
CPM 2024 Summer School

– Phylogenetic Consensus Trees –

Lecturer: Jesper Jansson

Kyoto University

2024-06-20

PART I : Introduction

CPM 2024 Summer School Phylogenetic Consensus Trees 1 / 132

Phylogenetic tree

Definition

A phylogenetic tree is a rooted, unordered tree whose leaves are uniquely
labeled and in which every internal node has ≥ 2 children.

Can describe divergent evolutionary history for a set of objects, where:

“objects” = Biological species, proteins, types of tumor cells in a patient,
natural languages, hand-copied manuscripts, SARS-CoV-2 strains, or ...

Arachnida

Mammalia

Reptilia Aves

Amphibia

Main idea:

Represent objects by leaves in the tree.

Select branching structure so that
internal nodes correspond to common
ancestors.

CPM 2024 Summer School Phylogenetic Consensus Trees 6 / 132

Phylogenetic tree

Variants

Depending on the application, phylogenetic trees may:

be rooted or unrooted

have weighted or unweighted edges

have bounded degree (maximum # of children of each internal node)

Arachnida

Mammalia

Reptilia Aves

Amphibia

CPM 2024 Summer School Phylogenetic Consensus Trees 7 / 132

Consensus methods

During the last 150 years, numerous methods for reconstructing
phylogenetic trees have been proposed.

For various reasons, inferring an accurate phylogenetic tree can be a
difficult problem.

For example, small changes in the data may produce trees with very
different structures.

Furthermore, many of the underlying computational problems are
NP-hard optimization problems.

CPM 2024 Summer School Phylogenetic Consensus Trees 9 / 132

Consensus methods, cont.

One approach:

Multiple data sets.

Apply resampling techniques like
bootstrapping to the same data set.

Apply different tree reconstruction
algorithms.

Assume different models of
evolution.

Using heuristics for maximizing
parsimony.



⇒ A collection of
alternative trees for the
same leaf label set.

Then, represent all of the obtained trees by one tree.
“consensus tree”

CPM 2024 Summer School Phylogenetic Consensus Trees 10 / 132

Consensus trees, example

Ideally, a consensus tree should summarize all the branching information
contained in the input set S in the best way possible.

a b c d

f a b

c d

f

a b c e

fe e d

?

(Example from https://www.geol.umd.edu/%7etholtz/G331/)

CPM 2024 Summer School Phylogenetic Consensus Trees 11 / 132

Different types of consensus trees

Many different definitions of “in the best way” exist...
(Depends on which criteria are used to resolve conflicts.)

⇒

Strict consensus [Sokal, Rohlf; 1981]

Majority rule consensus [Margush, McMorris; 1981]

Greedy consensus [Felsenstein; 1993]

Loose consensus [Bremer; 1990]

Adams consensus [Adams; 1972]

Q* consensus [Berry, Gascuel; 1997] / R* consensus [Bryant; 2003]

Local consensus (RV-I, RV-II, RV-III) [Kannan et al.; 1998]

Frequency difference consensus [Goloboff et al.; 2003]

etc.

Each type of consensus tree has some advantages & disadvantages. See:

D. Bryant. A classification of consensus methods for phylogenetics.
Vol. 61 of DIMACS Series in DMTCS, pp. 163–184, AMS, 2003.

CPM 2024 Summer School Phylogenetic Consensus Trees 12 / 132

Bryant’s classification of consensus trees

(Figure from D. Bryant, Vol. 61 of DIMACS Series in DMTCS, pp. 163–184, 2003.)

CPM 2024 Summer School Phylogenetic Consensus Trees 13 / 132

In one of our ongoing research projects, we are developing fast algorithms
for constructing various types of consensus trees.

Joint work with Zhaoxian Li, Ramesh Rajaby, Chuanqi Shen,
Wing-Kin Sung, Ali Tabatabaee, and Yutong Yang.

Today’s talk will introduce some of the most popular consensus trees, look
at how they are related to each other, and present some fast algorithms.

Remainder of the talk:

PART II : Cluster-Based Consensus Trees

PART III : Rooted Triplet-Based Consensus Trees

CPM 2024 Summer School Phylogenetic Consensus Trees 14 / 132

PART II : Cluster-Based Consensus Trees

CPM 2024 Summer School Phylogenetic Consensus Trees 15 / 132

Notation

Let T be a phylogenetic tree.

V (T) = the set of all nodes in T

Λ(T) = the set of all leaf labels in T

Any subset C of Λ(T) is called a cluster of Λ(T).
If |C | = 1 or C = Λ(T) then C is a trivial cluster.

For every node u in T , define T [u] = the subtree of T rooted at u
(i.e., the subtree of T induced by u and all of u’s descendants).
Λ(T [u]) is called the cluster associated with u.

The cluster collection of T is the set

C(T) =
⋃

u∈V (T){Λ(T [u])} .

CPM 2024 Summer School Phylogenetic Consensus Trees 16 / 132

Notation, cont.

The cluster collection of T is the set

C(T) =
⋃

u∈V (T){Λ(T [u])} .

Example:

T :
1

a b

c d e

C(T1) =
{
{a}, {b}, {c}, {d}, {e},
{a, b}, {a, b, c}, {d , e},
{a, b, c , d , e}

}

When a cluster C belongs to C(T), we say that C occurs in T .

Example: The cluster {a, b, c} occurs in the tree T1 above.

CPM 2024 Summer School Phylogenetic Consensus Trees 17 / 132

Notation, cont.

Two clusters C1,C2 are compatible if C1 ⊆ C2, C2 ⊆ C1, or C1∩C2 = ∅.
In this case, we write C1 ^ C2; otherwise, C1 6^ C2.

Any cluster C is said to be compatible with the tree T if
C ^ Λ(T [u]) for every node u ∈ V (T), and we write C ^ T .

Example: The cluster {d , e} occurs in T1 but not in T2 and T3.
However, {d , e}^ T2 and {d , e}^ T3.

T :
1

a b

c d e

ab, abc , de

T :
2

d eba c

ac, bde

T :
3

c

a

b

d e

bc , abc

CPM 2024 Summer School Phylogenetic Consensus Trees 18 / 132

Cluster-based consensus trees

These concepts are enough to define (at least) five types of consensus trees!

1 Strict consensus tree
[Sokal, Rohlf; 1981]

2 Majority rule consensus tree
[Margush, McMorris; 1981]

3 Loose consensus tree
[Bremer; 1990]

4 Frequency difference consensus tree
[Goloboff, Farris, Källersjö, Oxelman, Raḿırez, Szumik; 2003]

5 Greedy consensus tree
[Felsenstein; 1989]

We’ll refer to them collectively as cluster-based consensus trees.

CPM 2024 Summer School Phylogenetic Consensus Trees 19 / 132

1. Strict consensus tree [Sokal, Rohlf; 1981]

Let S = {T1, . . . ,Tk} be a set of trees with Λ(T1) = . . . = Λ(Tk) = L for
some leaf label set L. Note: All trees have the same leaf label set L.

The strict consensus tree of S is the (unique) tree T such that Λ(T) = L
and C(T) consists of those clusters that occur in every tree in S, i.e.,
C(T) =

⋂k
i=1 C(Ti).

Example:

T :
1

a b

c d e

ab, abc , de

T :
2

a b c d

e

ab, cd

T :
3

a b

c e

d

ab, abce

⇒

Strict:Majority rule:

a b

c d e

ab

CPM 2024 Summer School Phylogenetic Consensus Trees 20 / 132

2. Majority rule consensus tree [Margush, McMorris; 1981]

Let S = {T1, . . . ,Tk} be a set of trees with Λ(T1) = . . . = Λ(Tk) = L for
some leaf label set L. Note: All trees have the same leaf label set L.

A cluster that occurs in more than k/2 of the trees in S is a majority cluster.

The majority rule consensus tree of S is the (unique) tree T such that
Λ(T) = L and C(T) consists of all majority clusters.

Example:

T :
1

a b

c d e

ab, abc , de

T :
2

d eba c

ac, bde

T :
3

c

a

b

d e

bc , abc

⇒ d

a c

e

b

Majority rule:

abc

CPM 2024 Summer School Phylogenetic Consensus Trees 21 / 132

3. Loose consensus tree [Bremer; 1990]

Let S = {T1, . . . ,Tk} be a set of trees with Λ(T1) = . . . = Λ(Tk) = L for
some leaf label set L. Note: All trees have the same leaf label set L.

The loose consensus tree of S is the tree T such that Λ(T) = L and C(T)
consists of all clusters that occur in at least one tree in S and that are
compatible with all trees in S.

Example:

T :
1

a b

c d e

ab, abc , de

T :
2

d eba c

ac, bde

T :
3

c

a

b

d e

bc , abc

⇒

d e

ca b

Loose:

de

CPM 2024 Summer School Phylogenetic Consensus Trees 22 / 132

4. Frequency difference consensus tree [Goloboff et al.; 2003]

Let S = {T1, . . . ,Tk} be a set of trees with Λ(T1) = . . . = Λ(Tk) = L for
some leaf label set L. Note: All trees have the same leaf label set L.

The frequency difference consensus tree of S is the tree T such that
Λ(T) = L and C(T) contains every cluster C occurring more often in S
than each of the clusters in S that is incompatible with C .

Example:

T :
1

a b

c

d

e

ab, abc ,
abcd

T :
2

a b c d

e

ab, cd

T :
3

a b

c e

d

ab, abce

T :
4

c d

b

a

e

cd , bcd ,
abcd

⇒

Frequency diff.:

a b c d

e

ab (3), cd (2),
abcd (2)

CPM 2024 Summer School Phylogenetic Consensus Trees 23 / 132

5. Greedy consensus tree [Felsenstein; 1989]

Let S = {T1, . . . ,Tk} be a set of trees with Λ(T1) = . . . = Λ(Tk) = L for
some leaf label set L. Note: All trees have the same leaf label set L.

Make a list X of all clusters in S, sorted by the number of occurrences
in S in non-increasing order, and construct a set Y of clusters as follows:

Initialize Y := ∅. Traverse X and for each cluster C encountered,
if C and C ′ are compatible for all C ′ ∈ Y then let Y := Y ∪{C}.

A greedy consensus tree of S is a tree T such that Λ(T) = L and C(T) = Y.

Example:
T :
1

a b

c d e

ab, abc , de

T :
2

d eba c

ac, bde

T :
3

c

a

b

d e

bc , abc

⇒

a b

c d e

Greedy 1:

abc , ab, de
CPM 2024 Summer School Phylogenetic Consensus Trees 24 / 132

5. Greedy consensus tree [Felsenstein; 1989]

Let S = {T1, . . . ,Tk} be a set of trees with Λ(T1) = . . . = Λ(Tk) = L for
some leaf label set L. Note: All trees have the same leaf label set L.

Make a list X of all clusters in S, sorted by the number of occurrences
in S in non-increasing order, and construct a set Y of clusters as follows:

Initialize Y := ∅. Traverse X and for each cluster C encountered,
if C and C ′ are compatible for all C ′ ∈ Y then let Y := Y ∪{C}.

A greedy consensus tree of S is a tree T such that Λ(T) = L and C(T) = Y.

Example:
T :
1

a b

c d e

ab, abc , de

T :
2

d eba c

ac, bde

T :
3

c

a

b

d e

bc , abc

⇒

c

b d e

a

Greedy 2:

abc , ac, de
CPM 2024 Summer School Phylogenetic Consensus Trees 24 / 132

5. Greedy consensus tree [Felsenstein; 1989]

Let S = {T1, . . . ,Tk} be a set of trees with Λ(T1) = . . . = Λ(Tk) = L for
some leaf label set L. Note: All trees have the same leaf label set L.

Make a list X of all clusters in S, sorted by the number of occurrences
in S in non-increasing order, and construct a set Y of clusters as follows:

Initialize Y := ∅. Traverse X and for each cluster C encountered,
if C and C ′ are compatible for all C ′ ∈ Y then let Y := Y ∪{C}.

A greedy consensus tree of S is a tree T such that Λ(T) = L and C(T) = Y.

Example:
T :
1

a b

c d e

ab, abc , de

T :
2

d eba c

ac, bde

T :
3

c

a

b

d e

bc , abc

⇒

c

a d e

b

Greedy 3:

abc , bc , de
CPM 2024 Summer School Phylogenetic Consensus Trees 24 / 132

Some questions

How are these consensus trees related?

From the definitions, the following relationships hold:

Strict

Majority rule

Loose

Freq.diff. Greedy

Here, a path A B
means that any
cluster in A is always
a cluster in B.

Which of them is used the most in practice?

The majority rule consensus tree is the most popular among
biologists. According to Google Scholar, thousands of articles
published in biology-related journals since the 1980s use it.

(The frequency difference consensus tree might be better, though...)

How quickly can they be computed? (See the next slides!)

CPM 2024 Summer School Phylogenetic Consensus Trees 25 / 132

Preliminaries 1

The delete and insert operations on a tree:

Let T be a tree and let u be any non-root, internal node in T .
Applying the delete operation on u modifies T as follows:
First, all children of u become children of the parent of u, and then
u and the edge between u and its parent are removed.

f

d e

c

u

a b d ea b c

f

Applying the delete operation on u ⇒ The cluster Λ(T [u]) is removed
from the cluster collection C(T) while all other clusters are preserved.

Time for this operation: Proportional to the # of children of u.

The insert operation is the inverse of the delete operation.
CPM 2024 Summer School Phylogenetic Consensus Trees 26 / 132

Preliminaries 2

Definition

1. For any nodes u, v in a tree, if u is a descendant of v and u 6= v then
we write u ≺ v and call u a proper descendant of v .

2. Let x , y be nodes in a tree. The lowest common ancestor of x and y ,
denoted by lca(x , y), is the unique node u such that both x and y are
descendants of u and u ≺ v holds for every other node v which is an
ancestor of both x and y .

x

y

v

u = lca(x,y)

(Straightforward generalization to lca(C), where C ⊆ Λ(T).)
CPM 2024 Summer School Phylogenetic Consensus Trees 27 / 132

Preliminaries 3

Day’s algorithm:

Takes two trees Tref and T with with identical leaf label sets as input.

After some preprocessing, the algorithm can check whether or not any
specified cluster that occurs in T also occurs in Tref efficiently.

Lemma 1 (Day; 1985)

Let Tref and T be two given trees with Λ(Tref) = Λ(T) = L and n = |L|.
After O(n) time preprocessing, it is possible to determine, for any

u ∈ V (T), if Λ(T [u]) ∈ C(Tref) in O(1) time.

CPM 2024 Summer School Phylogenetic Consensus Trees 28 / 132

Preliminaries 3, cont.

More precisely, the preprocessing in Day’s algorithm works as follows:

Do an O(n)-time depth-first traversal of Tref while enumerating all
the leaves as they are encountered.
This yields a bijection f from L to the set {1, 2, . . . , n} under which
every C ∈ C(Tref) forms an interval of consecutive integers.

Assign each of the at most n − 1 intervals that represents a
non-singleton cluster in C(Tref) to one of the n leaves in Tref so that:
(1) no leaf gets more than one interval; and
(2) any interval [a..b] is assigned to either the leaf f −1(a) or f −1(b).

E.g., apply the rule:

For each internal node u in Tref , if u has no left sibling then
assign u to the rightmost leaf descendant of u; otherwise,
assign u to the leftmost leaf descendant of u.

Next, preprocess T in O(n) time to store f (x) in each leaf x of T .
For all u ∈ V (T), also compute m(u) := minx∈Λ(T [u]){f (x)},
M(u) := maxx∈Λ(T [u]){f (x)}, and size(u) := |Λ(T [u])|.

CPM 2024 Summer School Phylogenetic Consensus Trees 29 / 132

Preliminaries 3, cont.

After the preprocessing is done, one can check for any specified internal
node u in T if Λ(T [u]) occurs in Tref in O(1) time simply by checking:

if size(u) = M(u)−m(u) + 1, i.e., if the interval [m(u)..M(u)] is an
interval of consecutive integers; and

if either one of the two leaves f −1(m(u)) and f −1(M(u)) in Tref was
assigned the interval [m(u)..M(u)].

Lemma 1 (Day; 1985)

Let Tref and T be two given trees with Λ(Tref) = Λ(T) = L and n = |L|.
After O(n) time preprocessing, it is possible to determine, for any

u ∈ V (T), if Λ(T [u]) ∈ C(Tref) in O(1) time.

Remark: This technique also gives an O(kn)-time algorithm for computing
the strict consensus tree, which was defined by C(T) =

⋂k
i=1 C(Ti).

CPM 2024 Summer School Phylogenetic Consensus Trees 30 / 132

Preliminaries 4

Procedure Merge Trees(TA,TB):

Combines all clusters from two compatible trees TA,TB into one tree.

Lemma 2

Let TA and TB be two given trees with Λ(TA) = Λ(TB) = L that are
compatible and n = |L|.
Procedure Merge Trees(TA,TB) returns a tree T with Λ(T) = L and

C(T) = C(TA) ∪ C(TB) in O(n) time.

d f

c

a b e

T :
A

ab, def

T :

a

c f

b

B

d

e

ab, abc , ef

⇒

a

c

T :

e fb

d

ab, abc , def , ef

CPM 2024 Summer School Phylogenetic Consensus Trees 31 / 132

Preliminaries 4

Procedure One-Way Compatible(TA,TB):

Output a copy of TA in which every cluster that is not compatible
with TB has been removed. (In general, not symmetric.)

Lemma 3

Let TA and TB be two given trees with Λ(TA) = Λ(TB) = L and n = |L|.
Procedure One-Way Compatible(TA,TB) returns a tree T with Λ(T) = L

such that C(T) = {C ∈ C(TA) : C ^ TB} in O(n) time.

T :

a

c

e

f

b d

A

ab, abc , de, def

c

e

a b dc

f

T :
B

ab, cdef , ef

⇒
d f

c

a b e

T :

ab, def

CPM 2024 Summer School Phylogenetic Consensus Trees 31 / 132

Constructing the majority rule consensus tree

Recall:

majority cluster of S: Occurs in more than half of the trees in S.

The majority rule consensus tree of S is the tree T such that
Λ(T) = L and C(T) consists of all majority clusters of S.

Our algorithm Fast Maj Rule:

Inspired by the techique of Boyer and Moore (1991) for identifying a
majority element (if one exists) in a list.

Works in two phases.

Phase 1:
Examine the input trees, one by one, to construct a set of candidate
clusters that includes all majority clusters.

Phase 2:
Remove all candidate clusters that are not majority clusters.

CPM 2024 Summer School Phylogenetic Consensus Trees 32 / 132

Algorithm Fast Maj Rule, Phase 1

The current candidate clusters are stored as nodes in a tree T .
(Importantly, we do not store any candidate clusters explicitly.)

Every node v in T represents a current candidate cluster Λ(T [v]) and
has a counter count(v) that, from the iteration at which Λ(T [v])
became a candidate cluster, keeps track of the # of input trees in
which it occurs minus the # of input trees in which it doesn’t occur.

While treating the tree Tj for any j ∈ {2, 3, . . . , k}, count(v) for each
current candidate cluster Λ(T [v]) is updated:

If Λ(T [v]) occurs in Tj then count(v) is incremented by 1;
otherwise (i.e., if Λ(T [v]) does not occur in Tj), count(v) is
decremented by 1.

If any count(v) reaches 0 then the node v is deleted from T so that
Λ(T [v]) is no longer a current candidate cluster.

Next, every cluster occurring in Tj that is not a current candidate but
compatible with T is inserted into T (thus becoming a current
candidate cluster) and its counter is initialized to 1.

CPM 2024 Summer School Phylogenetic Consensus Trees 33 / 132

Algorithm Fast Maj Rule, Phase 1 & 2

We can prove the following:

If C is a majority cluster of S then C ∈ C(T) at the end of Phase 1.

Phase 2:

Scan S one more time to compute the number of occurrences in S of
every candidate cluster C .

Remove any candidate cluster C in T that does not occur more than
k
2 times.

The clusters that remain in T are the majority clusters.

CPM 2024 Summer School Phylogenetic Consensus Trees 34 / 132

Algorithm Fast Maj Rule, pseudocode

Input: A set S = {T1, . . . , Tk} of trees with Λ(T1) = · · · = Λ(Tk).
Output: The majority rule consensus tree of S.

1: T := T1 /* Start of Phase 1 */
2: for each v ∈ V (T) do count(v) := 1
3: for j := 2 to k do

for each v ∈ V (T) do
if Λ(T [v]) occurs in Tj then count(v) := count(v) + 1
else count(v) := count(v)− 1

for each v ∈ V (T) in top-down order do if count(v) = 0 then delete v .
for every C ∈ C(Tj) that is compatible with T but does not occur in T do

Insert C into T ; set count(v) := 1 for the new node v with Λ(T [v]) = C .

4: for each v ∈ V (T) do K(v) := 0; /* Start of Phase 2 */
5: for j := 1 to k do

for each v ∈ V (T) do
if Λ(T [v]) occurs in Tj then K(v) := K(v) + 1

6: for each v ∈ V (T) in top-down order do
if K(v) ≤ k/2 then perform a delete operation on v .

7: return T

CPM 2024 Summer School Phylogenetic Consensus Trees 35 / 132

Algorithm Fast Maj Rule, time complexity

The above operations can be implemented efficiently by using:

Day’s algorithm (Lemma 1) to see if a current candidate
cluster Λ(T [v]) occurs in the treated Tj in Phase 1, as well as to
count occurrences of clusters in Phase 2.

Procedures Merge Trees (Lemma 2) and One-Way Compatible
(Lemma 3) to insert any clusters from Tj not currently in T but
compatible with T in Phase 1.

Top-down order for handling the delete operations so that every node
in T is moved at most once per iteration.

⇒
Theorem 1

Algorithm Fast Maj Rule constructs the majority rule consensus

tree of S in O(kn) time.

CPM 2024 Summer School Phylogenetic Consensus Trees 36 / 132

Some questions

How are these consensus trees related?

From the definitions, the following relationships hold:

Strict

Majority rule

Loose

Freq.diff. Greedy

Here, a path A B
means that any
cluster in A is always
a cluster in B.

Which of them is used the most in practice?

The majority rule consensus tree is the most popular among
biologists. According to Google Scholar, thousands of articles
published in biology-related journals since the 1980s use it.

(The frequency difference consensus tree might be better, though...)

How quickly can they be computed? (See the next slides!)

CPM 2024 Summer School Phylogenetic Consensus Trees 25 / 132

Constructing the frequency difference consensus tree

Recall:

frequency difference cluster of S: Occurs more often than each of the
clusters that is incompatible with it.

Written in a more formal way:

Let S = {T1, . . . ,Tk} be a set of trees with Λ(T1) = . . . = Λ(Tk) = L.

For any cluster C of L, denote: KC (S) = {Ti : C ∈ C(Ti)}
(i.e., the set of all trees in S in which C occurs).

If |KC (S)| > max{|KD(S)| : D ⊆ L and C 6^ D} then C is a
frequency difference cluster of S.

The frequency difference consensus tree of S is the tree T such that
Λ(T) = L and C(T) consists of all frequency difference clusters of S.

Can be computed naively by testing every cluster in S against all other
clusters in S for compatibility. ⇒ Ω(k2n2) time

We can do it faster as follows.

CPM 2024 Summer School Phylogenetic Consensus Trees 38 / 132

Procedure Filter Clusters

For every Tj ∈ S and u ∈ V (Tj), define the weight of u as
w(u) = |KΛ(Tj [u])(S)|.
(I.e., the number of trees from S where the cluster Λ(Tj [u]) occurs.)
For convenience, also define w(C) = w(u), where C = Λ(Tj [u]).

Procedure Filter Clusters:
Takes as input two trees TA,TB with Λ(TA) = Λ(TB) = L such that
every cluster occurring in TA or TB also occurs somewhere in S.

The output is a tree T with Λ(T) = L such that
C(T) = {Λ(TA[u]) : u ∈ V (TA) and w(u) > w(x) for every x ∈
V (TB) with Λ(TA[u]) 6^ Λ(TB [x])}.
(I.e., a copy of TA in which every cluster that is incompatible with
some cluster in TB with a higher weight has been removed.)

CPM 2024 Summer School Phylogenetic Consensus Trees 39 / 132

Forward frequency consensus trees

Let C(S) for any set S of trees denote
⋃

Ti∈S C(Ti).

For any j ∈ {1, . . . , k}, define a forward frequency difference
consensus tree of {T1,T2, . . . ,Tj} as any tree that includes every
cluster C in C({T1,T2, . . . ,Tj}) satisfying w(C) > w(X) for all
X ∈ C({T1,T2, . . . ,Tj}) with C 6^ X .

To compute forward frequency difference consensus trees:

Lemma 4

For any j ∈ {2, 3, . . . , k}, suppose that T is a forward frequency difference
consensus tree of {T1,T2, . . . ,Tj−1}. Let A := Filter Clusters(T ,Tj)
and B := Filter Clusters(Tj ,T). Then Merge Trees(A,B) is a
forward frequency difference consensus tree of {T1,T2, . . . ,Tj}.

So, by repeatedly using Filter Clusters & Merge Trees, we end up
with a forward frequency difference consensus tree T of {T1, . . . ,Tk}.
C(T) contains all frequency difference clusters of S but possibly some
other clusters as well, so we apply Filter Clusters again.

CPM 2024 Summer School Phylogenetic Consensus Trees 40 / 132

Algorithm Fast Frequency Difference, pseudocode

Input: A set S = {T1, . . . , Tk} of trees with Λ(T1) = · · · = Λ(Tk).
Output: The frequency difference consensus tree of S.

1: Compute w(C) for every cluster C occurring in S.
2: T := T1

3: for j := 2 to k do
A := Filter Clusters(T , Tj); B := Filter Clusters(Tj , T)
T := Merge Trees(A, B)

4: for j := 1 to k do
T := Filter Clusters(T , Tj)

5: return T

CPM 2024 Summer School Phylogenetic Consensus Trees 41 / 132

Algorithm Fast Frequency Difference, time complexity

Time complexity analysis:

Step 1 takes O(kn log n) time by divide-and-conquer + counting sort.

Every execution of Merge Trees takes O(n) time.

Assume that every execution of Filter Clusters takes f (n) time.
⇒ Step 3 takes O(k · f (n)) time, and Step 4 takes O(k · f (n)) time.

f (n) = O(n2) is relatively easy. ⇒ Total running time: O(kn2)

f (n) = O(n log2 n) is possible by the centroid path decomposition
technique to break the cluster collection of TA into smaller sets that
can be checked more easily and then put together again at the end.

The above can be refined to f (n) = O(n log n) by interpreting clusters
as intervals and solving instances of the Max-Manhattan Skyline
Problem to find which clusters to remove at each stage.

Theorem 2

Algorithm Fast Frequency Difference constructs the frequency

difference consensus tree of S in O(kn log n) time.

CPM 2024 Summer School Phylogenetic Consensus Trees 42 / 132

PART III : Rooted Triplet-Based Consensus Trees

CPM 2024 Summer School Phylogenetic Consensus Trees 59 / 132

Rooted triplets

A phylogenetic tree with exactly three leaves is called a rooted triplet.

Let {x , y , z} be a leaf label set of cardinality 3.
There are four possible phylogenetic trees leaf-labeled by {x , y , z}:

y | zx |x z y |y z x

z

yx

y

zx

x

zy

x y z

y| | zx

Two kinds of rooted triplets:

• Fan triplet = One internal node (x |y |z)

• Resolved triplet = Two internal nodes (xy |z , xz |y , and yz |x)

CPM 2024 Summer School Phylogenetic Consensus Trees 62 / 132

Rooted triplet-based consensus trees

y | zx |x z y |y z x

z

yx

y

zx

x

zy

x y z

y| | zx

Intuition: Smallest unit of branching information... Useful concept because
any phylogenetic tree can be represented by a set of rooted triplets.

This part of the talk is about three consensus trees related to rooted triplets:

1 Local consensus tree
[Kannan, Warnow, Yooseph; 1998]

2 R* consensus tree
[Bryant; 2003]

3 Adams consensus tree
[Adams; 1972]

CPM 2024 Summer School Phylogenetic Consensus Trees 63 / 132

Local consensus tree, notation

1 xy |z = The unique resolved triplet with
lca(x , y) ≺ lca(x , z) = lca(y , z).

y

z

x

2 If lca(x , y) ≺ lca(x , z) = lca(y , z) in a tree T
then we say that T and xy |z are consistent.

x

z y

lca(x,y)

lca(x,z) = lca(y,z)

3 r(T) = the set of all resolved triplets consistent with the tree T

4 A set R of resolved triplets is consistent if ∃T such that R ⊆ r(T).

CPM 2024 Summer School Phylogenetic Consensus Trees 64 / 132

Local consensus tree, main idea

1 Represent every input tree Ti by its set of resolved triplets r(Ti).
2 Compute the intersection of the resolved triplet-sets.
3 Construct a smallest tree that contains at least these resolved triplets.

a cb d

T :
1

a b

c

a b

d

c d

a

c d

b

2
T :

a b

c

d

a b

c

a b

d

a c

d

b c

d

=⇒

a b

LCT:

c d

CPM 2024 Summer School Phylogenetic Consensus Trees 65 / 132

Local consensus tree, problem definitions

The minimally resolved local consensus tree problem (MinRLC):

Input: A set S = {T1,T2, . . . ,Tk} of trees, each with the same leaf
label set L.

Output: A tree T with leaves labeled by L satisfying
⋂k

i=1 r(Ti) ⊆ r(T)
with as few internal nodes as possible.

The minimally rooted-triplet-inducing local consensus tree problem
(MinILC):

Input: A set S = {T1,T2, . . . ,Tk} of trees, each with the same leaf
label set L.

Output: A tree T with leaves labeled by L satisfying
⋂k

i=1 r(Ti) ⊆ r(T)
that minimizes the value |r(T)|.

Remark: If we just want
⋂k

i=1 r(Ti) ⊆ r(T) then outputting T1 would do.

“Minimal” ⇒ simpler overview, more compact, avoids false groupings

CPM 2024 Summer School Phylogenetic Consensus Trees 66 / 132

MinRLC and MinILC are not always the same. Example:

T :

d e

g

fa b c

1
T :

d e

g

fa b c

2

r(T1) ∩ r(T2) =
{ab|e, ab|f , ab|g , cd |e, cd |f , cd |g , ef |a, ef |b, ef |c , ef |d , ef |g}

T2 is an optimal solution to MinRLC.

On the other hand, |r(T1)| = 15 while |r(T2)| = 23, so T2 cannot be
an optimal solution to MinILC.

CPM 2024 Summer School Phylogenetic Consensus Trees 67 / 132

Local consensus tree, previous work

MinRLC: The closely related (sub-)problem in which the input is a
consistent set R of rooted triplets and the output is a tree containing
all of R having the minimum number of nodes was studied previously
in [Jansson, Lemence, Lingas; SIAM Journal on Computing; 2012].

MinILC and some other “local consensus trees” were introduced by
Kannan, Warnow, and Yooseph [SIAM Journal on Computing; 1998].

(RV-II tree = “relaxed version II” tree)

Kannan et al. claimed that applying the BUILD algorithm [Aho, Sagiv,
Szymanski, Ullman; SIAM Journal on Computing; 1981] to
R =

⋂k
i=1 r(Ti) produces a minimally rooted-triplet-inducing local

consensus tree.

This would imply that MinILC is solvable in polynomial time.

Unfortunately, the claim is not correct.

CPM 2024 Summer School Phylogenetic Consensus Trees 68 / 132

Algorithm BUILD by Aho, Sagiv, Szymanski, Ullman [1981]

Top-down, recursive algorithm for constructing a tree consistent with an
input set R of resolved triplets, or determining that no such tree exists.
Runs in polynomial time.

Strategy:
Partition L into blocks according to R. Output a tree consisting of a root
whose children are roots of the trees obtained by recursing on each block.

{a,b,c,d,e,f,g,h,i,j}

{a,b,d,j} {c,f,h,i}{e,g}

Output tree:

(Base case of the recursion: |L′| = 1)
CPM 2024 Summer School Phylogenetic Consensus Trees 69 / 132

Algorithm BUILD, cont.

Use “auxiliary graph” G(L) to find the partition into blocks.
For any L′ ⊆ L, define G(L′) = (L′,E), where E contains edge {x , y} iff
there is some xy |z in R with x , y , z ∈ L′.

Example:

b

c

a

a

b

c=⇒

The rooted triplet ab|c in R gives edge {a, b} in G(L).

Crucial observation: If ab|c is consistent with a tree T then the leaves
labeled by a and b cannot descend from two different children of the root
of T , i.e., a and b must belong to the same block.

Therefore, the algorithm defines the partition of L by:

Blocks of leaves ←→ connected components in G(L)

CPM 2024 Summer School Phylogenetic Consensus Trees 70 / 132

Algorithm BUILD, cont.

How can the algorithm detect conflicts?

Lemma [Aho, Sagiv, Szymanski, Ullman; 1981]

R is not consistent with any phylogenetic tree if and only if some G(L′)
has only one connected component and |L′| > 1.

CPM 2024 Summer School Phylogenetic Consensus Trees 71 / 132

Algorithm BUILD, pseudocode

Input: A set R of resolved triplets and a leaf label set L.
Output: A phylogenetic tree with leaves labeled by L that is consistent
with all resolved triplets in R, if one exists; otherwise, null.

1: Construct the auxiliary graph G(L).
2: Compute the connected components C1,C2, . . . ,Cs of G(L).
3: • If s = 1 and G(L) consists of exactly one vertex i then let T

be a tree with a single leaf labeled by i .

• If s = 1 and G(L) contains > 1 vertex then T := null.

• Otherwise, for i ∈ {1, 2, . . . , s}, build tree
Ti := BUILD(R|V (Ci), V (Ci)).
If every Ti 6= null then attach all of these trees to a common
parent node and let T be the resulting tree; else T := null.

4: return T .

(Here, V (Ci) = the set of vertices in Ci and
R|V (Ci) = all rooted triplets in R whose leaves belong to V (Ci) only.)

CPM 2024 Summer School Phylogenetic Consensus Trees 72 / 132

Algorithm BUILD, example 1 (no conflicts)

R:

a b

c

a c

d

d e

b

Construct the auxiliary graph G(L):

a

e d

b

c

The connected components’ vertex sets are:
V (C1) = {a, b, c},
V (C2) = {d , e}

CPM 2024 Summer School Phylogenetic Consensus Trees 73 / 132

Algorithm BUILD, example 1 (no conflicts), cont.

So far, we know that the tree must look like this:

R:

a, b, c d, e

T :

Next, recurse on C1 and C2.

For C1, consider input resolved triplets that involve {a, b, c} only.

For C2, consider input resolved triplets that involve {d , e} only.

CPM 2024 Summer School Phylogenetic Consensus Trees 74 / 132

Algorithm BUILD, example 1 (no conflicts), cont.

R:

a b

c

a c

d

d e

b

G({a, b, c}):

a

b

c

V (C1,1) = {a, b},
V (C1,2) = {c}

G({d , e}):

e d

V (C2,1) = {d},
V (C2,2) = {e}

CPM 2024 Summer School Phylogenetic Consensus Trees 75 / 132

Algorithm BUILD, example 1 (no conflicts), cont.

This yields:

a, b ec d

...

Continue =⇒ Final tree:

c

ba

d e

CPM 2024 Summer School Phylogenetic Consensus Trees 76 / 132

Algorithm BUILD, example 2 (conflict)

R:

a b

c

d

b

ea c

d

c e

b

G(L):

a

e d

b

c

Here, G(L) has exactly one connected component and |L| > 1.
⇒ No tree is consistent with R.

CPM 2024 Summer School Phylogenetic Consensus Trees 77 / 132

BUILD does not solve MinILC

Based on an observation by Bryant [1997], we have the following
counterexample to Kannan et al.’s claim that BUILD produces a minimally
rooted-triplet-inducing local consensus tree:

T :

d e

g

fa b c

1
T :

d e

g

fa b c

2

Then R = r(T1) ∩ r(T2) = {ab|g , ac|g , bc |g , de|g , df |g , ef |g}

c

b

a

dg

ef

G(L) :

CPM 2024 Summer School Phylogenetic Consensus Trees 78 / 132

BUILD does not solve MinILC

Based on an observation by Bryant [1997], we have the following
counterexample to Kannan et al.’s claim that BUILD produces a minimally
rooted-triplet-inducing local consensus tree:

T :

d e

g

fa b c

1
T :

d e

g

fa b c

2

Then R = r(T1) ∩ r(T2) = {ab|g , ac|g , bc |g , de|g , df |g , ef |g}
and the output of BUILD(R) is T1.

However, |r(T1)| = 24 and |r(T2)| = 15 so T1 is not an optimal solution
to MinILC.

(The same example also shows that BUILD does not solve MinRLC.)

CPM 2024 Summer School Phylogenetic Consensus Trees 78 / 132

Exponential-time algorithms for MinRLC & MinILC

Instead, we can use dynamic programming together with Semple’s lemma.

Notation: For any tree T , π(T) is the partition of T ’s leaf label set
according to the subtrees attached to the root of T .

T :

d e

g

fa b c

1

=⇒ π(T1) = {{a, b, c}, {d , e, f }, {g}}

The next lemma relates the auxiliary graph G(L) used in the BUILD
algorithm to every tree consistent with R:

Lemma 5 [Semple; 2003]

Let T be any tree that is consistent with R. For each connected
component C in G(L), Λ(C) ⊆ B for some B ∈ π(T), where Λ(C) = the
leaf labels in C .

CPM 2024 Summer School Phylogenetic Consensus Trees 79 / 132

Local consensus tree, applying Semple’s lemma

Lemma 5 [Semple; 2003]

Let T be any tree that is consistent with R. For each connected
component C in G(L), Λ(C) ⊆ B for some B ∈ π(T), where Λ(C) = the
leaf labels in C .

Example:
R = {ab|g , ac|g , bc |g , de|g , df |g , ef |g}

c

b

a

dg

ef

G(L) :

T :

d e

g

fa b c

1
T :

d e

g

fa b c

2

CPM 2024 Summer School Phylogenetic Consensus Trees 80 / 132

Local consensus tree, applying Semple’s lemma

Lemma 5 [Semple; 2003]

Let T be any tree that is consistent with R. For each connected
component C in G(L), Λ(C) ⊆ B for some B ∈ π(T), where Λ(C) = the
leaf labels in C .

Importantly, if T is consistent with R then π(T) can be obtained by
performing zero of more mergings of G(L)’s connected components.

⇒ Every tree consistent with R can be recovered by trying all possible
mergings of the connected components in G(L) at each recursion level.

CPM 2024 Summer School Phylogenetic Consensus Trees 80 / 132

Algorithm for MinRLC

First construct R =
⋂k

i=1 r(Ti) in O(kn3) time.

Then:
For all L′ ⊆ L in order of increasing cardinality, use Lemma 6 to compute
opt(L′) = # of internal nodes in an optimal solution for R restricted to L′.

Lemma 6

For any L′ ⊆ L with |L′| ≥ 2, it holds that opt(L′) = DP(CL′) + 1.

where:
CL′ is the set of connected components in G(L′).
DP(D) for every D ⊆ CL′ is the minimum value of∑

X∈Q opt(Merge(X)) taken over all true partitions Q of D.

Merge(D) = the set of all leaf labels belonging to components in D.

Also use dynamic programming over the subsets D of CL′ in an inner loop
to get the DP(D)-values for each fixed L′.

Finally, do a traceback to retrieve a corresponding optimal solution.
CPM 2024 Summer School Phylogenetic Consensus Trees 81 / 132

Algorithm for MinRLC, pseudocode

Algorithm MinRS exact

Input: A consistent set R of rooted triplets over a leaf label set L.
Output: The number of internal nodes in a minimally resolved supertree consistent with R
and leaf-labeled by L.

1: For every x ∈ L, initialize opt({x}) := 0;
2: for i := 2 to n do
3: for every cardinality-i subset L′ of L do
4: Construct G(L′). Let C and U be the set of connected components and the set

of singleton components, respectively, in G(L′);
5: Let DP(∅) := 0. For every X ∈ C \ U , let DP({X}) := opt(Λ(X));
6: for j := 2 to |C| − |U| do
7: for every cardinality-j subset D of C \ U do
8: DP(D) :=

min
∅6=X(D

˘
opt(

S
Q∈X Λ(Q)) + min{DP(D\X), opt(

S
Q∈D\X Λ(Q))}

¯
;

9: end for
10: end for
11: opt(L′) := DP(C \ U) + 1;
12: end for
13: end for
14: return opt(L);

Figure: Algorithm MinRS exact.
CPM 2024 Summer School Phylogenetic Consensus Trees 82 / 132

Local consensus tree, summary

Theorem 3

MinRLC is solvable in O(kn3 + 2.733n) time.

MinILC is solvable in O(kn3 + 4n ·poly(n)) time.

where
k = |S| is the number of input trees, n = |L| is the number of leaf labels.

But why not polynomial time? Actually:

Theorem 4

MinRLC is NP-hard.

MinILC is NP-hard.

Remark: To prove the NP-hardness, reduce from Chromatic Number
and Clique, respectively.

CPM 2024 Summer School Phylogenetic Consensus Trees 85 / 132

R* consensus tree, notation

If lca(x , y) ≺ lca(x , z) = lca(y , z) in a tree T
then we say that T and xy |z are consistent.

x

z y

lca(x,y)

lca(x,z) = lca(y,z)

On the other hand, if lca(x , y) = lca(x , z) = lca(y , z) in T then
T and the fan triplet x |y |z are consistent.

r(T) = the set of resolved triplets consistent with T

t(T) = the set of all triplets consistent with T
(Thus, r(T) ⊆ t(T). When T is binary, r(T) = t(T).)

Λ(T) = the set of leaves in T

CPM 2024 Summer School Phylogenetic Consensus Trees 88 / 132

R* consensus tree, problem definition

Let S = {T1,T2, . . . ,Tk} be a given set of trees with
Λ(T1) = Λ(T2) = . . . = Λ(Tk) = L.

For any {a, b, c} ⊆ L, define #ab|c as the number of trees Ti for
which ab|c ∈ t(Ti). (Here, 0 ≤ #ab|c ≤ k.)

The set of majority resolved triplets is defined as

Rmaj =
{

ab|c : a, b, c ∈ L and #ab|c > max{#ac|b, #bc |a}
}

.

Definition

The R* consensus tree of S is the tree τ with Λ(τ) = L that satisfies
r(τ) ⊆ Rmaj and that maximizes the number of internal nodes.

Remark 1: The local consensus tree from before asked for a tree T such
that

⋂k
i=1 r(Ti) ⊆ r(T), but now we want a τ such that r(τ) ⊆ Rmaj .

Remark 2: Also observe that Rmaj doesn’t have to be consistent.

Lemma 9 [Bryant; 2003] The R* consensus tree exists and is unique.
CPM 2024 Summer School Phylogenetic Consensus Trees 89 / 132

R* consensus tree, examples

Definition

The R* consensus tree of S is the tree τ with Λ(τ) = L that satisfies
r(τ) ⊆ Rmaj and that maximizes the number of internal nodes.

(Every rooted triplet consistent with τ must also belong to Rmaj .)

Example 1: T :
1

a b

c d e

T :
2

d eba c

T :
3

c

a

b

d e

Then
Rmaj = {ab|d , ab|e, ac|d , ac|e, de|a, bc |d , bc |e, de|b, de|c},
and the R* consensus tree is:

d eba c

R*:

CPM 2024 Summer School Phylogenetic Consensus Trees 90 / 132

R* consensus tree, examples

Definition

The R* consensus tree of S is the tree τ with Λ(τ) = L that satisfies
r(τ) ⊆ Rmaj and that maximizes the number of internal nodes.

(Every rooted triplet consistent with τ must also belong to Rmaj .)

Example 2:

ba

c

d

T :
1

da

b

c

T :
3

db

c

a

T :
2

Then Rmaj = {ab|c , bd |c}, and the R* consensus tree is:

a

τ :

db c

Note that r(τ) = ∅. Any other tree with leaf set {a, b, c , d} would introduce
additional resolved triplets not in Rmaj !

CPM 2024 Summer School Phylogenetic Consensus Trees 90 / 132

R* consensus tree, motivation

The R* consensus tree provides a statistically consistent estimator of the
species tree topology when combining a set of gene trees:

J.H. Degnan, M. DeGiorgio, D. Bryant, N.A. Rosenberg: “Properties
of consensus methods for inferring species trees from gene trees”,
Systematic Biology, Vol. 58, pp. 35–54, 2009.

(In their study, R* consensus outperformed other popular consensus
methods such as majority rule consensus.)

From an algorithmic point of view, the R* consensus tree is also
interesting because it generalizes the RV-III tree from:

S. Kannan, T. Warnow, S. Yooseph: “Computing the local consensus
of trees”, SIAM Journal on Computing, Vol. 27, pp. 1695–1724, 1998.

to more than two input trees.

CPM 2024 Summer School Phylogenetic Consensus Trees 91 / 132

R* consensus tree, previous results

k = |S| be the number of input trees; n = |L| the number of leaf labels

For k = 2, the R* consensus tree can be computed in O(n3) time

[Kannan, Warnow, Yooseph; SIAM Journal on Computing, 1998].

For unbounded k, the R* consensus tree can be computed in

O(kn3) time [Bryant; Vol. 61 of DIMACS Series in DMTCS, 2003].

Remark:
|Rmaj | = Ω(n3) when the trees have similar branching structures.
⇒ To obtain a faster algorithm, we have to avoid explicitly constructing
the set Rmaj .

CPM 2024 Summer School Phylogenetic Consensus Trees 92 / 132

Algorithm R* consensus tree, preliminaries

Let R be a set of triplets over a leaf label set L =
⋃

t∈R Λ(t) s.t. for each
{x , y , z} ⊆ L, at most one of x |y |z , xy |z , xz |y , and yz |x belongs to R.

A cluster of L is any subset of L.

Two special types of clusters:

A cluster A of L is called a strong cluster of R if aa′|x ∈ R for all
a, a′ ∈ A with a 6= a′ and all x ∈ L \ A. Furthermore, L as well as
every singleton set of L is also defined to be a strong cluster of R.

For each a, b ∈ L with a 6= b, define sR(a, b) = |{w : ab|w ∈ R}|.
For each a ∈ L, define sR(a, a) = |L| − 1.
A cluster A of L is called an Apresjan cluster of sR if
sR(a, a′) > sR(a, x) for all a, a′ ∈ A and all x ∈ L \ A.

Lemma 10

Every strong cluster of R is an Apresjan cluster of sR.

Proof sketch: Let C be any strong cluster. Then for every a, a′ ∈ C and
x ∈ L \ C , it holds that sR(a, a′) ≥ |L \ C | and sR(a, x) < |L \ C |.

CPM 2024 Summer School Phylogenetic Consensus Trees 93 / 132

Strong clusters are useful because:
The strong clusters of Rmaj determine the R* consensus tree:

Lemma 11 [Bryant; 2003]

The R* consensus tree includes every strong cluster of Rmaj and no other
clusters.

Apresjan clusters are useful because:
By Lemma 10, the set of strong clusters of Rmaj is contained within
the set of Apresjan clusters of sRmaj

.

And: There are only O(n) Apresjan clusters of sRmaj
.

And: If we know all values of sRmaj
(a, b), the Apresjan clusters

of sRmaj
can be computed quickly.

(Use a fast algorithm by Bryant & Berry [2001].)

CPM 2024 Summer School Phylogenetic Consensus Trees 94 / 132

Algorithm R* consensus tree, pseudocode

Algorithm R* consensus tree

Input: A set S = {T1, . . . ,Tk} of trees with Λ(T1) = . . . = Λ(Tk) = L
Output: The R* consensus tree of S

1: Compute and store sRmaj
(a, b) for all a, b ∈ L.

2: Compute the Apresjan clusters of sRmaj
.

3: for each Apresjan cluster A of sRmaj
do

4: Determine if A is a strong cluster of Rmaj .
5: end for
6: Construct the R* consensus tree using all the strong clusters ofRmaj .

Time complexity? For any k:

Step 2: Apply an O(n2)-time algorithm by Bryant & Berry [2001].

Step 6: Can be done in O(n2) time by Gusfield’s algorithm for the
“perfect phylogeny problem with binary characters” [1991].

The time complexity of the other steps depends on k.

CPM 2024 Summer School Phylogenetic Consensus Trees 95 / 132

R* consensus tree, summary

Theorem 5

Let S be an input set of k trees with n leaves each and identical leaf label
sets. The R* consensus tree of S can be computed in:

• O(n2) time when k = 2;

• O(n2 log4/3 n) time when k = 3; and

• min
{
O(n2 logk+2 n), O(kn3)

}
time when k is unbounded.

CPM 2024 Summer School Phylogenetic Consensus Trees 104 / 132

Adams consensus tree, notation

Let T be a phylogenetic tree.

V (T) = the set of all nodes in T

Λ(T) = the set of all leaf labels in T

For every u ∈ V (T), define T [u] = the subtree of T rooted at u
(= the subgraph of T induced by u and all of u’s proper descendants).

π(T) = {Λ(T [c]) : c ∈ Child(r), where r is the root of T}.
Observe that π(T) is a partition of Λ(T).

Next, let S = {T1,T2, . . . ,Tk} be a set of phylogenetic trees with
Λ(T1) = Λ(T2) = . . . = Λ(Tk) = L for a leaf label set L.

π(S) = the product of the partitions π(T1), π(T2), . . . , π(Tk)

I.e., every part in π(S) is of the form
⋂k

j=1 Λ(Tj [cj]) for some child cj of
the root of Tj .

CPM 2024 Summer School Phylogenetic Consensus Trees 106 / 132

Example: S = {T1,T2,T3} and Λ(T1) = Λ(T2) = Λ(T3) = {a, b, c , d , e, f }
T :
1

a b

d

e

f

c

T :

e

c

b

2

f

a

d

b

a

cd

fe

T :
3

Then:
π(T1) =

{
{a, b, c , d , e}, {f }

}
,

π(T2) =
{
{a}, {b, c , d , e, f }

}
,

π(T3) =
{
{a, b, c , d}, {e, f }

}
,

and π(S) =
{
{a}, {b, c , d}, {e}, {f }

}
.

CPM 2024 Summer School Phylogenetic Consensus Trees 107 / 132

Adams consensus tree, restriction of trees

Let T be a phylogenetic tree and B ⊆ Λ(T).

The restriction of T to B, denoted by T |B, is the tree T ′ with leaf
label set B and node set {lcaT ({u, v}) : u, v ∈ B} that preserves the
ancestor relations from T , i.e., that satisfies lcaT (B ′) = lcaT ′

(B ′) for
all nonempty B ′ ⊆ B.

a

c d

a b

c d

e f g

T | {a, c , d}

T

CPM 2024 Summer School Phylogenetic Consensus Trees 108 / 132

Adams consensus tree, definition

Let S = {T1,T2, . . . ,Tk} be any set of trees satisfying
Λ(T1) = Λ(T2) = . . . = Λ(Tk).

The Adams consensus tree of S is the output of the following algorithm
[Adams; 1972]:

Algorithm Old Adams consensus

Input: Set S = {T1,T2, . . . ,Tk} of trees with Λ(T1) = Λ(T2) = . . . = Λ(Tk).

1: if T1 has only one leaf then let T := T1; /* Base case of the recursion */
2: else /* General case of the recursion */
3: π := π(S);
4: for B ∈ π do TB := Old Adams consensus({T1|B, T2|B, . . . , Tk |B});
5: Create tree T whose root is the parent of the root of TB for every B ∈ π;
6: end if
7: return T ;

CPM 2024 Summer School Phylogenetic Consensus Trees 109 / 132

Example: S = {T1,T2,T3} and Λ(T1) = Λ(T2) = Λ(T3) = {a, b, c , d , e, f }
T :
1

a b

d

e

f

c

T :

e

c

b

2

f

a

d

b

a

cd

fe

T :
3

From before: π(S) =
{
{a}, {b, c , d}, {e}, {f }

}
=⇒

a e f

Adams:

b,c,d

CPM 2024 Summer School Phylogenetic Consensus Trees 110 / 132

Example: S = {T1,T2,T3} and Λ(T1) = Λ(T2) = Λ(T3) = {a, b, c , d , e, f }
T :
1

a b

d

e

f

c

T :

e

c

b

2

f

a

d

b

a

cd

fe

T :
3

From before: π(S) =
{
{a}, {b, c , d}, {e}, {f }

}
=⇒

c db

a e f

Adams:

CPM 2024 Summer School Phylogenetic Consensus Trees 110 / 132

Adams consensus tree, alternative definition

Remark:
Equivalently, the Adams consensus tree of S can be defined as the unique
tree T with Λ(T) = L for which the following two properties hold:

• For any A,B ⊆ L, if lcaTj (A) ≺ lcaTj (B) in every Tj ∈ S then
lcaT (A) ≺ lcaT (B).

• For any u, v ∈ V (T), if u ≺ v in T then
lcaTj (Λ(T [u])) ≺ lcaTj (Λ(T [v])) in every Tj ∈ S.

(Proved by Adams in 1986.)

In this sense, the Adams consensus tree preserves the nesting information
common to all input trees.

Connection to rooted triplets:
k⋂

i=1
r(Ti) ⊆ r(TAdams) ⊆

k⋃
i=1

r(Ti)

CPM 2024 Summer School Phylogenetic Consensus Trees 111 / 132

Adams consensus tree, new algorithm 1

Our first new algorithm runs in O(kn log n) time.

Recall that the old algorithm computes a partition π(S) of the leaf
labels equal to the product of the partitions π(T1), π(T2), . . . , π(Tk),
where π(Ti) = {Λ(Ti [c]) : c ∈ Child(ri)}, and makes a recursive call
to each part in π(S).

Old algorithm’s time complexity: O(kn2)

Difficult to improve directly because in the worst case, some parts
in π(S) may be of size Ω(n).

Main idea of the first new algorithm:
Use the centroid path decomposition technique to avoid making
recursive calls to large subproblems, and treat them iteratively instead.

CPM 2024 Summer School Phylogenetic Consensus Trees 113 / 132

Adams consensus tree, centroid path decompositions

A centroid path in a tree T [Cole et al.; SIAM Journal on Computing; 2000]
is a path in T of the form P = 〈pα, pα−1, . . . , p1〉, where pw−1 is any child
of pw with the maximum number of leaf descendants, and p1 is a leaf.

T: T: T:

→ →

For any u ∈ V (T) such that u does not belong to P but the parent of u
does, the subtree T [u] is called a side tree of P.
For any side tree τ of a centroid path starting at the root of T , the
property |Λ(τ)| ≤ |Λ(T)|/2 holds.

CPM 2024 Summer School Phylogenetic Consensus Trees 114 / 132

Adams consensus tree, T ′j -trees

For each j ∈ {1, 2, . . . , k}, build a tree T ′
j from Tj in O(n) time as follows:

1 Let Pj be a centroid path in Tj that starts at the root of Tj .

2 Let T ′
j be a copy of Tj . For each non-root, internal node in T ′

j whose
parent does not belong to Pj , contract its parent edge.

a

b c

e

d

f

h

l

m

i

kjg

T :

n o

j

l

m

i

kj

e

T :

n oa b c d

f hg

j
’

→

⇒ T ′
j is a useful summary of Tj that helps us to quickly retrieve the leaves

in any side tree of Pj or check which side tree a specified leaf belongs to.
CPM 2024 Summer School Phylogenetic Consensus Trees 115 / 132

Adams consensus tree, restricted partitions

We use the T ′
j -trees to compute the partition π(S) of L at the top level of

the Adams consensus tree. More precisely:

Let X =
{
x ∈ L : x belongs to a side tree attached to the root of Tj for

some j ∈ {1, 2, . . . , k}}.

Define the restricted partition: π(S;X) = {B ∩X : B ∈ π(S), |B ∩X | ≥ 1}
(In other words, π(S;X) is the partition π(S) restricted to elements in X .)

Lemma 15

If X 6= L then π(S) = π(S;X) ∪ {L \ X}.
If X = L then π(S) = π(S;X).

To compute X , we can use the T ′
j -trees.

Moreover, π(S;X) = π({T ′
1,T

′
2, . . . ,T

′
k};X),

where the latter can be computed efficiently.

Plug into Lemma 15 ⇒ We obtain π(S). l

m

i

kj

e

T :

n oa b c d

f hg

j
’

CPM 2024 Summer School Phylogenetic Consensus Trees 116 / 132

Algorithm New Adams consensus k, pseudocode

Base case: If there is only one leaf then return it.

Otherwise:

1 For each j ∈ {1, 2, . . . , k}: compute Pj and the tree T ′
j .

2 (Main loop:)

i. Use the T ′
j -trees to compute X1 =

{
x ∈ L : x belongs to a side tree

attached to the root of Tj for some j ∈ {1, 2, . . . , k}} as well as the
restricted partition πX1 = π({T ′

1,T
′
2, . . . ,T

′
k};X1).

(By Lemma 15, the parts in πX1 along with {L \ X1} yield the partition
at the top level of the Adams consensus tree.)

ii. Remove the leaves belonging to X1 from all T ′
j -trees and contract.

iii. Repeat the process (getting X2,X3, . . . ,Xh) until the T ′
j -trees are empty.

3 For w := h downto 1 do:
i. For each part B in πXw = π({T ′

1,T
′
2, . . . ,T

′
k};Xw), construct T1|B,

T2|B, . . . ,Tk |B and recursively compute the Adams consensus tree TB .
ii. Let Qw be a tree with a root whose children are the TB -trees just

computed and (if w < h) Qw+1 (corresponding to the part {L \ Xw}).
4 Return Q1.

CPM 2024 Summer School Phylogenetic Consensus Trees 117 / 132

Adams consensus tree, new algorithm 2

Our second new algorithm only works for the special case k = 2.

It runs in O(n · log n
log log n) time.

Consider any recursive call Old Adams consensus({T1|B, T2|B}),
where B ⊆ L.
Ω(|B|) time is used to obtain the partition π of the leaves in B.

The second new algorithm uses a faster way to do the partitioning
based on two simple observations:

1 First, observe that B always satisfies B = Λ(T1[u])∩ Λ(T2[v]) for some
pair of nodes u ∈ V (T1), v ∈ V (T2).
⇒ Successive recursive calls to the algorithm can be specified by pairs
of vertices from T1 and T2.

2 Secondly, observe that one needs to proceed recursively from (u, v)
only to those (u′, v ′), where u′ ∈ ChildT1(u) and v ′ ∈ ChildT2(v), for
which |Λ(T1[u

′]) ∩ Λ(T2[v
′])| > 0.

CPM 2024 Summer School Phylogenetic Consensus Trees 119 / 132

Algorithm New Adams consensus 2, pseudocode

For u ∈ V (T1), v ∈ V (T2), define:

Zu,v = {(u′, v ′) : u′ ∈ ChildT1(u), v ′ ∈ ChildT2(v), |Λ(T1[u
′]) ∩ Λ(T2[v

′])| > 0}

Then, for any u ∈ V (T1) and v ∈ V (T2):

Lemma 16

Let B = Λ(T1[u]) ∩ Λ(T2[v]), γ = lcaT1(B), and δ = lcaT2(B). If |B| > 1 then
π({T1[u]|B, T2[v]|B}) = {Λ(T1[u

′]) ∩ Λ(T2[v
′]) : (u′, v ′) ∈ Zγ,δ}.

T :
2

T :

ca

b

d

u

1

ac d

b

v

u’

v’

γ

δ

v’’

u’’

Here:
Zγ,δ = {(u′, v ′),

(u′, v ′′),
(u′′, v ′)}

⇒ Algorithm:

Base case: If |Λ(T1[u]) ∩ Λ(T2[v])| = 1 then return this shared leaf.

Otherwise:

1 Compute γ = lcaT1(B) and δ = lcaT2(B), where B = Λ(T1[u]) ∩ Λ(T2[v]).

2 Construct Zγ,δ.

3 For (u′, v ′) ∈ Zγ,δ, recursively compute its Adams consensus tree Tu′,v ′ .

4 Return the tree obtained by attaching all of the computed Tu′,v ′ -trees to a
newly created root node.

CPM 2024 Summer School Phylogenetic Consensus Trees 120 / 132

Algorithm New Adams consensus 2, pseudocode

For u ∈ V (T1), v ∈ V (T2), define:

Zu,v = {(u′, v ′) : u′ ∈ ChildT1(u), v ′ ∈ ChildT2(v), |Λ(T1[u
′]) ∩ Λ(T2[v

′])| > 0}

Then, for any u ∈ V (T1) and v ∈ V (T2):

Lemma 16

Let B = Λ(T1[u]) ∩ Λ(T2[v]), γ = lcaT1(B), and δ = lcaT2(B). If |B| > 1 then
π({T1[u]|B, T2[v]|B}) = {Λ(T1[u

′]) ∩ Λ(T2[v
′]) : (u′, v ′) ∈ Zγ,δ}.

⇒ Algorithm:

Base case: If |Λ(T1[u]) ∩ Λ(T2[v])| = 1 then return this shared leaf.

Otherwise:

1 Compute γ = lcaT1(B) and δ = lcaT2(B), where B = Λ(T1[u]) ∩ Λ(T2[v]).

2 Construct Zγ,δ.

3 For (u′, v ′) ∈ Zγ,δ, recursively compute its Adams consensus tree Tu′,v ′ .

4 Return the tree obtained by attaching all of the computed Tu′,v ′ -trees to a
newly created root node.

CPM 2024 Summer School Phylogenetic Consensus Trees 120 / 132

To achieve a good time complexity for New Adams consensus 2:

Fix an arbitrary left-to-right ordering of T1 and T2.

Preprocess the two trees in O(n) time so that any lcaTj (B)-query can
be answered in O(|B|) time [Bender, Farach-Colton; 2000].

Use a data structure for orthogonal range counting on a grid to
quickly find the leftmost (and rightmost) leaf in
T1 | (Λ(T1[u]) ∩ Λ(T2[v])) and in T2 | (Λ(T1[u]) ∩ Λ(T2[v])), as well
as to quickly construct Zγ,δ.

CPM 2024 Summer School Phylogenetic Consensus Trees 121 / 132

Auxiliary data structure for orthogonal range counting

Let N be a set of n points on an n × n grid such that every column
contains exactly one point and every row contains exactly one point.

Lemma 17

We can build a data structure D(N) in O(n · log n
log log n) time after which:

Counting the number of points in any query rectangle [x ..x ′]× [y ..y ′]

takes O(log n
log log n) time.

Reporting the point with the maximum (or minimum) x-coordinate

inside any query rectangle [x ..x ′]× [y ..y ′] takes O(log n
log log n) time.

D(N) is an extension of the wavelet tree-based data structure in [Bose, He,
Maheshwari, Morin; WADS 2009] for supporting orthogonal range counting
queries on a grid to also support truncated range maximum queries.

Remark: The time needed to construct D(N) is bounded in the same way.

CPM 2024 Summer School Phylogenetic Consensus Trees 122 / 132

How to apply the auxiliary data structure

In the algorithm, represent each leaf label in the trees as a 2D point:

For 1 ≤ i ≤ n, let L1(i) and L2(i) be the ith leaf in T1 and T2,
respectively, in the fixed left-to-right ordering.

Define N =
{(

L−1
1 (`), L−1

2 (`)
)

: ` ∈ L
}

and build D(N).

For any pair of siblings u, u′ in a tree T , let T [u..u′] denote the set of all
rooted subtrees of the form T [x], where x ∈ [u, . . . , u′] in T .

⇒ Each ` ∈ Λ(T1[v ..v ′]) satisfies L−1
1 (lu) ≤ L−1

1 (`) ≤ L−1
1 (ru′), where lu is

the leftmost leaf in T1[u] and ru′ the rightmost leaf in T1[u
′]. (Same for T2.)

Lemma 18

Given D(N), for any siblings u and u′ in T1 and any siblings v and v ′

in T2, |Λ(T1[u..u′]) ∩ Λ(T2[v ..v ′])| can be found in O(log n
log log n) time.

Furthermore, the leftmost and rightmost leaves in T1 (or T2) among all

leaves in Λ(T1[u..u′]) ∩ Λ(T2[v ..v ′]) can be reported in O(log n
log log n) time.

CPM 2024 Summer School Phylogenetic Consensus Trees 123 / 132

Adams consensus tree, summary

Theorems 6 and 7

The Adams consensus tree can be computed in:

• O(n · log n
log log n) time when k = 2; and

• O(kn log n) time when k ≥ 3.

CPM 2024 Summer School Phylogenetic Consensus Trees 125 / 132

PART IV : Conclusion

CPM 2024 Summer School Phylogenetic Consensus Trees 126 / 132

FACT: Fast Algorithms for Consensus Trees

Let k = |S|, n = |L|, p = the number of different clusters occurring
in S, and q = the total number of clusters occurring in S.

Consensus tree: Previously fastest algorithm Our project

Strict O(kn) time [Day; 1985] —

Majority rule O(n2+k2n) time O(kn) time
[Wareham; 1985] J. of the ACM; 2016

Majority rule (+) Polynomial time O(kn) time
[Dong et al.; 2010] IEEE TCBB; 2017

Loose O(q2n) = O(k2n3) time O(kn) time
[McMorris, Wilkinson; 2011] J. of the ACM; 2016

Frequency difference O(kn log2 n) time O(kn log n) time
[Gawrychowski et al.; 2018] STACS 2024

Greedy O(qn + pn2) = O(kn3) time O(qn) = O(kn2) time
[Bryant; 2003] J. of the ACM; 2016

Remark 1: The input size is Ω(kn) ⇒ O(kn) time is optimal.

Remark 2: The currently fastest algorithm for the greedy consensus tree
runs in O(kn(log k + log2 n)) time [H. Wu; ICALP 2020].

CPM 2024 Summer School Phylogenetic Consensus Trees 127 / 132

FACT: Fast Algorithms for Consensus Trees

Consensus tree: Previously fastest algorithm Our project

Adams for k = 2 O(n2) time O(n · log n
log log n) time

[Adams; 1972] Inf. & Comput.; 2017

Adams for k ≥ 3 O(kn2) time O(kn log n) time
[Adams; 1972] Inf. & Comput.; 2017

Minimally — O(kn3 + 2.733n) time
resolved local — AIMS Med. Sci.; 2018

Minimally rooted- — O(kn3 + 4n ·poly(n)) time
triplet-induc. local — AIMS Med. Sci.; 2018

R* for k = 2 O(n3) time O(n2) time
[Kannan et al.; 1998] Algorithmica; 2016

R* for k ≥ 3 O(kn3) time O(n2 logk+2 n) time
[Bryant; 2003] Algorithmica; 2016

Asymmetric O(n2.5) time Work in progress
median for k = 2 [Phillips, Warnow; 1996]

Note: Source code (for about half of our algorithms) is available from:
https://github.com/Mesh89/FACT & https://github.com/Mesh89/FACT2

CPM 2024 Summer School Phylogenetic Consensus Trees 127 / 132

Open problems

1 Develop O(kn) -time (i.e., optimal) algorithms for computing:

the frequency difference consensus tree

a greedy consensus tree

the Adams consensus tree

the R* consensus tree

2 Define new types of consensus trees that can be computed efficiently
and are even more informative than the existing ones.

3 Generalizations to consensus supertrees, where the input trees are
allowed to have different leaf label sets?

4 Generalizations to MUL-trees, where the same leaf label can appear
many times in a tree?

5 Generalizations to consensus phylogenetic networks, where nodes are
allowed to have more than one parent?

6 Write an up-to-date survey.

CPM 2024 Summer School Phylogenetic Consensus Trees 131 / 132

References

J. Jansson, C. Shen, and W.-K. Sung. Improved Algorithms for Constructing
Consensus Trees. Journal of the ACM, Vol. 63, No. 3, Article 28, 2016.

J. Jansson, W.-K. Sung, H. Vu, and S.-M. Yiu. Faster Algorithms for Computing
the R* Consensus Tree. Algorithmica, Vol. 76, No. 4, pp. 1224–1244, 2016.

J. Jansson, Z. Li, and W.-K. Sung. On Finding the Adams Consensus Tree.
Information and Computation, Vol. 256, pp. 334–347, 2017.

J. Jansson, R. Rajaby, C. Shen, and W.-K. Sung. Algorithms for the Majority
Rule (+) Consensus Tree and the Frequency Difference Consensus Tree.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, Vol. 15,
No. 1, pp. 15–26, 2018.

J. Jansson, R. Rajaby, and W.-K. Sung. Minimal Phylogenetic Supertrees and
Local Consensus Trees. AIMS Medical Science, Vol. 5, No. 2, pp. 181–203, 2018.

J. Jansson, W.-K. Sung, S. A. Tabatabaee, and Y. Yang. A Faster Algorithm for
Constructing the Frequency Difference Consensus Tree. In Proceedings of the
Forty-First International Symposium on Theoretical Aspects of Computer Science
(STACS 2024), LIPIcs, Vol. 289, Article No. 43, pp. 43:1–43:17, 2024.

CPM 2024 Summer School Phylogenetic Consensus Trees 132 / 132

