

The Astrophysical Multimessenger Observatory Network (AMON)

Azadeh Keivani (For the AMON Team) The Pennsylvanía State Uníversíty

American Museum of Natural History

April 14, 2017

Multimessenger Astrophysics

Cosmic Messengers:

- Cosmic rays
- Gamma rays
- Neutrinos
- Gravitational waves

 Use the messenger particles of all four of nature's fundamental forces

 Explore the most violent phenomena in the universe

Image credit: M. Ahlers

Multimessenger Transient Source Candidates

High-Luminosity Gamma-Ray Bursts:

- long duration
- high luminosity
- \clubsuit seconds to minutes γ-radiation
- ✤ z > 1
- ✤ relativistic jet
- Low-luminosity Gamma-Ray Bursts:
 - \diamond long duration
 - under-luminous
 - $\diamond z < 0.5$
- Short-Hard Gamma-Ray Bursts
 - similar to HL-GRBs
 - \diamond shorter duration
 - ✤ harder spectra

- Chocked jet supernova
- Core collapse supernova
- Blazars
- Ultra-luminous star-forming galaxies
- Primordial black holes
- Other exotica

Potential Sources

	Prompt			Delayed			
Event class	γ	ν	n	gw	Х	IR/O/ UV	Radio
High-luminosity GRBs (HL-GRB)	~	~		~	~	~	~
Low-luminosity GRBs (LL-GRBs)	~	~		~	~	~	~
Short-hard GRBs (SHBs)	~	~		~	~	~	~
Choked jet SN		~		~	~	•	•
Core-collapse SN		v	~		~	~	
Blazars	~	~			~	~	~
Primordial black holes (PBHs)	v	v	~				
Other exotica	~	~	~	~			

Azadeh Keivani (Penn State)

Astrophysical Multimessenger Observatory Network

AMON links high-energy astrophysical observatories into a single virtual system.

AMON framework enables:

• Real-time and near real-time sharing of sub-threshold data between multimessenger observatories

• Prompt distribution of electronic alerts for follow-up observations

http://sites.psu.edu/amon

Astroparticle Physics Vol. 45, 56–70, 2013

AMON Core Team

- Founded and Hosted at Penn State
- Current AMON Development and Advisory Team at Penn State:
 - Doug Cowen, Miguel Mostafa, Derek Fox,
 Stephane Coutu, Kohta Murase, Chad Hanna,
 B. S. Sathyaprakash, Peter Meszaros,
 Abhay Ashtekar, Abe Falcone
 - Azadeh Keivani, Jimmy DeLaunay,
 Colin Turley, George Filippatos, Cody Messick

AMON Network

Use messenger particles of all four fundamental forces!

- \diamond Triggering observatories:
 - Provide "sub-threshold" candidate events to AMON in real-time
 - IceCube, ANTARES, Auger, HAWC, VERITAS, FACT, Swift BAT, Fermi LAT
- ♦ Follow-up Observatories:
 - o Respond to AMON alerts
 - Provide optical feedback on potential multimessenger transients
 - Swift XRT & UVOT, VERITAS, FACT, MASTER, LCOGT

X, UV, Optical

AMON Functionality

Archival Searches

- AMON Stores events from participating observatories in the database
- □ AMON searches through this database for temporal and spatial coincidences

• Pass-Through

AMON receives events and broadcasts them immediately via Gamma-ray Coordinate Network (GCN) to astronomical community for follow-up

□ E.g. IceCube high-energy neutrinos

Real-time Coincidences

AMON receives "sub-threshold" events from multiple triggering observatories and searches in real-time for coincidences in direction and time

□ E.g. a single muon neutrino in coincidence with ≈15 photons from HAWC

AMON issues GCN alerts for follow-up

Data Flow

- ♦ Sub-threshold data from triggering observatories:
 - sent in a standard VOEvent format
 - store in a secure database
- ♦ VOEvents from satellite experiments via GCN
- Use GCN to distribute
 AMON alerts to the follow-up observatories as VOEvents

AMON Status: Participation

Observatories with AMON MoU	Stream content and format	TLS certificate	Test stream (fake data)	Test stream (real data scrambled)	Real data stream
IceCube singlet	✓	✓	✓	✓	In progress
IceCube HESE	✓	✓	✓	✓	\checkmark
IceCube EHE	✓	✓	✓	✓	✓
IceCube OFU	✓	✓	✓	✓	\checkmark
ANTARES	✓	✓	In progress		
Pierre Auger	✓	✓	✓	✓	In progress
HAWC	✓	In progress			
VERITAS	In progress				
FACT	✓	✓	✓	In progress	In progress
Swift BAT	✓	Not needed	Not needed	Not needed	✓
Fermi LAT	✓	Not needed	Not needed	Not needed	✓

AMON Status: Infrastructure

AMON event database

- Designed and implemented
- Contents:
 - Inserted: IceCube40/59 and year 1 of 86, Swift, Fermi (public)
 - Inserted: ANTARES 2008, Auger (private)
 - In progress: LIGO S5 and S6 (public)
 - Awaiting approval: IceCube, HAWC, VERITAS, ANTARES (private)

AMON application server

- Running stably since August 2014
 - Python/Twisted, asynchronous, tested with simulated and real clients
 - Accepts HTTP POST requests
 - Open for authorized connections using TLS certificates
- Started issuing public AMON alerts using VOEvent format/protocol in April 2016

AMON hardware

- Two new high-uptime servers
 - Now deployed at Penn State
 - Physically and cyber secure; fully redundant systems

Field of View

1-year simulation for IceCube, ANTARES, HAWC, Swift BAT, Pierre Auger, Fermi LAT, and LIGO-Virgo

Average number of observatories
 viewing a source simultaneously

 Number of triggering facilities observing a source (averaged over time and sky location)

94% of 4π sr-yr is within the FoV of 3 or more observatories
2+ observatories are viewing any given part of the sky simultaneously

AMON Analyses

• Archival analyses:

- o Fermi LAT IC40 (AK et al, PoS(ICRC2015)786 (2015))
- Fermi LAT IC40/59 (C. F. Turley et al., in preparation)
- Primordial black holes (G. Tešić, PoS(ICRC2015)328 (2015))
- VERITAS blazars IC40 (C. F. Turley et al., APJ 833, 117 (2016))

• Realtime analyses:

- Swift XRT/UVOT IceCube HESE (AK et al, in preparation)
- IceCube Triplet follow-up (submitted to A&A)
- Swift BAT IceCube subthreshold neutrinos (Jimmy DeLaunay)
- HAWC IceCube subthreshold neutrinos (AK)
- Pierre Auger IceCube subthreshold neutrinos (George Filippatos)

Analysis I

Searches for coincident signals between IceCube public data (40- and 59-string configuration) and Fermi LAT data

Analysis I: IceCube-Fermi LAT I

Azadeh Keivani (Penn State)

Analysis I: IceCube-Fermi LAT II

Study background:

- Scramble IceCube data
- Only scramble IceCube neutrinos: gamma event stream is more complicated due to LAT motion
- Keep neutrino's energy, position reconstructed uncertainties and declinations
- Scramble time and right ascension
- To test the analysis's effectiveness, a series of 10,000 scrambled data tests and a series of signal tests were performed

To conduct this analysis, an un-binned log-likelihood function is considered:

$$\lambda = 2\ln(P_{LAT}(\hat{x} \mid \hat{x}_{\gamma})P_{IC}(\hat{x} \mid \hat{x}_{\gamma})) - 2\ln(B(\hat{x}_{\gamma}))$$

Analysis I: IceCube-Fermi LAT III

Un-blinding: Results from pass 7 Fermi LAT:

♦ IC40 – Fermi LAT: Data: 2138 $\gamma + \nu$ pairs BG: 2207±40 $\gamma + \nu$ pairs p-value: 15%

♦ IC59 – Fermi LAT: Data: 9025 $\gamma + \nu$ pairs BG: 9077±153 $\gamma + \nu$ pairs p-value: 9%

In addition, clustering of detected pairs, time distribution and multiplicity are consistent with background expectation

Results from pass 8 Fermi LAT in preparation

Analysis II

Seeking sources of IceCube high-energy neutrinos with Swift

Azadeh Keivani (Penn State)

Analysis II: IceCube Detection of High-Energy Neutrinos

54 High-Energy Starting Events (HESE) in 4 years of data:

- Outer strings of the facility as a veto layer
- Large deposited energy in a restricted fiducial volume
- \rightarrow Contamination by muons and atmospheric neutrinos reduced

Analysis II: HESE Topology

Cascade-like event Average angular error 15° Track-like event Average angular error 1°

Track-like events resulting from charged-current interactions of muon neutrinos:

- better localization
- suitable for *Swift*

Analysis II: A Powerful Approach to Source Identification

- Neutrino localizations are too uncertain
- Better approach to source identification:
 - Identify neutrino localization in realtime
 - Carry out a prompt search for its electromagnetic counterpart
- HESE sample: high probability of being astrophysical
- Most proposed source populations: X-ray and optical emission

Analysis II: IceCube HESE Real-time Stream

- Only track-like High Energy Starting Event (HESE) that are likely astrophysical
- 4 alerts per year: 1 signal-like and 3 background like
- Fast alerts (median time delay 40 seconds)
- Distribute timestamps, RA/Dec, angular error, charge deposited and probability of an event being signal-like and track-like
- Public since April 6, 2016 at AMON/GCN stream
- More into: <u>http://gcn.gsfc.nasa.gov/amon.html</u>
- Many subscribers (50+ including VERITAS, MASTER, Swift XRT/ UVOT, ANTARES, XMM-Newton, etc.)

Analysis II: IceCube EHE Real-time Stream

- Only track-like Extremely High Energy (EHE) neutrinos (E>100s TeV) that are likely astrophysical
- 4 alerts per year: 4-6 signal-like and 2 background like
- Fast alerts (median time delay 40 seconds)
- Distribute timestamps, RA/Dec, angular error, charge deposited and probability of an event being astrophysical
- Public since July 16, 2016 at AMON/GCN stream
- More into: <u>http://gcn.gsfc.nasa.gov/amon.html</u>
- Many subscribers (45+ including VERITAS, MASTER, Swift XRT/ UVOT, ANTARES, XMM-Newton, etc.)

Analysis II: Public IceCube Real-time HESE/EHE

Alert name/type	161103/HESE	160814A/HESE	160806A/EHE	160731A/HESE	160731A/EHE	160427A/HESE
RA/DEC (rev1) RA/DEC (rev2)	[40.87°, 12.62°] [40.83°, 12.56°]	[199.31°, -32.02°] [200.25°, -32.35°]	[122.80°, -0.73°] [122.81°, -0.81°]	[215.11°, -0.46°] [214.54°, -0.33°]	[215.09°, -0.42°] [214.54°, -0.33°]	[239.66°, +6.85°] [240.57°, +9.34°]
Resolution	0.42° (50%),1.23°(90%) 0.65° (50%),1.10°(90%)	0.48° (50%), I.49(90%)	0.11° (50%)	0.42° (50%),1.23°(90%) 0.35° (50%),0.75°(90%)	0.17° (50%),0.8°(90%) 0.35°(50%),0.75°(90%)	l.6° (50%), 8.9° (90%) 0.6° (90%)
ST or Signalness	0.30	0.12	0.28	0.91	0.85	0.92
Latency: Event t0 to GCN alert sending	40 s	42 s	37 s	41 s	54 s	81 s
Followups						

	Fermi LAI
ANTARES	HAWC
FACT	H.E.S.S
— Fermi GBM	INTEGRAL

IPN
Konus-Wind
LCOGT

MAGIC

MASTER
Maxi/GSC
Pan-STARRS
PTF

SwiftVERITASCALET

Azadeh Keivani (Penn State)

24

Analysis II: Swift an Ideal Follow-up Facility

Our proposal:

- 50% confidence error region of high-confidence (p_cosmic > 80%) HESE neutrinos
- Observe with Swift in 19-tile pattern

Evans, P. A. et al, 2015 MNRAS, 448, 3.

- Within 16 hours of the neutrino detection
- Automatic process
- XRT and UVOT

Analysis II: Follow-up Plan I

- Cycle 12 approved and funded
- April 2016 March 2017
- Three approved triggers: priority I ToO
- IceCube HESE realtime analysis:
 - Identified and localized at the South Pole
 - Telemetered via Wisconsin to AMON at Penn State (median latency ≈ 40 s)
 - Convert into GCN notices
 - Notices are publicly available (<u>http://gcn.gsfc.nasa.gov/amon.html</u>)
 - Swift follows up track-like HESE with flux of >6000 p.e.
- Recovers >50% of Swift GRB afterglows

Analysis II: Follow-up Plan II

- Automated analysis of the XRT data: University of Leicester (Phil Evans)
- Sources selected for subsequent monitoring:
 > Bright and previously uncatalogued X-ray source
 > Variability over the course of the tiling observations
- Search UVOT data for new and interesting/ variable sources to submit for follow-up
- New and variable sources (≈ 2) with subsequent follow-up observations:
 - \blacktriangleright Three daily epochs
 - ➤ Two Swift pointing
 - \succ 1 ks per pointing
- Total observing request is
 - ➤ 31 ks (i.e. 19+2*3*2) per HESE or
 - ➢ 93 ks total

Analysis II: First Swift Follow-up of a HESE Alert

- IceCube-160731A:
 - ➢ 2016 July 31
 - \blacktriangleright (RA, Dec) = (215.109°, -0.458°)
 - \succ Error 1.2°
- Swift followed up this event within about an hour
- Radius of 0.8°
- Observations: 03:00:46 - 14:51:52 UT
- Covered 2.1 deg²
- XRT collected ≈ 800 s of PC mode data per tile
- Six X-ray sources \rightarrow all known
- No transients in XRT/UVOT data

Analysis II: Second Swift Follow-up of a HESE Alert

- IceCube-161103A:
 - ➢ 2016 November 3
 - \blacktriangleright (RA, Dec) = (40.874°, +12.616°)
 - \succ Error 1.2°
- Swift followed up this event within about five hours
- XRT radiator pointed towards Sun made XRT very hot
- Radius of 0.8°
- Observations:
 13:58:30 18:55:15 UT
- Covered 2.1 deg²
- XRT collected between 150 and 250 s of PC mode data per tile
- Four X-ray sources, unknown but faint

Analysis II: Swift-IceCube GCN Circulars

Swift has followed up four IceCube high-energy events so far

- IceCube-170321A: <u>https://gcn.gsfc.nasa.gov/gcn3/20964.gcn3</u>
- IceCube-170312A: <u>https://gcn.gsfc.nasa.gov/gcn3/20890.gcn3</u>
- IceCube-161103A: <u>https://gcn.gsfc.nasa.gov/gcn3/20125.gcn3</u>
- IceCube-160731A: <u>https://gcn.gsfc.nasa.gov/gcn3/19747.gcn3</u>

No significant counterpart has been discovered

Analysis II: Current Plan

- Add Extremely High-Energy (EHE) events:
 - high-energy through-going tracks
 - energies exceeding several hundreds TeV
 - ▶ better resolution ($\approx 0.2^{\circ}$)
 - ▶ expected rate 4 to 6 (2 background)
 - ➢ 7-pointing mosaic
 - \blacktriangleright completion of tiling pattern within 10 hours
 - recover >79% of Swift GRB afterglows
- Rapid follow-up of a few high-energy events
- Example of 2 HESE and 4 EHE per year:
 - \succ 1 ks per pointing
 - new pointings for object of interest
 - \blacktriangleright two daily epochs at 2 ks per epoch
 - > 27 ks per HESE, 11 ks per EHE (total of 98 ks)

Analysis III

Multiwavelength follow-up of a rare IceCube neutrino multiplet

Analysis III: IceCube Neutrino Multiplet

- Triplet every 13.7 years
- Two neutrino doublets:
 - o 2016-02-17 19:21:31.65
 - ο ΔT= 100 s
 - $\circ \Delta \theta_{23} = 3.6^{\circ}$
 - \circ (RA, Dec) = (26.1°, 39.5°)

$$\circ \sigma_{50} = 1^{\circ}$$

- $\circ \sigma_{90} = 3.6^{\circ}$
- Follow up observations after 22 hrs:
 - Swift XRT
 - o ASAS-SN
 - o LCO
 - MASTER
 - VERITAS
- Analyze data:
 - Swift BAT
 - o Fermi LAT
 - HAWC

Analysis III: IceCube Neutrino Multiplet – Swift Searches

- Swift XRT:
 - 37 pointings
 - 320 s per tiling
 - 0.3-10 keV
 - Search for GRB afterglows, AGN flares, other X-ray transients
 - Six X-ray sources identified
 - One highly variable but faint source
- Swift BAT:
 - By chances BAT observed the position within 1 min after the neutrino detection
 - Hard X-rays: 15-150 keV
 - Detection with single-trial significance 4.6σ
 - P-value of 9.9%
 - Random fluctuation
 - 4σ upper limit of 3.9×10^{-9} erg cm⁻² s⁻¹

Summary

- AMON expands discovery space in new ways
 - ♦ Unleashes sub-threshold data for multimessenger searches in real-time
 - Creates bidirectional, multilateral connections between triggering and followup observatory partners
 - Enables complex real-time and archival searches
- AMON greatly simplifies multimessenger searches
 Common transfer protocol, data format, event database, MoUs
- ♦ AMON has made a significant progress towards real-time and archival analysis
- AMON server is up and running: open for authorized connections!
- ♦ AMON started issuing alerts in April 2016!
- New participants are always welcome!

