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Abstract—During the last years, Networks-on-Chip
(NoCs) have become a true alternative for the design of
complex integrated Systems-on-Chip (SoC). Much effort
has been spent for research on functionalities, mechanisms,
and Quality-of-Service (QoS) features in NoCs. Hence, a
broad and multi-faceted design space exists but leaves open,
which mechanisms and design paradigms actually tip the
scales for the chosen application domain. In this paper, we
discuss the level of QoS needed in a specific NoC for a
packet processing application. This is done in the light of
preliminary investigations for the redesign of an existing
packet processing system because that system’s current
architecture exhibits drawbacks regarding performance and
further scalability. Therefore, we considered to take advan-
tage of an NoC communication architecture. A simple NoC
was developed, which knowingly omits sophisticated QoS
mechanisms. Relying on the lessons, which have learned
from the history and development of the Internet, we argue
that a simple and plain NoC suffices for applications as the
one discussed.

Keywords—Network-on-Chip, System-on-Chip, Quality-
of-Service, Application-specific, FPGA

I. INTRODUCTION

The need for a new approach to design large and
complex integrated systems is mostly driven by the so
called design-productivity-gap. Current design flows can
not effectively exploit the potential of the tremendous
number of transistors, processing elements, and functional
blocks that is available on a single die today and even more
in a few years. Therefore, point-to-point connected and
bus-based designs will be constrained by the continuously
increasing integration density and its related problems
ranging from the architectural level down to the physical
level. To cope with these issues, Networks-on-Chip (NoCs)
have been proposed [1], [2], [3].

In the meantime, numerous publications have appeared
presenting studies on NoCs, their features, mechanisms,
and topologies. However, most research focuses on func-
tionality and high performance, which results in fairly
large, complex, and feature-rich systems providing various
levels of QoS to handle the available physical bandwidth.
Athereal [4] and Nostrum [S5] are probably the two most
well-known examples for suchlike NoCs. Unfortunately,
QoS comes at a price. A design’s complexity increases
as well as power consumption and silicon area, which are
crucial parameters for both ASIC and FPGA designs. As

most SoCs serve only a certain application domain (e.g.,
realtime, automotive...) instead of being general-purpose
systems, the underlying NoC infrastructure needs to be
tailored for that domain only. Hence, the required QoS
level has to be considered in-depth to avoid unnecessary
design overhead. For these application-specific NoCs, the
workloads, traffic patterns, and constraints are known a-
priori [6]. Stensgaard et al. [7], for example, present a
case study for a DSP audio chip to prove the effectiveness
of an NoC in comparison to the initial design with a
crossbar. The application aims at a unidirectional data
transfer rate in the range of kilobits per second (kbit/s)
whereas this paper describes the implementation of a
packet processing system for gigabit Ethernet (GbE).
This includes several bidirectional channels requiring
one gigabit per second (Gbit/s) for each channel. The
current system is implemented as a conventional pipelined
architecture and shows restrictions in terms of further
scalability and performance. In this paper, the motivation
for the use of a simple NoC-based architecture for this
packet processing system is discussed.

The remainder of this paper is organized as follows:
Section II addresses commonalities between the Internet
and NoCs that encouraged our work. Section III specifies
our motivation and related questions. We introduce the
existing packet processing system MATMUNI in Section
IV. Section V addresses our own NoC implementation. In
Section VI, we discuss our observations in relation to the
projected transformation of MATMUNI into an NoC-based
design. Section VII concludes the paper.

II. INTERNET VERSUS NETWORK-ON-CHIP

As outlined in the previous section, research on NoCs
is mainly driven by the limitations and problems of
conventional SoC buses for future devices. In contrast
to this low level approach, one may look at the Internet as
an example for complex networks. The question arising
from our point of view is, whether the lessons learned
from the development of the Internet may be scaled down
to NoCs. In other words: Is an NoC alike on-chip Internet?

Obviously, the Internet has many more clients and a
complex topology organized in a multi-layered addressing
scheme. Moreover, NoCs have just wires and routers
whereas the Internet is built up of an overwhelming



number of different communication elements. But there
is also another fundamental difference between on-chip
and Internet communication. Whereas the Internet and its
infrastructure is mostly not congested following the “big
pipe” approach—the DE-CIX node is only utilized by half
[8] for example—on-chip buses are often used to their
full capacity [9]. As we will see later, this is an important
discrepancy to keep in mind.

On the other hand, NoCs and the Internet share many
commonalities. Both are networks designed in an ISO-
OSI manner defining the same abstraction layers. Only the
implementations differ. Computation and communication
are separated, which is the most referenced argument for
NoCs. Designs can be chosen to be communication or
computation centric or both. An application’s designer
does not have to deal with wires. Instead, he relies on
abstract communication channels also found in distributed
computer programming [10]. Thus, even if Internet and
NoCs are designed for different scales, long time experi-
ences obtained in the Internet may fit for NoCs as well.

Coming back to the focus of this paper—Big Pipe or
QoS for NoCs—interesting observations can be made.
The Internet Protocol (IP) provides QoS in the form of
a type-of-service field. But it is mostly ignored! In fact,
everything is just best-effort. Another great example is
ATM (asynchronous transfer mode). It is very efficient
and has extensive QoS features on all levels. But this also
makes it extremely complex and expensive. Evidently, it
is vanishing from the market at the moment. Everyone
does Ethernet without any QoS. A third example is
the FastPath option for DSL connections. Thereby, QoS
mechanisms such as error detection and correction are
simply deactivated to substantially improve response time
and thus end-to-end latency. It seems that everything aims
at the old principle “Keep it simple and smart!” (KISS).
The question is: Why does it work so well? And the
simple answer is: We have enough bandwidth, and we
will get more and more [11]. Applying this principle to
NoCs means that we must not utilize it at its limits as
it is done for SoC buses up to now. We have to leave
enough headroom for critical situations. The expectation
is that when NoCs are fully matured in future SoCs, they
will serve us with enough bandwidth because of their
simplicity and their perfect implementation tailored for a
certain technology or platform.

As nothing is either black or white, we do have and
need some QoS in the Internet and do so in NoCs as
well, e.g., for real-time and multi-media applications.
Because best-effort is no good business model, customers
mostly subscribe for some bandwidth. Guaranteeing this
bandwidth is one reason for QoS. Traffic shaping is another
to avoid bursts often followed by congestion. But even on
these issues, the Internet teaches us how to deal with it.
The current trend in Ethernet-based access systems is to
move complexity out of the core network to the customers
premise equipment. This decentralizes the complexity and
makes QoS much easier. Applying this idea to NoCs means
that every IP core’s network interface or even the IP core

itself limits the bandwidth and does some traffic shaping.
This contract between the IP cores and the network allows
the literal NoC infrastructure to be designed much simpler
and thus serving us again with more bandwidth.

III. MOTIVATION AND QUESTIONS

The motivation is to exploit NoCs for the redesign of
the packet processing system. Since an FPGA will serve
as target device, a small hardware footprint of the NoC is
necessary. We want to keep it simple and small.

Our considerations are driven by experiences derived
from our research on NoCs as well as Internet commu-
nication and their similarities as explained in Section
II. Associated questions that need to be considered are
specified below and will be discussed in Section VI:

Huge design space Which mechanisms and features for
NoCs—especially functions providing QoS—have to be
implemented to meet the demands of the packet processing
system and, at the same time, meet the footprint constraints
of the chosen FPGA? Which features can be omitted?
Feasibility Is an NoC an adequate target architecture for
the redesign of the packet processing system?
Exploitation Will the packet processing system exploit
the potentials of an NoC or is this—especially on an
FPGA—an oversized approach?

The true nature of QoS What is the true nature of QoS
features? What are they really? Is there a risk for an over-
specification of NoCs?

Different platforms Are there differences
NoCs in FPGAs and in ASICs?

between

IV. MATMUNI — THE PACKET PROCESSING SYSTEM

Packet processing in the domain of (Inter)networking is
a demanding task. The requirements on performance and
flexibility of packet processing equipment as well as on
security and availability rise permanently. Currently, impor-
tant driving forces in the Internet are new technologies [11],
the growing number of Internet users, and oversubscription
of transmission lines. Hence, only hardware solutions
provide sufficient performance for packet classification,
manipulation, and forwarding. Due to their flexibility,
FPGAs are widely used as target platform.

Access Networks (ANs) aggregate and connect thou-
sands of subscribes and customers to the core networks of
the Internet services providers. Basically, a large number of
individual data streams are multiplexed on high bandwidth
media suchlike fiber optics or 10-GbE. Therefore, different
processing steps and mechanisms are necessary to differen-
tiate, route, and switch individual data streams, to authorize,
authenticate, and account subscribers, to provide QoS in
terms of security, availability, and guaranteed bandwidth,
and to be transparent for communication end-points.

MATMUNI is such a packet processing solution. It is
implemented on a Xilinx platform FPGA [12], [13], [14].
MATMUNT’s functional submodules offer mechanisms
for Medium access controller Address Translation (MAT),
Traffic Management (TM), and a Multi Protocol Label
Switching User-to-Network Interface (MPLS-UNI).
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Fig. 1.  Typical structure of an Access Network and location of
MATMUNI

A. General Function

As sketched in Figure 1, MATMUNI is located in the
AN behind the line cards (LC) and the central switching
unit (CXU). The CXU aggregates several thousand digital
subscriber lines (DSLs). On independent GbE channels,
traffic of multiple Gbit/s must be handled. MATMUNI
covers packet processing tasks that prepare and prepro-
cessing traffic for the core network.

MAT MAT targets scalability and security issues by
flexible n:1 translation of data link layer addresses—
Ethernet addresses of the medium access controller (MAC)
in our scenario. Untrustworthy customer MAC addresses
are translated into distinct, trustworthy MAC addresses of
the provider.

TM The TM functionality meters traffic on a per cus-
tomer base. Each frame is marked either green, or yellow,
or red according to the customer’s current bandwidth
utilization. With policing mechanisms, the subscribed
bandwidth is ensured as long as possible for each customer.
MPLS-UNI The MPLS-UNI encapsulates complete
frames and prepends MPLS labels. Forwarding decisions
of core routers solely depend on these labels’ information.
Usually, a full-blown label edge router (LER) is required.
But in the case of MATMUNI, only a subset of an LER’s
functionality is necessary. Therefore, an adapted, compact
MPLS module was realized in hardware.

For detailed information on MATMUNT’s functionality,
the interested reader is referred to [12], [13], [14].

B. System Architecture

As sketched in Figure 2, MATMUNI is currently
implemented as pipelined data path architecture. Two
main data paths exist: the uplink from the customers
to the core network and the downlink vice versa. At
first, a frame entering the system through the FPGAs
internal MACs passes through a synchronization buffer
for reasons of clock domain crossing. The frame is further
forwarded to a key parser (KP) and stored in a frame buffer
(FB). The KP extracts a key from the frame headers and
generates a lookup request in the memory. The memory
arbiter administrates the memory containing rules for each
key. When the memory lookup was successful, the frame
byte-serially passes through the functional modules. The
functional modules modify the frame according to the
rules, which are assigned to the appropriate functional
module. The last module forwards the frame to the egress

MAC via another synchronization buffer. The basic data
flow is the same in up- and downlink. Up to 4 parallel main
data paths are supported in both directions. Therefore, the
functional submodules are instantiated twice or fourfold.
Figure 2 depicts the internal structure of the MATMUNI
system. Additionally, the MATMUNI system contains an
interface to a CPU for management and configuration. A
special protocol also allows for in-band configuration of the
MATMUNI system. Therefore, a protocol multiplexer (PM)
is inserted in the uplink path. Memory contents—keys and
their according rules—and internal system parameters can
be modified at runtime.

C. Performance and Bottlenecks

MATMUNT’s current architecture was designed to
handle GbE. A frequency of at least 125 MHz is re-
quired for non-blocking performance. Although single
submodules reach frequencies of more than 125 MHz, the
whole system barely fulfills this requirement due to the
complex wiring for module interconnection. Particularly,
the complexity of the memory arbiter as the central entity
for memory management increases when instantiating extra
data paths. As often, a shared memory is the bottleneck.
While MATMUNI supports up to 8 independent data paths
(4x uplink, 4x downlink), the system does not scale any
further using this architecture. Beyond it, non-blocking
performance cannot be ensured. Especially in the worst
case (although is it unlikely), in which large bursts of
minimal Ethernet frames arrive, a large number of frames
will be discarded. Increasing the buffer size would not
solve the underlying problem. MATMUNTI’s architecture is
tailored for a specific scenario but lacks further scalability
and flexibility. Future performance requirements are not
likely to be fulfilled with the current conventional approach.
Bus-based architectures do also not meet these demands.
A central bus is just another shared medium similar
to the existing memory arbiter submodule. For these
reasons, NoC-based architectures appear most feasible
for a redesign.

D. Dependency Analysis

MATMUNT’s internal communication and control de-
pendencies are analyzed using the formal representation
of Communication Task Graphs (CTG) and Application
Characterization Graphs (APCG) as defined in [9]. A
CTG is defined as G’ = G'(T,D) with each t; € T
being a computational module or task and each d; ; € D
being a data or control dependency between task ¢; and ¢;
annotated with its communication volume. An APCG is
defined as G = G(C, A) with each ¢; € C being an IP core
within the NoC and a; ; € A being the communication
process from IP core ¢; to ¢; annotated with application-
and NoC-specific constraints.

Figure 3 shows the CTG of the MATMUNI system.
Only a single data path is shown since the CTG is the
same in both up- and downlink. Figure 4 shows the APCG
of the MATMUNI system for a single data path. Closely
coupled tasks in the CTG are combined to one IP core to
reduce the number cores and thus the size of the NoC. The
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Fig. 2. Internal structure of the MATMUNI system with serially ordered functional modules

PM is directly connected with the external I/O interface.
The KP joins the FB. Furthermore, all memory-related
tasks are combined in the memory module. An a; ; marked
with a thick line has a bandwidth constraint of at least
1 Gbit/s, which represents the main data path. An a; ;
drawn with a dotted line is a control path with a bandwidth
constraint of up to 350 Mbit/s in the worst case (bursts
of minimal frames). A thin line indicates an a; ; with a
bandwidth constraint of less than 200 Mbit/s.
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V. THE NETWORK-ON-CHIP

An NoC consists of routers and links. Unlike bus
architectures, NoCs allow for concurrent transmission of
data between modular IP blocks. By means of separated
computation and communication, designers benefit from a
divide-and-conquer approach and high reusability.

Figure 5 shows the basic structure of a single NoC router
(R) and the connected IP core—a so-called resource. Each
router is connected to a resource and up to 4 neighboring
routers. Thereby, a 2D mesh topology is realized as shown
in Figure 6. A resource can be of different nature: off-
chip I/O, memory, or processing units. The resource-
network-interface (RNI) provides bridging functionality
from the NoC interface to a resource’s specific interface.
The RNI itself is divided into a resource independent
network interface (RINI) and a resource dependent network
interface (RDNI). The RINI connects to the NoC router
and is identical for each resource. The RDNI connects to
the resource and is specifically tailored for that resource.
It belongs to the reconfigurable, functional segments of
the NoC-based system. A router consists of five ports; one
for each routing direction (N, S, W, E) and one port for
local access to the RNI (L). Each port contains a buffer
and the basic routing logic. The arbitration and switching
functionality connects input and output ports.
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Fig. 5. Structure and components of the NoC grid and an NoC router

A. Implemented Features

An NoC feature is a mechanism that either provides
basic functionality or enhances QoS or other properties of
the NoC. Regarding the MATMUNI system, performance
and modularity are of special interest. Sufficient perfor-
mance in terms of throughput is required for non-blocking
operation to avoid packet drops. Since networking hard-
ware always generates delay in the network, performance
in terms of low end-to-end latency within the NoC is
secondary. Modularity, which supports IP reuse and future
modifications, is inherently given in NoCs.
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From our point of view, typical NoC features and mech-
anisms can be classified into three categories: minimum
requirements, additional features to optimize an NoC’s
behavior, and features or mechanisms that are for free,
e.g., given by a-priori knowledge during the design phase
like in the discussed packet processing scenario. Thereby,
NoC features are assessed by their necessity and costs with
regard to simplicity. This scheme does not have to apply
to other applications and is far from being exhaustive. But
it helped us to choose relevant aspects. As most of the
NoC features are well-known, we will not go into detail.

For our own implementation, we selected features
that are minimum requirements for the operation of a
basic NoC. These features conform to the KISS principle.
We omitted sophisticated optimizations, which are not
a stringent requirement for NoC operation, e.g., Virtual
Channels (VC). To enhance the performance of the NoC-
based system and to provide some QoS, we prefer using
features that enhance QoS at no or just moderate costs.
Suchlike approaches are QoS by design [15], [16], [17],
advantageous module mapping, and the use of existing
FPGA resources like multiple clock networks. Every
application shows typical traffic patterns. Using CTGs
and APCGs, the main data paths and bottlenecks of a
system can be identified. This a-priori knowledge allows
for optimizations and specific design decisions that do not
need additional logic resources.

We implemented three different router versions and
chose the following features to be included in the routers:

Routing & Arbitration A simple XY-routing algorithm
was chosen. It is inherently deadlock-free and thus optimal
for our NoC. The routing and arbitration logic need at least
4 clock cycles within each router. This is the minimum
delay per node. The arbiter uses a simple Round-Robin
(RR) algorithm when multiple requests occur.

Switching Two router versions use wormhole switching
(WHS)—one with registered (WHS) and one with com-
binational acknowledge signals (WHS*). The third router
version features virtual-cut-through switching (VCTS). The
WHS versions have a buffer for one flit per port whereas
the VCTS version contains a FIFO buffer for one maximum

transmission unit (MTU) per port. Output port buffering
overcomes difficulties of head-of-line blocking.

Flow control The same data link layer interface is used
for all router versions as shown in Figure 7. The difference
is in the flow control schemes, which are also illustrated in
7: First, the header flit is assigned (DATA) together with
request (REQ) and start-of-frame (SoF). When routing
and arbitration have finished (after at least 4 cycles), the
acknowledgment flag (ACK) is set from the rx-port to
show its readiness to receive data. With WHS, every flit
needs to be acknowledged to stop the “worm” at its current
position in case the header is blocked. In the WHS version,
every flit needs at least two clock cycles for a single hop.
In the WHS* version, one flit can be transmitted per clock
cycle. With VCTS, the remaining flits are streamed into
the output buffer of the target port after the header flit
has been acknowledged. Only the header flit needs to be
acknowledged due to sufficient buffer space. End-of-frame
(EoF) indicates the last flit and frees the occupied port.
Byte-enable (BE) defines the valid bytes.
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Fig. 7. NoC data link layer interface and flow control

B. Synthesis Results

The three router versions have been synthesized for a
Virtex-4 FX20 (V4) and a Virtex-2P VP30 (V2). Table
I contains the synthesis results. V2 synthesis results are
used for comparison with a router presented in [18]. The
(theoretically) maximum link bandwidth (LBW) for a
single unidirectional channel between adjacent routers
is given in Gbit/s according to the flow control schemes
illustrated in Figure 7.



TABLE I
SYNPLIFY PRO SYNTHESIS RESULTS FOR A VIRTEX-4 FX20 (V4) AND A VIRTEX2P XC2VP30 (V2)

NoC version f [MHz] FFs BR LUTs LBW [Gbit/s]

V4 | V2 V4 | V2 | V4 | V2 V4 | V2 V4 | V2
WHS router 240 | 178 | 295 | 298 | — | — 809 825 3.84 2.84
WHS* router | 193 | 143 | 315 | 299 | — | — 925 862 6.17 4.57
VCTS router | 215 | 182 | 225 | 248 5 5 1117 | 1139 6.88 5.82

A WHS router requires 809 lookup tables (LUTSs) and
295 register flip flops (FFs). It achieves a frequency of
up to 240 MHz and an LBW of up to 3.84 Gbit/s. The
modified WHS* router requires slightly more resources:
925 LUTs and 315 register FFs. The maximum frequency
is 193 MHz, which is less than for WHS. But the LBW
increases to 6.17 Gbit/s because only one clock cycle
is needed to transmit a flit. For WHS and WHS*, the
buffers are realized with FFs. The VCTS router requires
ca. 1117 LUTs and nearly the same number of FFs due
to a more complex buffering logic. 5 block rams (BR)
are used to buffer incoming flits. A maximal frequency
of 215 MHz can be achieved. Though this is less than
the WHS router’s frequency, the LBW nearly doubles to
6.88 Gbit/s because of VCTS’ flow control scheme.

A comparable small-size NoC router [18] has similar
synthesis results as our router for a V2 device (see Table I).
But it reaches only a maximal frequency of ca. 33 MHz,
which is quite low for this FPGA. In [19], similar NoC
routers have been synthesized for a Virtex-2 1000 FPGA,
which also feature WHS and XY-routing. Additionally,
VCs are implemented. Three versions use either RR-
arbitration, or priority traffic differentiation, or circuit
switching mechanisms. Footprints range from 1622-1984
LUTs and 467-513 FFs. These routers require much more
resources compared to our routers (synthesis values for
this FPGA are not given in Table I since they are similar
to the V4’s values except for the frequency).

C. Simulation

Basal traffic patterns have been simulated for the
different NoCs for functional verification. As these types
of NoCs are already extensively tested with regard to
performance and throughput as for example in [18], [20],
or [21], a very similar behavior can be expected for the
presented NoC versions. With increasing flit injection rate,
the NoCs become saturated and cannot accept more flits
and packets. At the same time, the average packet latency
increases. This depends on parameters like buffer space
and packet size, but the principle behavior is the same.

Furthermore, we used E-Core [22] to emulate MAT-
MUNT’s traffic pattern in the NoC. E-Core is used for
application-specific performance evaluation. It is flexibly
configurable and can emulate the typical behavior of IP
cores in an NoC. E-Core is especially feasible for appli-
cations with streaming types of traffic alike MATMUNI.
Basically, an instance of E-Core can be configured as
data source, data sink, or transceiver together with a
variety of parameters such as injection rate or packet
sizes. This way, a quick performance estimation of the

NoC-based MATMUNI system is possible without actually
implementing its functionality. Figure 8 shows the basic
structure of an E-Core instance. It consists of a special RNI,
which connects to the NoC router, and of a processing
core, which emulates the desired behavior.

!
R R
!

Trans- Data

ceiver Sink

A
Packet Receive oC-Frame |

| Buffer \v

Data
Source

" Processing Core

Configuration
Parameters

Statistics

Router
Transcelver .
N Transmit \

@ [ Packet [ NoC-Frame

Buffer V

NoC

Fig. 8. Coarse structure of E-Core

VI. DISCUSSION
A. Implications concerning the Redesign of MATMUNI

The feasibility of an NoC architecture for MATMUNI
depends on how well MATMUNTI’s requirements are
fulfilled by the NoC. Congestions and locked resources
limit the BW that can actually be utilized depending
on the load and the traffic patterns. Since sophisticated
features for QoS have been omitted in the routers, we are
still in need of methods that can provide QoS to meet
the requirements of MATMUNI. Knowing MATMUNTI’s
internal communication dependencies as described in
Section IV-D, we optimized the mapping of the IP cores
onto the NoC. Figure 6 shows the mapping of the
application onto a 3x3 NoC derived from its APCG in
Figure 4. Two different aspects have been considered:
on one hand, the location of the hard-wired off-chip I/O
primitives within the target FPGA (XC4VFX20) and, on
the other hand, reducing concurrency on the NoC links.
The maximum LBW can nearly be exploited because
congestions and locked resources due to concurrency are
largely prevented by the chosen arrangement of the IP
cores. Multiple E-Core instances have been configured
to emulate the traffic pattern of the application scenario.
The simulation showed that the NoC can handle the
traffic generated by MATMUNI. The main data paths
require at least a BW of 1 Gbit/s in each direction. The
link BW of a single unidirectional channel in our NoCs
ranges from 3 to 6 Gbit/s as shown in Table I. Even



when not driven at its maximum speed, the NoC provides
sufficient bandwidth to handle 1 Gbit/s. Thus, an NoC is a
feasible approach to tackle the drawbacks of MATMUNTI’s
current architecture. The trade-off is the overhead for the
NoC infrastructure itself. Although the Virtex4 FX20 is a
moderately sized device, approximately the half of its logic
resources would be used for the 3x3 NoC itself. But diverse
submodules of MATMUNTI’s current architecture need
not to be implemented in the NoC-based redesign. The
buffering functionality of the synchronization FIFOs for
off-chip I/O as well as so-called local buffer modules can
be omitted, since the RNIs and NoC routers do buffering
anyway. Particularly in the VCTS version, the routers
contain FIFO buffers with independently clocked read and
write ports. Thus, the NoC is not only used for inter-module
communication but also becomes the buffer. Considering
routers with low hardware footprint as presented in Section
V, the resource overhead can be minimized. Applying low-
cost optimizations through a-priori knowledge exploits the
NoCs potential. To further enhance performance, a GALS
architecture promises to be a viable approach. IP core
can be driven with individual clocks to operate at their
maximum speed or to reduce idle cycles. Since multiple
clock networks already exist in current platform FPGAs,
the use of more than one clock is nearly for free (The
FPGA vendors already paid for it!).

B. General Implications

Various sophisticated features exist on different levels
that can provide QoS, e.g., adaptive routing, VC, and traffic
differentiation. These mechanisms show an interesting
discrepancy. On the one hand, they are used to manage the
available bandwidth as well as to guarantee bandwidth in
times of high traffic load. But when a network is already
congested, only reserving a fraction of the bandwidth can
help. On the other hand, they are expensive in terms of
valuable logic resources in FPGAs and silicon area in
ASICs. Router complexity increases and router and NoC
speeds decrease. Thus, they also reduce the maximum
physical bandwidth—they bite the hand that feeds them.
Some of the features even interact either by negating their
individual benefits or by requiring each other to be fully
exploited as discussed in [23]. Furthermore as stated in
[19], these features do not show the expected performance
gains, especially when the network traffic is not known in
advance. But when the network traffic or the application is
known in advance, inexpensive mechanisms can be used
instead to provide QoS—assuming that the NoC is not
used at its full capacity—because shaping network traffic
has most impact on performance parameters. Thus, the
benefits of sophisticated QoS features do not justify their
costs for the application domain, which is presented here.

But the statement above does not yet answer the question
what QoS-features really are (see Section III). The use
of these mechanisms is driven by the fact that bandwidth
never seems to be sufficient. Until now, SoC buses and
NoCs are mostly used at their limit. It is a back and forth
between providing physical bandwidth and applications
that consume this bandwidth. Arbitration and scheduling

features mitigate or bypass QoS problems that exist due to
the permanent wish for more and more bandwidth. Hence,
most of the features are just workarounds until enough
bandwidth is available.

As we are looking for a solution for these problems,
the Internet and its success can serve as a paradigm
providing long-time experiences. Alike the transition from
ATM to Ethernet as outlined in Section II, a transition
from expensive, sophisticated mechanisms to more simple
approaches is feasible in NoCs as well since both serve
similar networking principles. By shifting QoS into the
design process or into higher layers, e.g., into the RNI
or the IP core itself, complexity is decentralized and the
actual NoC remains compact and fast. Hence, we use
NoCs in their original sense—to mitigate parasitic effects,
to handle increasing SoC complexity, and to provide a
high performance communication grid.

C. Different Target Platforms for NoCs

Today, most NoC are used in ASICs designs. ASIC
designs are up to 3.2 times faster than the same circuit
implemented on an FPGA as analyzed in [24]. But costs for
ASIC designs are clearly higher in terms of time and money
as for FPGA designs. FPGAs are more flexible due to their
reconfigurability and feature a simple push-button design
flow. Unfortunately, NoCs have the drawback of utilizing
a distinct portion of the FPGA’s valuable logic resources.
As outlined in [25], hardwired general purpose NoCs on
FPGAs seem to be a valid approach to benefit from the
best of both worlds. Regarding the current development of
platform FPGAs, one has only to continue this evolution.
Special purpose FPGAs already exist, for instance in the
Xilinx Virtex-4 family. These devices are either specialized
for digital signal processing, embedded processing and
connectivity, or provide extensively large amounts of
logic. In [24], the integration of basal, reusable blocks in
FPGAs as embedded hardwired macros was confirmed
to be beneficial from different perspectives. Thus, FPGA
vendors should follow their strategies to support customers
with general, ready-made macros to narrow the design-
productivity-gap. With suchlike macros—customizable
Networks-on-Chip resources in this case—engineers can
focus on the important aspects of their designs. Actually,
separation of computation and communication is said to
be one of the prime advantages of NoCs. However, while
we are just now and here debating the “Look and Feel”
of the wires and routers instead of concentrating on the
application itself and as it is also done in many other
studies, there is no true separation. In fact, this separation
exists—but only from a theoretical point of view. As long
as we search the multifarious NoC design space to finally
hit the sweet spot, the benefits of separating computation
and communication have not yet found their way into
the design process of NoC-based applications. Especially
for industrial applications and commercial embedded
systems, this is an important aspect. Only with matured
NoC technology, NoCs can efficiently and economically
justifiable be exploited for real-world applications and in
a wider scale be applied in commercial systems.



VII. CONCLUSION

This article is an application study addressing the
redesign of MATMUNI—a previously developed packet
processing system. Due to scalability and performance
drawbacks of that system’s current architecture, a NoC-
based approach was envisaged. The packet processing
system’s internal dependencies have been analyzed to map
its functionality onto the NoC. Therefore, a simple and
compact NoC was developed with regard to costs and sim-
plicity. Preliminary FPGA synthesis results and simulation
results have been discussed with respect to MATMUNI’s
projected redesign. Future work comprises specification
and implementation of a special communication protocol
that reproduces the current, signal-based communication
on the message level and synthesis of the NoC-based
MATMUNI system on the target FPGA.

Furthermore, various questions on NoCs in general have
been discussed, e.g., issues related to the necessity of
QoS in application-specific NoCs. The main statement
of this paper is that QoS can be achieved by design—in
particular for similar applications with streaming traffic.
Therefore, a-priori knowledge on an application’s typical
communication characteristics is beneficial. As outlined in
the beginning, there will always be the need for some QoS.
However, expensive QoS features can mostly be omitted
or shifted into higher protocol layers to keep the NoC
grid simple and smart in itself. Rather, we eschew the
use of sophisticated QoS mechanisms by virtue of their
downsides such as increased area, complexity, and logic
requirements as well as decreased speed and bandwidth.
NoCs should be used in their original sense—as wire-
replacement. Thus, NoCs should not be over-specified.
Generally speaking, we propose. ..

e ...to follow the path of increasing the internal
communication bandwidth of NoCs, which results
in lasting performance gains...

e ...and to apply simple QoS features on top, which
are easy to implement and evaluate.

Since there are also applications that strictly require QoS
on different levels, e.g., real-time applications, automotive
embedded systems, or multi-processor systems, these
statements cannot be generalized. But for the targeted
application domain just “KISS” or to put it in a more
cultured way:

Simplicity is the ultimate sophistication.
(Leonardo da Vinci)
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