 0 of any function h ∈ C([ 0, 1]) is defined by

Jαh(t) =

∫ t

0

(t − s)α−1

Γ(α)
h(s)ds, (2.1)

where Γ(α) :=
∞∫
0
e−uuα−1du.

Definition 2. Letting h ∈ Cn([ 0, 1]), the Caputo fractional-order derivative of h is defined by

Dαh(t) =
1

Γ(n − α)

∫ t

0
(t − s)n−α−1h(n)(s)ds, (2.2)

with n := [α] + 1.

We also need the following lemmas and remark, see [22].

Lemma 1. Let α > 0, and
Dαh(t) = 0, t ∈ [0, 1]. (2.3)

Then, h(t) = c0 + c1t + c2t2 + ..... + cn−1tn−1, ci ∈ R, i = 0, 1, 2, ....., n − 1, n = [α] + 1.

Lemma 2. Suppose α > 0. Hence,

Jαa+ Dαh(t) = h(t) + c0 + c1t + c2t2 + ... + cn−1tn−1, (2.4)

such that ci ∈ R, i = 0, 1, 2, ..., n − 1.

Remark 1. (1*) For any α > 0, β > 0, t ∈ [0, 1], we have the well known semigroup property:
JαJβh(t) = Jα+βh(t).
(2*) If β ≥ α > 0, then by the definition of Dα and property (1*), we have DαJβh(t) = Jβ−αh(t).
(3*) Taking α = β in (2*), we have DαJαh(t) = h(t).

Now, we prove the following equivalent integral equation.

Lemma 3. Let G1,G2 ∈ C([0, 1] ,R) and 2 < αi ≤ 3, 0 < βi ≤ 1, i = 1, 2. So, the problem
Dα1 Dβ1u1(x) = G1(x),

Dα2 Dβ2u2(x) = G2(x),
(2.5)
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under the conditions {
ui(0) = ui(1) = ai ∈ R,

Dβiui(0) = Dβiui(1) = 0,

is equivalent to the following integral equation:

u1(x) = a1 + Jα1+β1G1 (x)

+

 2
β1Γ(α1)

1∫
0

(1 − s)α1−1 G1 (s) ds − Γ(β1+3)
β1Γ(α1+β1)

1∫
0

(1 − s)α1+β1−1 G1 (s) ds
 xβ1+1

+

 Γ(β1+3)
β1Γ(α1+β1)

1∫
0

(1 − s)α1+β1−1 G1 (s) ds − β1+2
β1Γ(α1)

1∫
0

(1 − s)α1−1 G1 (s) ds
 xβ1+2,

u2(x) = a2 + Jα2+β2G2 (x)

+

 2
β2Γ(α2)

1∫
0

(1 − s)α2−1 G2 (s) ds − Γ(β2+3)
β2Γ(α2+β2)

1∫
0

(1 − s)α2+β2−1 G2 (s) ds
 xβ2+1

+

 Γ(β2+3)
β2Γ(α2+β2)

1∫
0

(1 − s)α2+β2−1 G2 (s) ds − β2+2
β2Γ(α2)

1∫
0

(1 − s)α2−1 G2 (s) ds
 xβ2+2.

(2.6)

Proof. We begin by applying Jαi+βi for (2.5), and then using Lemma 1.2, we can get

u1 (x) = Jα1+β1G1 (x) + c0 xβ1

Γ(β1+1) + c1 xβ1+1

Γ(β1+2) + 2c2 xβ1+2

Γ(β1+3) + c3,

u2 (x) = Jα2+β2G2 (x) + d0 xβ2

Γ(β2+1) + d1 xβ2+1

Γ(β2+2) + 2d2 xβ2+2

Γ(β2+3) + d3.

(2.7)

Since ui(0) = ai, we get c3 = a1, d3 = a2.

Now, in the two quantities

Dβ1u1 (x) = 1
Γ(α1)

x∫
0

(x − s)α1−1 G1 (s) ds + c0 + c1x + c2x2,

Dβ2u2 (x) = 1
Γ(α2)

x∫
0

(x − s)α2−1 G2 (s) ds + d0 + d1x + d2x2,

(2.8)

(that have been obtained by differentiation of (2.7)), if we take x = 0, then we obtain

c0 = d0 = 0.

Taking x = 1 in (2.7) and in (2.8), we have the following four equations:
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1
Γ(α1+β1)

1∫
0

(1 − s)α1+β1−1 G1 (s) ds + c1
Γ(β1+2) + 2c2

Γ(β1+3) = 0,

1
Γ(α1)

1∫
0

(1 − s)α1−1 G1 (s) ds + c1 + c2 = 0,

1
Γ(α2+β2)

1∫
0

(1 − s)α2+β2−1 G2 (s) ds + d1
Γ(β2+2) + 2d2

Γ(β2+3) = 0,

1
Γ(α2)

1∫
0

(1 − s)α2−1 G2 (s) ds + d1 + d2 = 0.

Solving these four equations, we obtain

c1 = −
Γ(β1+3)

β1Γ(α1+β1)

1∫
0

(1 − s)α1+β1−1 G1 (s) ds + 2
β1Γ(α1)

1∫
0

(1 − s)α1−1 G1 (s) ds,

c2 =
Γ(β1+3)

β1Γ(α1+β1)

1∫
0

(1 − s)α1+β1−1 G1 (s) ds − β1+2
β1Γ(α1)

1∫
0

(1 − s)α1−1 G1 (s) ds,

d1 = −
Γ(β2+3)

β2Γ(α2+β2)

1∫
0

(1 − s)α2+β2−1 G2 (s) ds + 2
β2Γ(α2)

1∫
0

(1 − s)α2−1 G2 (s) ds,

and

d2 =
Γ(β2+3)

β2Γ(α2+β2)

1∫
0

(1 − s)α2+β2−1 G2 (s) ds − β2+2
β2Γ(α2)

1∫
0

(1 − s)α2−1 G2 (s) ds.

Now, replacing ci and di in (2.7), we have (2.6).
Lemma 3 is thus proved.

3. Application of fixed point theory

We consider the Banach space

E =
{
u ∈ C([0, 1] ,R), Dδ−1u ∈ C([0, 1] ,R),Dδu ∈ C([0, 1] ,R)

}
,

over which we take the∞−sum norm

‖u‖E = ‖u‖∞ +
∥∥∥Dδ−1u

∥∥∥
∞

+
∥∥∥Dδu

∥∥∥
∞
,

where
‖u‖∞ = sup

x∈[0,1]
|u(x)| ,

∥∥∥Dδ−1u
∥∥∥
∞

= sup
x∈[0,1]

∣∣∣Dδ−1u(x)
∣∣∣ , ∥∥∥Dδu

∥∥∥
∞

= sup
x∈[0,1]

∣∣∣Dδu(x)
∣∣∣ .

We shall also consider the product space E × E and the norm

‖(u, v)‖E×E = ‖u‖E + ‖v‖E .
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Now, to be able to use fixed point theory, we need to introduce an operator Q := (Q1,Q2), such
that Q : E × E → E × E is defined by the two right-hand sides of (2.6), where the functions G1 :=
F1,G2 = F2; ( F1 and F2 are introduced in (1.4)). In other words, we consider

Q (u (x) , v (x)) := (Q1 (u (x) , v (x)) ,Q2 (u (x) , v (x))) ,

where, for i = 1, 2, we have

Qi (u (x) , v (x)) = ai + Jαi+βi Fi(x, u(x), v(x)),Dδ−1u(x),Dδv(x))

+


2

βiΓ(αi)

1∫
0

(1 − s)αi−1 Fi(s, u(s), v(s)),Dδ−1u(s),Dδv(s))ds

−
Γ(βi+3)
βiΓ(αi+βi)

1∫
0

(1 − s)αi+βi−1 Fi(s, u(s), v(s)),Dδ−1u(s),Dδv(s))ds

 xβi+1

+


Γ(βi+3)
βiΓ(αi+βi)

1∫
0

(1 − s)αi+βi−1 Fi(s, u(s), v(s)),Dδ−1u(s),Dδv(s))ds

−
βi+2
βiΓ(αi)

1∫
0

(1 − s)α1−1 Fi(s, u(s), v(s)),Dδ−1u(s),Dδv(s))ds

 xβi+2.

4. Existence of unique solutions

We suppose the following.
(H2): There is a matrix of positives functions p ji(x), j = 1, 2..4, i = 1, 2 such that for all x ∈ [0, 1] and
(u, v, y, z), (r, s, t,w) ∈ R4, one has

|Fi(x, u, v, y, z) − Fi(x, r, s, t,w)| 6 p1i(x) |u − r| + p2i(x) |v − s|

+p3i(x) |y − t| + p4i(x) |z − w| ,

with, n ji := sup
x∈[0,1]

∣∣∣p ji(x)
∣∣∣ , j = 1, 2, 3, 4, i = 1, 2.

Then, we can prove the first main result.

Theorem 1. Suppose the validation of (H2). If M1 + M2 ∈ [0, 1], where

Mi := Ai max {(n1i + n3i) , (n2i + n4i)} , i = 1, 2,

and
Ai =

(
βi+2Γ(βi+3)
βiΓ(αi+βi+1) +

βi+4
βiΓ(αi+1)

)
+ 1

Γ(αi+βi−δ+2) + 1
Γ(αi+βi−δ+1)

+
Γ(βi+2)

βiΓ(αi+1)Γ(βi−δ+4)

(
2 (βi − δ + 3) + (βi + 2)2

)
+

Γ(βi+3)Γ(βi+2)
βiΓ(αi+βi+1)Γ(βi−δ+4) (2βi − δ + 5) +

Γ(βi+3)Γ(βi+2)
βiΓ(αi+βi+1)Γ(βi−δ+3) (2βi − δ + 4)

+
Γ(βi+2)

βiΓ(αi+1)Γ(βi−δ+3)

(
(βi + 2)2 + 2 (βi − δ + 2)

)
,

then (1.4) and (1.5) admits a unique solution.
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Proof. To proceed with the proof, we prove that Q satisfies the Banach contraction principle.

First of all, we note that the stability of the above product space E × E by the operator Q is trivial,
and hence we omit it.

Let us now take two arbitrary elements (u1, v1) , (u2, v2) ∈ E × E. So, for all x ∈ [0, 1] and for
i = 1, 2, we can write

|Qi (u1 (x) , v1 (x)) − Qi (u2 (x) , v2 (x))| ≤

1
Γ(αi+βi)

∣∣∣∣∣∣ x∫
0

(x − s)αi+βi−1
[

Fi(s, u1(s), v1(s)),Dδ−1u1(s),Dδv1(s))
−Fi(s, u2(s), v2(s)),Dδ−1u2(s),Dδv2(s))

]
ds

∣∣∣∣∣∣
+ 2
βiΓ(αi)

∣∣∣∣∣∣ 1∫
0

(1 − s)αi−1
[

Fi(s, u1(s), v1(s)),Dδ−1u1(s),Dδv1(s))
−Fi(s, u2(s), v2(s)),Dδ−1u2(s),Dδv2(s))

]
ds

∣∣∣∣∣∣
+

Γ(βi+3)
βiΓ(αi+βi)

∣∣∣∣∣∣ 1∫
0

(1 − s)αi+βi−1
[

Fi(s, u1(s), v1(s)),Dδ−1u1(s),Dδv1(s))
−Fi(s, u2(s), v2(s)),Dδ−1u2(s),Dδv2(s))

]
ds

∣∣∣∣∣∣
+

Γ(βi+3)
βiΓ(αi+βi)

∣∣∣∣∣∣ 1∫
0

(1 − s)αi+βi−1
[

Fi(s, u1(s), v1(s)),Dδ−1u1(s),Dδv1(s))
−Fi(s, u2(s), v2(s)),Dδ−1u2(s),Dδv2(s))

]
ds

∣∣∣∣∣∣
+

βi+2
βiΓ(αi)

∣∣∣∣∣∣ 1∫
0

(1 − s)α1−1
[

Fi(s, u1(s), v1(s)),Dδ−1u1(s),Dδv1(s))
−Fi(s, u2(s), v2(s)),Dδ−1u2(s),Dδv2(s))

]
ds

∣∣∣∣∣∣ .
Therefore,

‖Qi (u1 (x) , v1 (x)) − Qi (u2 (x) , v2 (x))‖∞ ≤

βi+2Γ(βi+3)
βiΓ(αi+βi)

1∫
0

(1 − s)αi+βi−1

∣∣∣∣∣∣ Fi(s, u1(s), v1(s)),Dδ−1u1(s),Dδv1(s))
−Fi(s, u2(s), v2(s)),Dδ−1u2(s),Dδv2(s))

∣∣∣∣∣∣ ds

+
βi+4
βiΓ(αi)

1∫
0

(1 − s)αi−1

∣∣∣∣∣∣ Fi(s, u1(s), v1(s)),Dδ−1u1(s),Dδv1(s))
−Fi(s, u2(s), v2(s)),Dδ−1u2(s),Dδv2(s))

∣∣∣∣∣∣ ds.

Using (H2), we obtain

‖Qi (u1, v1) − Qi (u2, v2)‖∞ ≤

(
βi+2Γ(βi+3)
βiΓ(αi+βi+1) +

βi+4
βiΓ(αi+1)

) [ n1i ||u1 − u2||∞ + n2i ||v1 − v2||∞

+n3i

∣∣∣∣∣∣Dδ−1u1 − Dδ−1u2

∣∣∣∣∣∣
∞

+ n4i

∣∣∣∣∣∣Dδv1 − Dδv2

∣∣∣∣∣∣
∞

]
.

(4.1)
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Using Caputo derivative, we obtain

Dδ−1Qi (u (x) , v (x)) = Jαi+βi−δ+1Fi(x, u(x), v(x)),Dδ−1u(x),Dδv(x))

+
Γ(βi+2)

Γ(βi−δ+3) xβi−δ+2


2

βiΓ(αi)

1∫
0

(1 − s)αi−1 Fi(s, u(s), v(s)),Dδ−1u(s),Dδv(s))ds

−
Γ(βi+3)
βiΓ(αi+βi)

1∫
0

(1 − s)αi+βi−1 Fi(s, u(s), v(s)),Dδ−1u(s),Dδv(s))ds



+
Γ(βi+3)

Γ(βi−δ+4) xβi−δ+3


Γ(βi+3)
βiΓ(αi+βi)

1∫
0

(1 − s)αi+βi−1 Fi(s, u(s), v(s)),Dδ−1u(s),Dδv(s))ds

−
βi+2
βiΓ(αi)

1∫
0

(1 − s)α1−1 Fi(s, u(s), v(s)),Dδ−1u(s),Dδv(s))ds

 ,
and

DδQi (u (x) , v (x)) = Jαi+βi−δFi(x, u(x), v(x)),Dδ−1u(x),Dδv(x))

+
Γ(βi+2)

Γ(βi−δ+2) xβi−δ+1


2

βiΓ(αi)

1∫
0

(1 − s)αi−1 Fi(s, u(s), v(s)),Dδ−1u(s),Dδv(s))ds

−
Γ(βi+3)
βiΓ(αi+βi)

1∫
0

(1 − s)αi+βi−1 Fi(s, u(s), v(s)),Dδ−1u(s),Dδv(s))ds



+
Γ(βi+3)

Γ(βi−δ+3) xβi−δ+2


Γ(βi+3)
βiΓ(αi+βi)

1∫
0

(1 − s)αi+βi−1 Fi(s, u(s), v(s)),Dδ−1u(s),Dδv(s))ds

−
βi+2
βiΓ(αi)

1∫
0

(1 − s)α1−1 Fi(s, u(s), v(s)),Dδ−1u(s),Dδv(s))ds.

 .
Thanks to (H2), and using the same arguments as in (4.1), we can write∥∥∥Dδ−1Qi (u1, v1) − Dδ−1Qi (u2, v2)

∥∥∥
∞
≤ 1

Γ(αi+βi−γ+2) +
Γ(βi+2)

βiΓ(αi+1)Γ(βi−δ+4)

(
2 (βi − δ + 3) + (βi + 2)2

)
+

Γ(βi+3)Γ(βi+2)
βiΓ(αi+βi+1)Γ(βi−δ+4) (2βi − δ + 5)


×

(
n1i ||u1 − u2||∞ + n2i ||v1 − v2||∞

+n3i

∣∣∣∣∣∣Dδ−1u1 − Dδ−1u2

∣∣∣∣∣∣
∞

+ n4i

∣∣∣∣∣∣Dδv1 − Dδv2

∣∣∣∣∣∣
∞

)
.

(4.2)

Recalculating for this step involves replacing δ−1 with δ everywhere in (2.4), except in the term within
the large parentheses. So, we obtain the following estimate:∥∥∥DδQi (u1, v1) − DδQi (u2, v2)

∥∥∥
∞
≤ 1

Γ(αi+βi−γ+1) +
Γ(βi+3)Γ(βi+2)

βiΓ(αi+βi+1)Γ(βi−δ+3) (2βi − δ + 4)

+
Γ(βi+2)

βiΓ(αi+1)Γ(βi−δ+3)

(
(βi + 2)2 + 2 (βi − δ + 2)

) 
×

(
n1i ||u1 − u2||∞ + n2i ||v1 − v2||∞

+n3i

∣∣∣∣∣∣Dδ−1u1 − Dδ−1u2

∣∣∣∣∣∣
∞

+ n4i

∣∣∣∣∣∣Dδv1 − Dδv2

∣∣∣∣∣∣
∞

)
.

(4.3)
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Thanks to the definition of the norm over E, and by (4.1)–(4.3), we can write for i = 1, 2

‖Qi (u1 (x) , v1 (x)) − Qi (u2 (x) , v2 (x))‖E ≤
(
βi+2Γ(βi+3)
βiΓ(αi+βi+1) +

βi+4
βiΓ(αi+1)

)
+ 1

Γ(αi+βi−γ+2) +
Γ(βi+2)

βiΓ(αi+1)Γ(βi−δ+4)

(
2 (βi − δ + 3) + (βi + 2)2

)
+

Γ(βi+3)Γ(βi+2)
βiΓ(αi+βi+1)Γ(βi−δ+4) (2βi − δ + 5)

+ 1
Γ(αi+βi−γ+1) +

Γ(βi+3)Γ(βi+2)
βiΓ(αi+βi+1)Γ(βi−δ+3) (2βi − δ + 4) +

Γ(βi+2)
βiΓ(αi+1)Γ(βi−δ+3)

(
(βi + 2)2 + 2 (βi − δ + 2)

)


× ((n1i + n3i) ||u1 − u2||E + (n2i + n4i) ||v1 − v2||E)

≤ Ai

(
(n1i + n3i) ||u1 − u2||E + (n2i + n4i) ||v1 − v2||E

)
.

(4.4)

By (4.4), the definition of M1 and M2, and the norm over E × E, we can write

‖Q (u1, v1) − Q (u2, v2)‖E×E ≤ (M1 + M2) ‖(u1, v1) − (u2, v2)‖E .

Since M1 + M2 < 1, then Q is a contraction.
Hence, the Banach fixed point theorem implies that there exists a unique fixed point which is the

solution of (1.4) and (1.5).
Example. Consider the following system:

Dα1 Dβ1u1(x) = F1(x, u1(x), u2(x)),Dδ−1u1(x),Dδu1(x)),

Dα2 Dβ2u2(x) = F2(x, u1(x), u2(x)),Dδ−1u2(x),Dδu2(x)),

u1(0)) = u1(1) = u2(0)) = u2(1) = 0,

Dβ1u1(0) = Dβ1u1(1) = Dβ2u2(0) = Dβ2u2(1) = 0.

We take

α1 = 5
2 , β1 = 3

5 , α2 = 14
5 , β2 = 7

10 , δ = 3
2 ,

F1(x, u1(x), u2(x)),Dδ−1u1(x),Dδu1(x)) = 1
200e2x u1(x) + ( cos(3+x2)

30(10+x2) )u2(x) + ( sin(x)
10(ex+24) )D

1
2 u1(x)

+( 1
350ex )D

3
2 u1(x)),

F2(x, u1(x), u2(x)),Dδ−1u1(x),Dδu1(x)) = 1
23 ( 1

π
+ ln(1 + x))u1(x) + ( sin(x+1)

300et )u2(x)
+( cos(x)

15(ex+10) )D
1
2 u1(x) + ( 1

15π2e5t )D
3
2 u1(x)).

It is clear that, for all u1, u2, v1, v2 ∈ R and x ∈ [0, 1], we have

|F1(x, u, v, y, z) − F1(x, r, s, t,w)| 6
(

p11(x) |u − r| + p21(x) |v − s|
+p31(x) |y − t| + p41(x) |z − w|

)
,

|F2(x, u, v, y, z) − F2(x, r, s, t,w)| 6
(

p12(x) |u − r| + p22(x) |v − s|
+p32(x) |y − t| + p42(x) |z − w|

)
.
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We also have

M1 = max {0.2435, 0.1675} = 0.2435,M2 = max {0.3509, 0.1726} = 0.3509.

The hypotheses of Theorem 1 are valid. Consequently, there exists exactly one solution to this system.

5. Traveling wave for beam systems

In this section, we will employ the Tanh method [7,14,25,28] to discover traveling wave solutions
for a coupled system, which incorporates conformable fractional derivatives of the type =2α

t u(t, x) + =
4β
x u(t, x) + H(u, v,=2β

x (u, v))(t, x) = 0,
=2α

t v(t, x) + =
4β
x v(t, x) + L(u, v,=2β

x (u, v))(t, x) = 0,
(5.1)

where 0 < α, β ≤ 1, the two functions H and L are to be specified, and =αt u(t, x) represents the
conformable fractional derivative, as defined by Khalil, of the unknown function u with respect to t
(see [21, 29]); it is expressed by

=αt u(t, x) =
∂αu(t,x)
∂tα = lim

ε→0

(
u(t+εt1−α,x)−u(t,x)

ε

)
, 0 < α ≤ 1.

Similarly, we introduce =βxu(t, x).
We remark that if α = β = 1, then the above system can be transformed into the classical coupled

beam equations [30, 36]:  utt + uxxxx + H(u, v, (u, v)xx) = 0,
vtt + vxxxx + L(u, v, (u, v)xx) = 0.

5.1. Tanh Methodology

Now, let us recall the important steps of the Tanh method for the scenario involving Khalil
derivatives [15].

(1) We start by considering the coupled equations F1

(
u, v,=αt u,=βxu,=αt v,=βxv,=2α

t u,=αt (=βxu),=2β
x u,=2α

t v,=αt (=βxv),=2β
x v, ...

)
= 0,

F2

(
u, v,=αt u,=βxu,=αt v,=βxv,=2α

t u,=αt (=βxu),=2β
x u,=2α

t v,=αt (=βxv),=2β
x v, ...

)
= 0.

(5.2)

(2) Thanks to
ψ = k

α
tα + ω

β
xβ, (5.3)

our general form can be seen as G1

(
U,V,U

′

,V
′

,U
′′

,V
′′

,U
′′′

,V
′′′

, ...
)

= 0,

G2

(
U,V,U

′

,V
′

,U
′′

,V
′′

,U
′′′

,V
′′′

, ...
)

= 0.
(5.4)

(3) Now, we use the transformation

X = tanh(ψ), (5.5)
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which allows us to get

d
dψ =

(
1 − Z2

)
d

dZ ,

d2

dψ2 = −2Z
(
1 − Z2

)
d

dZ +
(
1 − Z2

)2 d2

dZ2 ,

d3

dψ3 = 2
(
1 − Z2

) (
3Z2 − 1

)
d

dZ − 6Z
(
1 − Z2

)2 d2

dZ2 +
(
1 − Z2

)3 d3

dZ3 ,

d4

dψ4 = −8Z
(
1 − X2

) (
3Z2 − 2

)
d

dZ + 4
(
1 − Z2

)2 (
9Z2 − 2

)
d2

dZ2

−12Z
(
1 − Z2

)3 d3

dZ3 +
(
1 − Z2

)4 d4

dZ4 .

(5.6)

(4) Then, we suppose that  u(x, t) = U(ψ) = P(Z) =
∑m

i=0 aiZi,

v(x, t) = V(ψ) = Q(Z) =
∑n

i=0 biZi.
(5.7)

(5) Finally, employing Wazwaz term-balancing [33], we derive the desired solutions for the
constants ai, bi.

5.2. Applications

As an application, we propose to find traveling wave solutions for the coupled problem =
4β
x (u) + =2α

t (u) + =
2β
x (u) + 2b=βx((=

β
xv)v) = 0,

=
4β
x (v) + =2α

t (v) + c=2β
x (uv + ev) = 0,

(5.8)

where b, c are two real constants.
We use (5.3) to change (5.8) into the following nonlinear problem: ω4Uψψψψ + k2Uψψ + ω2(U)ψψ + 2bω2(VψV)ψ = 0,

ω4Vψψψψ + k2Vψψ + cω2(UV)ψψ + eω2Vψψ = 0.
(5.9)

Integrating (5.9), we can write ω4Uψψ + k2U + ω2U + bωV2 = 0,
ω4Vψψ + k2V + cω2(UV) + eω2V = 0.

(5.10)

Substituting (5.6) and (5.7) into (5.10), the first equation of (5.10) is transformed into the
following equation:

ω4
[
− 2Z

(
1 − Z2

) dP
dZ

+
(
1 − Z2

)2 d2P
dZ2

]
+ k2P + bω2Q2 + eω2P = 0. (5.11)

The second equation of (5.10) can be transformed into

ω4
[
− 2Z

(
1 − Z2

) dQ
dZ

+
(
1 − Z2

)2 d2Q
dZ2

]
+ k2Q + cω2(PQ) + eω2Q = 0. (5.12)

Now, in (5.11), we balance Z4 d2P
dZ2 with Q2 to get 2 + m = 2n.
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Using the same technique with (5.12), we have 2 + n = n + m.
Therefore, we can write  P(Z) = a0 + a1Z + a2Z2,

Q(Z) = b0 + b1Z + b2Z2.
(5.13)

Substituting (5.13) into (5.11), we observe that

− 2ω4Z
(
1 − Z2

)
(a1 + 2a2Z) + 2a2ω

4
(
1 − Z2

)2
+ k2(a0 + a1Z + a2Z2)

+ bω2(b0 + b1Z + b2Z2)2 + ω2e(a0 + a1Z + a2Z2) = 0.
(5.14)

Also, substituting (5.13) into (5.12), we get

− 2ω4Z
(
1 − Z2

)
(b1 + 2b2Z) + 2b2ω

4
(
1 − Z2

)2
+ k2(b0 + b1Z + b2Z2)

+ cω2(a0 + a1Z + a2Z2)(b0 + b1Z + b2Z2) + eω2(b0 + b1Z + b2Z2) = 0.
(5.15)

Thus, we obtain the following two sets:
Set 1. 

Z0 : bw2b2
0 − 2w2a1 + 2w2a2 + k2a0 + w2a0 = 0,

Z1 : 2bw2b0b1 − 4w2a2 + k2a1 + w2a1 = 0,
Z2 : 2bw2b0b2 + bw2b2

1 + 2w2a1 − 4w2a2 + k2a2 + w2a2 = 0,
Z3 : 2bw2b1b2 + 4w2a2 = 0,
Z4 : bw2b2

2 + 2w2a2 = 0.

(5.16)

Set 2. 

Z0 : cw2a0b0 − 2w4b1 + 2w4b2 + ew2b0 + k2b0 = 0,
Z1 : cw2a0b1 + cw2a1b0 − 4w4b2 + ew2b1 + k2b1 = 0,
Z2 : cw2a0b2 + cw2a1b1 + cw2a2b0 + 2w4b1 − 4w4b2 + ewb2 + k2b2 = 0,
Z3 : cw2a1b2 + cw2a2b1 + 4w4b2 = 0,
Z4 : cw2a2b2 + 2w4b2 = 0.

(5.17)

Solving (5.16) and (5.17) with the aid of Maple, we obtain the following:
Case 1.

ω = e, k = ±e
√

4e2 − 1, a0 = 0, a1 = −
2e2

c
, a2 = −

2e2

c
,

b0 = 0, b1 = ±2e2

√
1
bc
, b2 = ±2e2

√
1
bc
.

(5.18)

Substituting (5.18) into (5.13), the following traveling wave solution of (5.8) is obtained:

u(x, t) = −
2e2

c
tanh(ψ) −

2e2

c
tanh2(ψ), (5.19)

v(x, t) = ±2e2

√
1
bc

tanh(ψ) ± 2e2

√
1
bc

tanh2(ψ). (5.20)

Now, we trace the two components of this traveling wave solution in Figure 1 under specific parameters.

AIMS Mathematics Volume 9, Issue 8, 21609–21627.



21623

(a) Plots of (5.19) (b) Plots of (5.20)

Figure 1. Plots of (5.19, 5.20), with 0 ≤ x ≤ 10, 0 ≤ t ≤ 10 and b = 5, c = 1, e = 2, ω = e,
α = 3

5 , β = 1
5 .

Case 2.
ω = e, k = k, a0 =

4e2

c
, a1 = −

2e2

c
, a2 = −

2e2

c
,

b0 = ±4e2

√
1
bc
, b1 = ±2e2

√
1
bc
, b2 = ±2e2

√
1
bc
.

(5.21)

Substituting (5.21) into (5.13), the following traveling wave solution of (5.8) is also obtained:

u(x, t) =
4e2

c
−

2e2

c
tanh(ψ) −

2e2

c
tanh2(ψ), (5.22)

v(x, t) = ±4e2

√
1
bc
± 2e2

√
1
bc

tanh(ψ) ± 2e2

√
1
bc

tanh2(ψ). (5.23)

As above, we trace the two components of this traveling wave solution in Figure 2 under
specific parameters.
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(a) Plots of solution (5.22) (b) Plots of solution (5.23)

Figure 2. Plots of (5.22, 5.23) with 0 ≤ x ≤ 10, 0 ≤ t ≤ 10 and b = 3
2 , c = 3, e = 3

7 , ω = e,
α = 8

9 , β = 3
10 .

6. Conclusions

In the above work, we explored two distinct yet related problems in the field of mathematics. The
first part involved analyzing a fractional system with Caputo derivatives, which generalizes a beam
deflection type system. We focused on proving the existence of a unique solution for this system.
In the second part of our research, we employed conformable fractional derivatives, as defined by
Khalil, to examine another system consisting of two coupled evolution equations. By transforming this
conformable fractional system, we derived an ordinary differential system characterized by traveling
waves. The connection between these two parts lies in the use of fractional calculus to extend and
enhance classical models, demonstrating the versatility and power of fractional derivatives—both
Caputo and conformable—in addressing and solving advanced mathematical problems. This unified
approach shows how different fractional derivatives can be applied to study and solve a variety of
complex systems, thereby enriching our understanding and capabilities in mathematical modeling
and analysis.
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