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Conservation results



Nonstandard analysis

External (Robinson):

e Start with a classical structure (e.g. N, R, V,(R), a
model of set theory)

e Use compactness, or an ultrapower construction, to find

an elementary extension with saturation properties
e Reason about what is true in the extension

e Transfer to the original structure

Internal (Nelson):
e Start with a classical theory

e Add a predicate st(x), for “x is standard”, and

appropriate axioms

e Show the new theory is a conservative extension of the

old one



Nonstandard arithmetic

Why nonstandard arithmetic?

e (Chauqui, Suppes, Sommer) Can carry out parts of real

analysis
e (Nelson) Can carry out probability theory

e (Wilkie, Ajtai, Woods) Can carry out combinatorial

arguments

Why nonstandard intuitionistic arithmetic?

In the nonstandard setting, many arguments have a

constructive flavor.

Thesis: Nonstandard theories of intuitionistic arithmetic
provides a natural framework for formalizing a number of

interesting mathematical arguments.

Palmgren (BSL 99) develops intuitionistic nonstandard

analysis.



Sheaf semantics

Background:

e Grothendieck: spaces of sheaves (topoi) are useful in

algebraic topology, algebraic geometry, etc.

e Lawvere, Tierney: topoi provide an algebraic semantics

for (higher type) intuitionsitic logic

e Joyal: this semantics can be seen as a generalization of

Kripke semantics and Beth semantics

We will actually use a slight generalization of sheaf

semantics, due to Palmgren 97.



Kripke semantics

Start with a first-order language L. A Kripke model
consists of

e A poset

e A “universe” at each node of the poset

e An interpretation of the function symbols at each node
e An interpretation of the relation symbols at each node

where the universes are increasing, the interpretation of the
function symbols agree between nodes, and the
interpretation of the relations is monotone.



Kripke semantics (continued)

Truth at each node is determined by a forcing relation:
e pl- (0 An)la] if and only if p IF §[a] and p IF n|a]

e pl-(0Vn)|ad] if and only if p IF 8[a] or p IF n|d]
e pl- (6 — n)ld] if and only if for every q < p, if ¢ I 0]ad],

—

then ¢ IF nla).

p Ik (Vz 6(x))|a] if and only if for every g < p and
ue D(q), pF6(=)(d,5

e pl- (3x O(x))[a] if and only if there is a b in D(p) such
that p IF 6(z)[a, b]



Beth semantics

For Beth semantics:
e Make the poset a tree

e Say “qi,...,qr covers p” if every maximal path passing
through p passes through one of the ¢; as well

e Make the interpretation of the relations satisfy a
covering condition.

The forcing definition is analogous, except for V and 3:

e plF (0 Vmn)lal if and only if there is a cover {q1,...,qr}
of p such that for each i either g; IF [t] or ¢; IF n|d]

e plF (dz 6(x))[a] if and only if there are a cover
{q1, ... ,qx} of p and a sequence of elements
by € D(q1),...,b; € D(q), such that for each i,
@ IF 6(2)[d, bi]



Sheaf semantics

For sheaf semantics:
e Use an arbitrary category C

e Use a basis for a Grothendieck topology (that is, a

generalized notion of covering)

For standard sheaf semantics, one uses a sheaf to interpret
the universe. Palmgren notes that for first-order logic, one
only needs a presheaf (but the interpretation of the
relations must still obey the covering condition).



Completeness

The completeness of Kripke, Beth, and sheaf semantics (and

so, a fortiori, Palmgren’s semantics) is well known.

For Palmgren’s semantics, however, the construction is

almost trivial.

Given a theory T,

Let the objects of C be formulas

An arrow ¢ EA 1 is a renaming f of the variables of ¥
such that ¢ Fp ¥/

For the notion of covering, take the smallest basis for a

Grothendieck topology satisfying:
1. If o7 OV, then { A0 — @, 0o A — 1} covers .

2. If p ¢ dz 6(x), and y is not a free variable of ¢ or
dz 6(x), then {p A 0(y) — p} covers .

Take the universe at ¢ to be the set of terms with free

variables among those of .
Interpret function symbols in the obvious way.

Interpret R at ¢ by ¢ br R(t1,... ,tk).

Theorem. For every 0, I 6 iff - 6.



Back to nonstandard arithmetic

Let L be the language of arithmetic, and let L®* be L with a
new predicate symbol, st(x).

Nonstandard Peano arithmetic consists of the following

axioms:

All the axioms of Peano arithmetic.
Jz —st(x)

st(z1) A... Ast(z,) — st(f(z1,...,2z,)), for each
function symbol f

External induction: For each formula ¢(x) in L5
(possibly with other free variables),

p(0) AV (p(z) = ¢z +1)) = V2 p(2)

Transfer: For each formula ¢ in L with free variables

Liyewe yTn,

st(z1) A... Ast(z,) — (p < ™)

Theorem: (Friedman, unpublished, c. 1967) Nonstandard
PA is a conservative extension of PA.
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Nonstandard Heyting arithmetic

Take nonstandard Heyting arithmetic, HAI, to be given by
the following axioms:

e All the axioms of HA

o st(zy)A...Ast(xy,) — st(f(z1,...,x,)) for each
function symbol f

o ——st(x) — st(x)
e External induction: for each formula p(x) of L,
p(0) ANz (p(@) = p(z + 1)) — ¥z ().
e Quverspill: for each formula ¢(x) of L,
V' o(x) — Jz (=st(z) A p(z)).
e Underspill: for each formula ¢(x) of L,

Vo (=st(z) — ¢(2) — F'a o).

Theorem (Moerdijk and Palmgren 97) HAI is a
conservative extension of HA. Also, the transfer principles
imply the law of the excluded middle.
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History

Palmgren (95), and also Coquand and Smith (96),
obtain conservation results for weaker nonstandard

versions of HA

Moerdijk (95): Presents a nonstandard model of
arithmetic, using a sheaf construction over a category of
filters

Moerdijk and Palmgren (97): Obtains the conservation
result, using a category of provable filter bases
Avigad and Helzner:

— A slight modification of the completeness proof

above yields the same result

— Internalizing the argument yields an additional

transfer rule

— This transfer rule is optimal

Butz independently presents another proof of the M-P

conservation result.

12



A nonstandard model

Modifying the completeness proof:
e Use types I' instead of formulas ¢

e For the notion of covering, take the smallest basis for a

Grothendieck topology satisfying the following:

1. T FOVn, then {TU{0} - T,T'U{n} — I'} covers
I

2. f T'Fdx 0(x), and y is not free in I" or Jz O(x), then

Tru{f(y)u{y>na|TFr0(n)}
covers I'.

e Interpret st at the node I' by the relation

Theorem. For 0 in L, IF 0 iff -4 6.

Theorem. Each axiom of HAI is forced.
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Transfer principles

Positive results:
o If HAI proves ¢, ¢ in L, then HAI proves
o If HAI proves ©*, ¢ in L negative, then HA proves ¢
e If HAI proves ¥V*'z ¢, ¢ in L, then HA proves .

o If HAI proves ©*, ¢ in L and I, then HA proves .

Negative results: there are primitive recursive A(z), B(x),
C(x), D(z), and E(x,y) such that

o HAI+3x A(x) — Tz A(x) is not conservative over HA

o HAI 4+ V*'z B(x) — Vx B(x) is not conservative over
HA

e HAI proves V'z C'(x) vV V3'z D(x), but HA does not
prove Vo C(z) V Vx D(x)

o HAI proves 3%z Vy E(x,y) but HA does not prove
dr Vy E(x,y)

Corollary: HAI has neither the existence property nor the

disjunction property.
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Future work

Things to do:
e Find nicer translations for classical theories.
e Obtain the right conservation results for weak theories.

e See what kinds of mathematics can be developed in
these theories.
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