The Dawn of Multimessenger Astronomy

Doug Cowen

PennState Eberly College of Science

Multimessenger Astrophysics

- Definition
- Motivations
- Candidate astrophysical sources
- The status quo
 - Messengers & Detectors
 - Discoveries
 - What's still hidden
- Discovery accelerants
 - New/Upgraded detectors
 - Virtual observatories: AMON and ASTERICS

What is Multimessenger Astrophysics?

Defⁿ: The observation of a single source producing distinct signals associated with two or more of the four fundamental forces:

Force	Messenger	Messenger Detected?	Source ID'd?	Multi- messenger?	
EM	γ	\checkmark	Loads	Sun, SN1987A	
Weak	ν	√	Twice		
Strong	p, nuclei	\checkmark	No	No	
Gravity	Grav. Waves	\checkmark	No	No	

In this talk we focus on high energies

Motivations

What makes these?

And these?

More Motivations

- Consider bonanza from low-energy multimessenger sources:
 - Sun: Used solar EM output to estimate v production.
 - Measurements fell short \rightarrow "solar v problem"
 - Solved right here in Sudbury, deepening understanding of v's (and confirming stars' fusion power source)
 - SN1987A: Coincident v detection gave
 - Unprecedented insight into SN explosion mechanism
 - Enabled new measurements of fundamental v properties
 - Generated hundreds of papers

More Motivations

- If we could detect *high*-energy multimessenger source(s):
 - We'd focus modern EM-based observatories on them, and similarly dramatic advances could ensue:
 - Acceleration mechanism revealed?
 - Source(s) of UHECRs unveiled?
 - Localization (and redshift) of GW emitters determined?
 - Additional fundamental particle properties discovered?

Candidate Astrophysical Sources

- Gamma Ray Bursts
 - Top candidate (but IceCube rules out some models)
- Active Galactic Nuclei; Blazars
 - Continuous sources (but not the most energetic)
- Supernovae
 - Have to play the waiting game for one in Milky Way
- NS-NS mergers, NS-BH mergers
 - BH-BH mergers may "only" produce GWs
- "Top-down": WIMPs, supermassive GUT relic particles, evaporating primordial BHs,...
 - Very important area of research, but not covered here

Figure from Chandra/Harvard webpage

High-Energy Astrophysical Messengers

Relative advantages and disadvantages:

High-Energy Astrophysical Messengers

Relative advantages and **disadvantages**:

Messenger	Sample size	Straight trajectory	Pointing resolution	Penetrat- ing
γ			$\ll 1^{\circ}$	E _γ < 50 TeV (γ+γ _{IR} →e⁺e⁻)
ν	$\sigma_{\nu,matter} \ll 1$		~ 1°	
p, nuclei		B fields	~ 1°	E _p < 30 EeV (GZK cutoff)
Grav. waves			$\sim 1000 (^{\circ})^2$ (only 2 detectors)	

- GeV-TeV γ rays
 - satellites
 - IACTs
 - air shower arrays
- EeV-scale protons, nuclei
 - air shower arrays
- PeV-scale neutrinos
 - IceCube
- Grav. Waves
 - a-LIGO

- **GeV-TeV** γ rays
 satellites
 - Salemile
 - IACTs
 - air shower arrays
- EeV-scale protons, nuclei
 - air shower
 - arrays 📙
- PeV-scale
 neutrinos
 - IceCube
- Grav. Waves
 - aLIGO

D. Cowen

- GeV-TeV γ rays
 satellites
 - ACTs air shower arrays
- EeV-scale protons, nuclei
 - air shower arrays
- PeV-scale neutrinos
 - IceCube
- Grav. Waves
 - aLIGO

Exciting Times for Particle Astrophysics!

- Thunderous gravitational waves
 - Discovered and studied, but no counterparts seen
- Elusive cosmic neutrinos unveiled
 - Discovered but no sources identified yet
- Persistently inscrutable cosmic rays
 - Discovered decades ago, provenance still unknown

Exciting Times for Particle Astrophysics!

- Thunderous gravitational waves
 - Discovered and studied, but no counterparts seen
- Elusive cosmic neutrinos unveiled
 - Discovered but no sources identified yet
- Persistently inscrutable cosmic rays
 - Discovered decades ago, provenance still unknown

At high energies, why have we only been able to associate γ-rays with astrophysical sources?

Why Only γ-ray Sources So Far?

- In their first data runs, (v, p, GW) detectors aimed first for standalone source discoveries
 - Successfully detecting rare events (~1/month) but no astrophysical sources identified
- Next step: send out strong individual detections for (mostly EM) follow-up
 - O(100) follow-ups have been performed: nothing found yet
- Standalone and follow-up searches have been ongoing for nearly a decade
 - Clearly must keep looking, but perhaps new strategies are needed

New Strategy: Medium→Long-Term

- Augment sensitivity of existing detectors, or add new detectors
 - Approved:
 - GW: aLIGO upgrades, VIRGO, GEO600, KAGRA, LIGO-India
 - p, nuclei: Telescope Array
 - Proposed:
 - p, nuclei: AugerPrime
 - v: IceCube-Gen2/Phase 1
- Build larger, more sensitive detectors
 - Under construction:
 - γ-rays: CTA
 - ν: KM3NeT (partial)
 - Proposed:
 - v: IceCube-Gen2

New Strategy: Medium \rightarrow Long-Term

- Augment sensitivity of existing detectors, or add new detectors
 - Approved:
 - GW: aLIGO upgrades, VIRGO, GEC
 - p, nuclei: Telescope Array
 - Proposed:
 - p, nuclei:
- Jaiting
 - truction:
 - /-rays: CTA
 - ν: KM3NeT (partial)
 - Proposed:
 - v: IceCube-Gen2

New Strategy: Short-Term

- Overcome rareness by lowering thresholds; exploit otherwise "unusable" data
 - Examples:
 - IceCube single muon neutrinos at lower energies
 - Single-interferometer LIGO data
 - Can we get S/N large enough to be useful?
- Emphasize transient sources: lower EM background
 - In any smallish region of space, there's always a few known sources
 - Can we gather (v, p, GW) signals in real-time and trigger EM follow-up at sufficient low latency?

New Strategy: Short-Term

- Overcome rareness by lowering thresholds; exploit otherwise "unusable" data
 - Examples:
 - IceCube single muon neutrinos at lower energies
 - Single-interferometer LIGO data
 - Can we get S/N large enough to be useful?
- Emphasize transient sources: lower EM background
 - In any smallish region of space, there's always a few known sources
 - Can we gather (v, p, GW) signals in real-time and trigger EM follow-up at sufficient low latency?
- Yes and yes.

New Strategy: Short-Term

- Can do so by building a *multimessenger, real-time virtual observatory*
 - Pull together signals from disparate "triggering" detectors
 - E.g., IceCube(ν) + HAWC(γ)
 - Find coincidences in time and direction in real-time (& archivally)
 - Issue alerts for fast EM follow-up: catch fading transients & study them
- Benefits:
 - Powerful combination of
 - Wide field-of-view (FoV), 24/7 coverage of triggering observatories
 - High resolution of EM follow-up observatories
 - Can use "sub-threshold" data from triggering observatories
 - Otherwise low-significance data can rise in significance *if in coincidence with other data*
 - Note: This idea generalizes previous efforts, e.g. SNEWS for SNe $\boldsymbol{\nu}$
 - Supports higher than just pair-wise coincidence searches

Multimessenger Virtual Observatories

- Two efforts are now underway:
 - AMON (link)
 - Astrophysical Multimessenger
 Observatory Network (started ~6 years ago)
 - See Astroparticle Physics Vol. 45, 56-70 (2013)
 - ASTERICS (link)
 - Astronomy ESFRI* and Research Infrastructure Cluster (started ~2 years ago)
- Similar ideas and goals
 - Focus here on AMON

*European Strategy Forum on Research Infrastructures

Astronomy ESFRI & Research Infrastructu

AMON

- Allows multiple particle astrophysics experiments to work in concert & share data to increase sensitivity to multimessenger transients
 - Provides low-latency, real-time system to
 - gather data
 - search for coincident multimessenger signals
 - issue alerts for rapid follow-up
 - Enables use of sub-threshold data
 - in real-time and archivally
- Simplifies interfaces
 - Straightforward connection to GCN (γ-ray Coord. Network)
 - Standardized event transmission
 - Cleaner interconnect topology
 - Single MoU

Predicted sensitivity gain in subthreshold GW-v searches with AMON:

 $\mathsf{E}^{\mathsf{ISO}}_{\mathsf{GW}}\left[\mathsf{M}_{\odot}\mathsf{c}^{2}
ight]$

Astroparticle Physics Vol. 45, 56-70 (2013)

Important Questions for AMON et al.

- Is someone else going to analyze my collaboration's data?
 - Each observatory retains full rights over use of its data (see AMON MOU)
 - All coincidence analyses require explicit permission of each participating collaboration
- Is the trigger latency small enough?
 - IceCube \rightarrow Swift: $\mathcal{O}(mins)$
- Is the aggregate data rate manageable?
 - Individual datum: direction, time, quality parameters
 - Adjustable rates, aim for few/hr/observatory
 - Cf.: ~ 1 /month for high significance events
 - Anticipate $\sim 1 \text{ TB/yr}$ of data
- Is the system on 24/7?
 - AMON uses two robust servers in separate physical locations, a clustered database,...
 - Achieved downtime of < 1 hr/yr
- Is there adequate sky coverage?
 - 94% of 4π sr-yr in FoV of 3 or more obs.
 - 2+ obs. view any given part of sky at same time

Important Questions for AMON et al.

- **X** Is someone else going to analyze my collaboration's data?
 - Each observatory retains full rights over use of its data (see AMON MOU)
 - All coincidence analyses require explicit permission of each participating collaboration
- ✓ Is the trigger latency small enough?
 - IceCube \rightarrow Swift: $\mathcal{O}(mins)$
- Is the aggregate data rate manageable?
 - Individual datum: direction, time, quality parameters
 - Adjustable rates, aim for few/hr/observatory
 - Cf.: ~ 1 /month for high significance events
 - Anticipate ~1 TB/yr of data
- Is the system on 24/7?
 - AMON uses two robust servers in separate physical locations, a clustered database,...
 - Achieved downtime of < 1 hr/yr
- Is there adequate sky coverage?
 - 94% of 4π sr-yr in FoV of 3 or more obs.
 - 2+ obs. view any given part of sky at same time

AMON

- Multiple *triggering* observatories have joined AMON:
 - ANTARES, Auger, FACT, Fermi, HAWC, IceCube, Swift BAT, LIGO/VIRGO
 - Are now, or will be, sharing sub-threshold data in real time
 - Many are wide–FoV, 24/7 instruments

- Multiple *follow-up* observatories have also joined:
 - FACT, MASTER, Swift XRT & UVOT, VERITAS
 - Have already started performing follow-up observations of AMON-brokered alerts

Results

- Initially enabling archival analyses ("walk before we run"):
 - Fermi LAT + IC40 (A. Keivani et al., PoS(ICRC2015)786 (2015))
 - Fermi LAT + IC40/59 (C. F. Turley et al., in preparation)
 - Primordial black hole search (G. Tešić, PoS(ICRC2015)328 (2015))
 - VERITAS Blazars + IC40 (C. F. Turley et al., ApJ 833, 117 (2016))
- Now starting to enable real-time analyses:
 - Swift XRT/UVOT + IceCube HESE (A. Keivani et al., in preparation)
 - Swift BAT + IceCube sub-threshold ν's (analysis starting)
 - HAWC sub-threshold + IceCube sub-threshold v's (starting)
 - Auger + IceCube sub-threshold ν's (starting)
 - IceCube Triplet v follow-up (IceCube Collab., submitted to A&A)
- For these efforts, AMON provides/provided (since April 2016)
 - a software framework for real-time coincidence analyses & alert emission
 - a database populated with private and public data from numerous observatories
 - a "pass-through" service for sending out alerts via GCN
 - E.g., IceCube's High-Energy Starting Event ("HESE") data

Example AMON-Enabled ν + γ Analysis

A. Keivani et al., PoS(ICRC2015)786 (2015) (w/pass 7) C. F. Turley et al., in preparation (w/pass 8)

Example AMON-Enabled Real-Time Analysis

- IceCube track-like HESE alerts
 - Sent to AMON (~12/yr) in real time
 - Broadcast via GCN to ~50 subscribers
 - See <u>GCN AMON page</u> for details
 - AMON-based code down-selects ~4/yr
 - Swift time is valuable!
- Swift performs follow-up, auto-tiling sky around reported ν_{μ} direction
 - Total observing request ~90ks

Example track-like HESE: $\sim 1^{\circ}$ pointing resolution.

Swift tiling pattern

D. Cowen

Example AMON-Enabled Real-Time Analysis

- Swift images are then automatically analyzed for new or fading UV or xray sources
 - Swift then performs followup of ~2 possible sources
- IceCube-160731A:
 - Swift slewed within ~ 1 hr
 - Covered $\sim 2.1 \text{ deg}^2$
 - Saw 6 x-ray sources:
 - all known
 - Saw no transients

Summary of AMON-Brokered Public IceCube Real-time HESE/EHE in 2016

Alert name/type	161103/HESE	160814A/HESE	160806A/EHE	160731A/HESE	160731A/EHE	160427A/HESE
RA/DEC (rev1) RA/DEC (rev2)	[40.87°, 12.62°] [40.83°, 12.56°]	[199.31°, -32.02°] [200.25°, -32.35°]	[122.80°, -0.73°] [122.81°, -0.81°]	[215.11°, -0.46°] [214.54°, -0.33°]	[215.09°, -0.42°] [214.54°, -0.33°]	[239.66°, +6.85°] [240.57°, +9.34°]
Resolution	0.42° (50%),1.23°(90%) 0.65° (50%),1.10°(90%)	0.48° (50%), I.49(90%)	0.11° (50%)	0.42° (50%),1.23°(90%) 0.35° (50%),0.75°(90%)	0.17° (50%),0.8°(90%) 0.35°(50%),0.75°(90%)	l.6° (50%), 8.9° (90%) 0.6° (90%)
ST or Signalness	0.30	0.12	0.28	0.91	0.85	0.92
Latency: Event t0 to GCN alert sending	40 s	42 s	37 s	41 s	54 s	81 s
Followups			≡			
 AGILE Fermi LAT IPN MASTER Swift HAWC Konus-Wind Maxi/GSC VERITAS FACT H.E.S.S LCOGT Pan-STARRS CALET Fermi GBM INTEGRAL MAGIC 						

TAUP 2017: Multimessenger Astrophysics

Conclusions

- Fantastic new particle astrophysics detectors have put high-energy multimessenger astronomy at our fingertips
 - All we need are some source detections!
- No luck so far under current paradigms (standalone, or bilateral & unidirectional)
- AMON (and ASTERICS) expand multimessenger discovery space
 - Establish bidirectional, multilateral connections in real-time (and archivally)
 - Unleash sub-threshold data
 - HAWC+IceCube (γ + ν) real-time sub-threshold coincidence analysis ready
 - Simplify multimessenger effort via common xfer protocol, data format, event database and MoU
 - The world's particle astrophysics detectors are an aggregate investment of \sim \$10⁹, so even a small increase in sensitivity is a worth it
 - New partners welcome

Conclusions

- Fantastic new particle astrophysics detectors have put high-energy multimessenger astronomy at our fingertips
 - All we need are some source detections!
- No luck so far under current paradigms (standalone, or bilateral & unidirectional)
- AMON (and ASTERICS) expand multimessenger discovery space
 - Establish bidirectional, multilateral connections in real-time (and archivally)
 - Unleash sub-threshold data
 - HAWC+IceCube (γ + ν) real-time sub-threshold coincidence analysis ready
 - Simplify multimessenger effort via common xfer protocol, data format, event database and MoU
 - The world's particle astrophysics detectors are an aggregate investment of \sim \$10⁹, so even a small increase in sensitivity is a worth it
 - New partners welcome
- Every time we look at the heavens in a new way, discoveries usually ensue!

Backup

D	Cowen
D .	COWCII

Potential Sources

		Prompt				Delayed		
Event class	γ	ν		gw	Х	IR/O/ UV	Radio	
High-luminosity GRBs (HL-GRB)	~	~		~	~	~	~	
Low-luminosity GRBs (LL-GRBs)	~	~		~	~	~	~	
Short-hard GRBs (SHBs)	~	~		~	~	~	~	
Choked jet SN		v		~	~	~	v	
Core-collapse SN		v	~		~	~		
Blazars	~	~			~	~	~	
Primordial black holes (PBHs)	v	v	v					
Other exotica	~	~	~	~				

Data Flow

- Sub-threshold data from triggering observatories:
 - sent in a standard
 VOEvent format
 - store in a secure database
- VOEvents from satellite experiments via GCN
- Use GCN to distribute AMON alerts to the follow-up observatories as VOEvents

AMON Status: Participation

Observatories with AMON MoU	Stream content and format	TLS certificate	Test stream (fake data)	Test stream (real data scrambled)	Real data stream
IceCube singlet	\checkmark	\checkmark	\checkmark	\checkmark	In progress
IceCube HESE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
IceCube EHE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
IceCube OFU	\checkmark	√	√	\checkmark	✓
ANTARES	\checkmark	\checkmark	In progress		
Pierre Auger	√	\checkmark	\checkmark	\checkmark	In progress
HAWC	\checkmark	In progress			
VERITAS	In progress				
FACT	\checkmark	\checkmark	\checkmark	\checkmark	In progress
Swift BAT	\checkmark	Not needed	Not needed	Not needed	\checkmark
Fermi LAT	\checkmark	Not needed	Not needed	Not needed	\checkmark

D. Cowen

Multimessenger Transient Source Candidates

High-Luminosity Gamma-Ray Bursts:

- long duration
- high luminosity
- seconds to minutes γ-radiation
- ✤ z > 1
- relativistic jet
- Low-luminosity Gamma-Ray Bursts:
 - long duration
 - under-luminous
 - $\diamond z < 0.5$
- Short-Hard Gamma-Ray Bursts
 - similar to HL-GRBs
 - shorter duration
 - harder spectra

- Choked jet supernova
- Core collapse supernova
- Blazars
- Ultra-luminous star-forming galaxies
- Starburst galaxies
- Primordial black holes
- Other exotica

Field of View

1-year simulation for IceCube, ANTARES, HAWC, Swift BAT, Pierre Auger, Fermi LAT, and LIGO-Virgo

Average number of observatories
 viewing a source simultaneously

 Number of triggering facilities observing a source (averaged over time and sky location)

94% of 4π sr-yr is within the FoV of 3 or more observatories
 2+ observatories are viewing any given part of the sky simultaneously

TAUP 2017: Multimessenger Astrophysics

AugerPrime

The upgrade will consist of

- enhanced surface detector stations (SSD),
- faster electronics,
- dedicated underground muon detectors and
- optimized operations for the fluorescence telescopes.

Ten more years of operation is planned to double the data set and to particularly study:

- The origin of the flux suppression at ultra-high energy,
- The proton contribution at highest energies (E > 6.10¹⁹ eV), leading to a so-called "particle astronomy"
- New particle physics beyond the reach of the LHC

Archival vs. Realtime Analysis

	Pros	Cons
Archival studies	 Precise event properties: position, localization, false positive rate Construct statistical tools/ methods (needed for realtime analyses) 	• Too late to do additional observations in case of a significant signal
Realtime studies	 Rapid followup of events and alerts Discovery potential of transient sources and extended followup observation 	 Use only fast online tools Larger uncertainties Harder to reject background events

AMON Status: Infrastructure

AMON event database

- Designed and implemented
- Contents:
 - Inserted: IceCube40/59 and year 1 of 86, Swift, Fermi (public)
 - Inserted: ANTARES 2008, Auger, IceCube (private)
 - In progress: LIGO S5 and S6 (public)
 - Awaiting approval: HAWC, VERITAS, ANTARES (private)

AMON application server

- Running stably since August 2014
 - Python/Twisted, asynchronous, tested with simulated and real clients
 - Accepts HTTP POST requests
 - Open for authorized connections using TLS certificates
- Started issuing public AMON alerts using VOEvent format/protocol in April 2016

AMON hardware

- Two new high-uptime servers
 - Now deployed at Penn State; < 1 hr/yr downtime
 - Physically and cyber secure; fully redundant systems

Analysis I: IceCube-Fermi LAT II

- Scramble IceCube data in time and right ascension to study background:
 - Only scramble IceCube neutrinos: gamma event stream is more complicated due to LAT motion
 - Keep neutrino's energy, position reconstructed uncertainties and declinations
 - Use 10,000 scrambled data sets plus a series of signal tests
- Test statistic: Unbinned log-likelihood function

$$\lambda = 2\ln(P_{LAT}(\hat{\boldsymbol{x}}|\hat{\boldsymbol{x}}_{\gamma})P_{IC}(\hat{\boldsymbol{x}}|\hat{\boldsymbol{x}}_{\gamma})) - 2\ln(\boldsymbol{B}(\hat{\boldsymbol{x}}_{\gamma}))$$

- Result:
 - IC40 Fermi LAT:
 - Data: 2138 γ+ν pairs BG: 2207±40 γ+ν pairs p-value: 15%
 - IC59 Fermi LAT:
 - Data: 9025 γ+ν pairs BG: 9077±153 γ+ν pairs p-value: 9%
 - Clustering of detected pairs, time distribution and multiplicity are consistent with background expectation

Analysis I: IceCube-Fermi LAT III

Un-blinding: Results from pass 7 Fermi LAT:

- IC40 Fermi LAT: Data: 2138 γ+ν pairs BG: 2207±40 γ+ν pairs p-value: 15%
- IC59 Fermi LAT: Data: 9025 γ+ν pairs BG: 9077±153 γ+ν pairs p-value: 9%

In addition, clustering of detected pairs, time distribution and multiplicity are consistent with background expectation

Results from pass 8 Fermi LAT in preparation

AK et al., ICRC, PoS(ICRC2015)786 (2015).

Analysis II

Seeking sources of IceCube high-energy neutrinos with Swift

TAUP 2017: Multimessenger Astrophysics

Analysis II: IceCube Detection of High-Energy Neutrinos

54 High-Energy Starting Events (HESE) in 4 years of data:

- Outer strings of the facility as a veto layer
- Large deposited energy in a restricted fiducial volume
- \rightarrow Contamination by muons and atmospheric neutrinos reduced

Analysis II: HESE Topology

Cascade-like event Average angular error 15° Track-like event Average angular error 1°

Track-like events resulting from charged-current interactions of muon neutrinos:

- better localization
- suitable for Swift

Analysis II: A Powerful Approach to Source Identification

- Neutrino localizations are too uncertain
- Better approach to source identification:
 - Identify neutrino localization in realtime
 - Carry out a prompt search for its electromagnetic counterpart
- HESE sample: high probability of being astrophysical
- Most proposed source populations: X-ray and optical emission

Analysis II: IceCube HESE Real-time Stream

- Only track-like High Energy Starting Event (HESE) that are likely astrophysical
- 4 alerts per year: 1 signal-like and 3 background like
- Fast alerts (median time delay 40 seconds)
- Distribute timestamps, RA/Dec, angular error, charge deposited and probability of an event being signal-like and track-like
- Public since April 6, 2016 at AMON/GCN stream
- More into: <u>http://gcn.gsfc.nasa.gov/amon.html</u>
- Many subscribers (50+ including VERITAS, MASTER, Swift XRT/ UVOT, ANTARES, XMM-Newton, etc.)

Analysis II: IceCube EHE Real-time Stream

- Only track-like Extremely High Energy (EHE) neutrinos (E>100s TeV) that are likely astrophysical
- 4 alerts per year: 4-6 signal-like and 2 background like
- Fast alerts (median time delay 40 seconds)
- Distribute timestamps, RA/Dec, angular error, charge deposited and probability of an event being astrophysical
- Public since July 16, 2016 at AMON/GCN stream
- More into: <u>http://gcn.gsfc.nasa.gov/amon.html</u>
- Many subscribers (45+ including VERITAS, MASTER, Swift XRT/ UVOT, ANTARES, XMM-Newton, etc.)

Analysis II: Public IceCube Real-time HESE/EHE

Alert name/type	161103/HESE	160814A/HESE	I 60806A/EHE	160731A/HESE	160731A/EHE	160427A/HESE
RA/DEC (rev1) RA/DEC (rev2)	[40.87°, 12.62°] [40.83°, 12.56°]	[199.31°, -32.02°] [200.25°, -32.35°]	[22.80°, -0.73°] [22.81°, -0.81°]	[215.11°, -0.46°] [214.54°, -0.33°]	[215.09°, -0.42°] [214.54°, -0.33°]	[239.66°, +6.85°] [240.57°, +9.34°]
Resolution	0.42° (50%),1.23°(90%) 0.65° (50%),1.10°(90%)	0.48° (50%), I.49(90%)	0.11° (50%)	0.42° (50%),1.23°(90%) 0.35° (50%),0.75°(90%)	0.17° (50%),0.8°(90%) 0.35°(50%),0.75°(90%)	l.6° (50%), 8.9° (90%) 0.6° (90%)
ST or Signalness	0.30	0.12	0.12 0.28		0.85	0.92
Latency: Event t0 to GCN alert sending	40 s	42 s	37 s	41 s	54 s	81 s
Followups			Ш			
 AGILE Fermi LAT IPN MASTER Swift ANTARES HAWC Konus-Wind Maxi/GSC VERITAS FACT H.E.S.S LCOGT Pan-STARRS CALET Fermi GBM INTEGRAL MAGIC PTF 						

TAUP 2017: Multimessenger Astrophysics

Analysis II: Swift an Ideal Follow-up Facility

Our proposal:

- 50% confidence error region of high-confidence (p_cosmic > 80%) HESE neutrinos
- Observe with Swift in 19-tile pattern

Evans, P. A. et al, 2015 MNRAS, 448, 3.

- Within 16 hours of the neutrino detection
- Automatic process
- XRT and UVOT

Analysis II: Follow-up Plan I

- Cycle 12 approved and funded
- April 2016 March 2017
- Three approved triggers: priority I ToO
- IceCube HESE realtime analysis:
 - ➢ Identified and localized at the South Pole
 - ➤ Telemetered via Wisconsin to AMON at Penn State (median latency ≈ 40 s)
 - Convert into GCN notices
 - Notices are publicly available
 (<u>http://gcn.gsfc.nasa.gov/amon.html</u>)
 - Swift follows up track-like HESE with flux of >6000 p.e.
- Recovers >50% of Swift GRB afterglows

Analysis II: Follow-up Plan II

- Automated analysis of the XRT data: University of Leicester (Phil Evans)
- Sources selected for subsequent monitoring:
 - Bright and previously uncatalogued X-ray source
 - Variability over the course of the tiling observations
- Search UVOT data for new and interesting/variable sources to submit for follow-up
- New and variable sources (≈ 2) with subsequent follow-up observations:
 - > Three daily epochs
 - ➤ Two Swift pointing
 - > 1 ks per pointing
- Total observing request is
 31 ks (i.e. 19+2*3*2) per HESE or
 - ➢ 93 ks total

Analysis II: First Swift Follow-up of a HESE Alert

- IceCube-160731A:
 - ➢ 2016 July 31
 - \blacktriangleright (RA, Dec) = (215.109°, -0.458°)
 - \succ Error 1.2°
- Swift followed up this event within about an hour
- Radius of 0.8°
- Observations:
 03:00:46 14:51:52 UT
- Covered 2.1 deg²
- XRT collected ≈ 800 s of PC mode data per tile
- Six X-ray sources \rightarrow all known
- No transients in XRT/UVOT data

Analysis II: Second Swift Follow-up of a HESE Alert

- IceCube-161103A:
 - ➢ 2016 November 3
 - \succ (RA, Dec) = (40.874°, +12.616°)
 - \succ Error 1.2°
- Swift followed up this event within about five hours
- XRT radiator pointed towards Sun made XRT very hot
- Radius of 0.8°
- Observations:
 13:58:30 18:55:15 UT
- Covered 2.1 deg²
- XRT collected between 150 and 250 s of PC mode data per tile
- Four X-ray sources, unknown but faint

Analysis II: Swift-IceCube GCN Circulars

Swift has followed up four IceCube high-energy events so far

- IceCube-170321A: <u>https://gcn.gsfc.nasa.gov/gcn3/20964.gcn3</u>
- IceCube-170312A: <u>https://gcn.gsfc.nasa.gov/gcn3/20890.gcn3</u>
- IceCube-161103A: <u>https://gcn.gsfc.nasa.gov/gcn3/20125.gcn3</u>
- IceCube-160731A: <u>https://gcn.gsfc.nasa.gov/gcn3/19747.gcn3</u>

No significant counterpart has been discovered

Analysis II: Current Plan

- Add Extremely High-Energy (EHE) events:
 - high-energy through-going tracks
 - energies exceeding several hundreds TeV
 - ▶ better resolution ($\approx 0.2^{\circ}$)
 - \blacktriangleright expected rate 4 to 6 (2 background)
 - ➢ 7-pointing mosaic
 - \blacktriangleright completion of tiling pattern within 10 hours
 - recover >79% of Swift GRB afterglows
- Rapid follow-up of a few high-energy events
- Example of 2 HESE and 4 EHE per year:
 - ➤ 1 ks per pointing
 - new pointings for object of interest
 - \blacktriangleright two daily epochs at 2 ks per epoch
 - > 27 ks per HESE, 11 ks per EHE (total of 98 ks)

Analysis III

Multiwavelength follow-up of a rare IceCube neutrino multiplet

TAUP 2017: Multimessenger Astrophysics

Analysis III: IceCube Neutrino Multiplet

- Triplet every 13.7 years
- Two neutrino doublets:
 - o 2016-02-17 19:21:31.65
 - $\circ \Delta T = 100 s$
 - $\circ \Delta \theta_{23} = 3.6^{\circ}$
 - \circ (RA, Dec) = (26.1°, 39.5°)

$$\circ \sigma_{50} = 1$$

- $\circ \sigma_{90} = 3.6^{\circ}$
- Follow up observations after 22 hrs:
 - Swift XRT
 - ASAS-SN
 - o LCO
 - MASTER
 - VERITAS
- Analyze data:
 - Swift BAT
 - Fermi LAT
 - HAWC

TAUP 2017: Multimessenger Astrophysics

Analysis III: IceCube Neutrino Multiplet – Swift Searches

- Swift XRT:
 - 37 pointings
 - 320 s per tiling
 - 0.3-10 keV
 - Search for GRB afterglows, AGN flares, other X-ray transients
 - Six X-ray sources identified
 - One highly variable but faint source
- Swift BAT:
 - By chances BAT observed the position within 1 min after the neutrino detection
 - Hard X-rays: 15-150 keV
 - Detection with single-trial significance 4.6σ
 - P-value of 9.9%
 - Random fluctuation
 - 4σ upper limit of 3.9×10^{-9} erg cm⁻² s⁻¹

