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The main goal of these notes is to prove the following:

Theorem. There is an algebraic weak factorization system (L,R) on the cat-
egory of cartesian cubical sets such that for any R-object A, the factorization
of the diagonal map,

A // AI // A× A ,

determined by the 1-cube I, is an (L,R)-factorization.

It follows that there is a cubical model of homotopy type theory in which the
identity type of a type A is taken to be the path-object AI.

We begin by reviewing the basic idea of homotopical semantics of type
theory in weak factorization systems, including the somewhat technical issue
of coherence that motivates the use of algebraic weak factorization systems.
We then consider cubical sets and construct the desired algebraic weak fac-
torization system.

1 The basic homotopical interpretation

Definition 1. A weak factorization system on a category C consists of two
classes of arrows,

L �� // C1 R? _oo

satisfying the following conditions:

∗Notes from a series of lectures given in May-June, 2016, in the Stockholm Logic
Seminar and the Topological Actitivies Seminar. Thanks to Erik Palmgren for providing
the opportunity and to the members of the Stockholm Logic Group for a very enjoyable
stay.
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1. Every arrow f : X // Y in C factors as a left map followed by a right
map,

X
f

//

L
��

Y

·
R

??

2. Given any commutative square

A

L
��

//B

R
��

C //

>>

D

with an L-map on the left and an R-map on the right, there is a
“diagonal filler” as indicated, making both triangles commute.

3. Each of the classes L and R is closed under retracts in the arrow
category C→.

Examples include (i) Groupoids (or categories), with R = isofibrations
and L = injective equivalences; (ii) Simplicial sets, with R = Kan fibrations
and L = acyclic cofibrations. Since a Quillen model structure on a category
by definition involves two interrelated such weak factorization systems, this
provides many examples as well as the basic homotopical intuition. In a WFS,
we may think of the R-maps as “fibrations”, i.e. good families of objects
indexed by the codomain. The basic idea of the homotopy interpretation is
to use these as the dependent types.

1.1 Interpreting Id-types

Let C be a category with finite limits and a WFS. Closed types are interpreted
as R-objects A, i.e. those for which A→ 1 is in R. Dependent types x : A `
B type are interpreted as R-maps B → A. Terms x : A ` b : B are sections
b : A→ B of the chosen R-map B → A.

The formation rule for Id-types says that each type has an identity type:

A type

x, y : A ` IdA(x, y) type
(Id-Form)
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We model this by factoring the diagonal map of (the object interpreting) A
as an L-map followed by an R-map, using axiom 1 for the WFS:

IdA

$$

A //

==

A× A

TheR-map IdA → A×A interprets the dependent type x, y : A ` IdA(x, y) type.
Th L-factorA //IdA interprets the reflexivity term refl(x) in the Id-introduction
rule:

x : A ` refl(x) : IdA(x, x) (Id-Intro)

The Id-elimination rule has the form:

x, y : A, z : IdA(x, y) ` B(x, y, z) type, x : A ` b(x) : B(x, x, refl(x))

x, y : A, z : IdA(x, y) ` Jb(x, y, z) : B(x, y, z)
(Id-Elim)

with associated computation rule:

Jb(x, x, refl(x)) = b(x) : B(x). (Id-Comp)

The data above the line in Id-elimination are interpreted as a commutative
square as on the outside of the following diagram:

A

refl

��

b // B

��

IdA =
//

Jb

==

IdA

(1)

Since refl is an L-map, and B → IdA is an R-map (as the interpretation of a
dependent type), there is a diagonal filler Jb as indicated. The commuting of
the lower triangle means that Jb is a section of B → IdA and thus a term of the
type required by the conclusion of the Id-elimination rule. The commuting
of the upper triangle is exactly the J-computation rule. (See [1].)

1.2 Coherence

The interpretation just sketched is required to respect the result of substi-
tuting a term into a context, since the rules have this property. Substitution
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into dependent types is interpreted as pullback, and substitution into terms
as (roughly) composition. There are then three separate issues involved in
giving a strict interpretation of type theory with Id-types, and all three are
called “coherence”:

1. Using the fact thatR-maps are closed under retracts, one can show that
they are also stable under pullback along any map, so the interpretation
of dependent types as R-maps is compatible with the interpretation of
substitution as pullback. However, the fact that the pullback operation
is defined only up to isomorphism means that the interpretation must
be “strictified” in order to model substitution strictly. This is a known
issue in the semantics of dependent type theory, with equally well-
known solutions (including a recent one due to Lumsdaine and Warren
[9]), and will not concern us further here.

2. The choice of factorization of the diagonal,

IdA

$$

A //

>>

A× A ,

must be stable under pulback. Specifically, if A is a type in context Γ `
A type interpreted as an R-map A → Γ, then there is a factorization
of the diagonal over Γ of the form

IdA

%%

A //

>>

!!

A×Γ A ,

yy
Γ

Pulling back along any f : ∆ // Γ preserves the diagonal, but not
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necessarily the L-R factorization,

f ∗IdA

''

f ∗A //

;;

$$

f ∗A×∆ f ∗A .

ww
∆

Choosing an L-R factorization of the pulled-back diagonal gives an
interpretation of Idf∗A that need not agree (even up to isomorphism)
with f ∗IdA. A choice of factorizations, for all diagonals, that respects
pullback in this sense is said to be stable. One way such a stable choice
of factorizations can arise is when it is determined by exponentiating
by a fixed “interval” object I, so that IdA = AI. This is what happens,
for example, in the groupoid model, where as an interval one can take
the groupoid with two objects and two, mutually inverse, non-identity
arrows.

3. Assuming a stable choice of factorizations of the diagonal, we have made
a choice of diagonal fillers J in order to interpret the Id-elimination rule.
Again, there is no reason why these choices of diagonal fillers should
“respect substitution” in the way required for the interpretation of
type theory. More specifically, given a diagonal filling problem as on
the right below, and a square on the left with g ∈ L,

A′

g

��

// A

��

// C

��

B′
f

//

ψ

77

B

φ

??

// D

(2)

we may have the two different diagonal fillers for the outer filling prob-
lem, namely ψ and φ ◦ f . Under certain conditions, we want these two
solutions to be equal. This leads to a strengthening of the notion of
weak factorization system to what is now called an algebraic weak fac-
torization system, which implies the existence of such natural choices
of diagonal fillers. (The idea of using this to solve this particular co-
herence problem is due to R. Garner.)
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Definition 2. A functorial factorization on a category C is a functor

(L,E,R) : C→ // C→·→

taking each arrow f : X // Y to a factorization f = R(f) ◦ L(f),

X
f

//

L(f) ""

Y

E(f)
R(f)

==

in a functorial way. Specifically, given any h : f // f ′ in C→ we have a
commutative diagram:

X

f

��

L(f)

!!

h0 //X ′

f ′

��

L(f ′)

||

E(f) //

R(f)
}}

E(f ′)

R(f ′)
""

Y
h1

// Y ′

and we write E(h) : E(f) // E(f ′) for the evident map.

Observe that, for each fixed Y , the functorial factorization determines an
endofunctor,

R : C/Y // C/Y

taking f : X //Y to R(f) : E(f) //Y , and that this endofunctor is pointed
by L : 1 //R (abusing notation slightly).

Dually, for each fixed X, the functorial factorization determines an endo-
functor,

L : X/C //X/C

taking f : X // Y to L(f) : X // E(f), and that this endofunctor is
copointed by R : L // 1.

Definition 3. An algebraic weak factorization system on C consists of a
functorial factorization (L,E,R) together with:

1. a multiplication µ : R2 //R making (R, µ, L) a monad,
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2. a comultiplication ν : L // L2 making (L, ν,R) a comonad.

Some authors also a require distributive law for the monad over the comonad,
however we shall not need this.

Remark 4. Let us show that an AWFS determines a WFS. The factorization
axiom is satisfied by the functorial factorization f = R(f) ◦ L(f). We then
know that R(f) is an R-algebra and L(f) is an L-coalgebra by the laws of
monads. Suppose given a diagonal filling problem such as the outer square
below, in which f is an L-coalgebra and g is an R-algebra:

X

f

��

L(f)

!!

h0 // Z

g

��

L(g)

}}

E(f)
E(h)

//

R(f)

}}

E(g)

R(g)
!!

Y
h1

//W

Applying the factorizations of f and g, we obtain an L-coalgebra structure
map φ : Y //E(f) and an R-algebra structure map ψ : E(g) //Z. We can
then set j = ψ ◦ E(h) ◦ φ to obtain the required diagonal filler j : Y // Z.
Finally, to ensure closure under retracts we let R be the retract closure of the
R-algebras and L the retract closure of the L-coalgebras. The factorization
axiom still holds trivially, and the filling axiom is also easily seen to still hold.
Thus every AWFS determines a WFS with the left and right classes being
the retracts of the L- and R- (co)algebras respectively.

Remark 5. A morphism of L-coalgebras h : (f ′, φ′) //(f, φ) is a commutative
square fh0 = h1f

′ such that E(h) ◦ φ′ = φ ◦ h1,

X ′

f ′

��

L(f ′)

""

h0 // X

f

��

L(f)

||

E(f ′)
E(h)

//

R(f ′)
||

E(f)

R(f)
""

Y ′
h1

//

φ′
<<

Y .

φ

bb
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It is easy to see that the naturality condition for diagonal fillers mentioned
in (10) is satisfied for the fillers constructed algebraically as in Remark 4,
when the left-hand square is a morphism of L-algebras in this sense.

We summarize the result of this section with the following (cf. [3]).

Proposition 6. Let C be a category with finite limits, an algebraic weak
factorization system, and a stable choice of factorizations for all diagonal
maps. Then C admits a model of type theory with Id-types.

2 Cubical sets

Our goal is to make an algebraic weak factorization system on the cubical
sets, but let us first recall why the category of cubical sets is a good set-
ting for a model of Id-types. The basic examples of WFSs and homotopy
are topological spaces and simplicial sets, but these models are not entirely
satisfactory, at least from a logical point of view. In particular, they seem
to lack the combinatorial character that would make them constructive. The
cubical approach seems to be better suited to giving such a constructive
treatment, as has recently been shown by T. Coquand and his coworkers (see
[4]). It is worth noting in this connection that the goal here is not to give a
constructive interpretation of the univalence axiom, as Coquand et al. have
done, but only to investigate a (particular) cubical model as arising from an
algebraic weak factorization system.

By way of motivation for using cubical sets, recall that we will interpret
the Id-type of an object A using a factorization of the diagonal map,

PA

%%

A //

==

A× A .

(3)

We regard PA as an abstract “pathspace” AI. If there is an “interval object”
I with two points 1 ⇒ I, then exponentiating A by the structure:

I

��

1 1 + 1oo

bb
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will result in a factorization of the form (3) (without respect to any WFS).
Moreover, this factorization will automatically be stable under pullback.

The idea that identity proofs are paths and that IdA = AI is supported
by the fact that dependent types have the path-lifting property : given a0, a1 :
A and p : IdA(a0, a1) and x : A ` B(x) type and b0 : B(a0), there is a
distinguished b1 : B(a1), called the transport of b0 along p and denoted
p∗(b0). This term p∗(b0) can easily be found by “path induction” (i.e. Id-
elimination) on p : IdA(a0, a1). Indeed, there is even a path p̃ : IdB(b0, b1),
where B =

∑
x:AB(x), such that π1(p̃) = p.

B

π1

��

B(a0)
p∗
// B(a1)

b0
p̃
// p∗b0

A a0 p
// a1

Note that this says exactly that the endpoint inclusion 0 : 1 // I has the
left-lifting property with respect to the dependent projection π : B // A,

1

0

��

b0 // B

π

��

I p
//

p̃

>>

A .

Thus the endpoint inclusion 0 : 1 // I should be an L-map, since the depen-
dent types should be R-maps.

An important consequence of the proposed stipulation IdA = AI is that
the iterated or “higher” Id-types can be interpreted as “cube types”,

IdA = AI

IdIdA = (AI)I ∼= AI×I

IdId...IdA
∼= AI×···×I

In this way, at least some of the operations on the higher Id-types (reflecting
the higher algebra of ∞-groupoids) can be represented by algebraic opera-
tions on the cubes, in the form In // Im.
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2.1 The category of cubical sets

The objects In = I × · · · × I thus play a special role in the interpretation
of Id-types. The category of cubical sets gives special prominence to these
objects, and to the interval I in particular. In a precise sense, it is the free
cocomplete category generated by the finite cubes 1, I, I× I, . . . , In, . . . (and
the particular version that we shall use is the free topos generated by an
“interval object”: 0, 1 : 1 ⇒ I, · ` 0 6= 1).

Definition 7. The category cSet of (cartesian) cubical sets is the presheaf
category

cSet = SetC
op
×

on the category C× of (cartesian) cubes, defined equivalently as:

1. the free category with finite products on an interval object 0, 1 : 1 ⇒ I,

2. the opposite category,
C× = Bop,

of the category B of finite strictly bipointed sets and bipointed func-
tions. The objects may be taken to be sets of the form

[n] = {⊥, x1, . . . , xn,>}

and maps f : [m] // [n] are functions that preserve the distinguished
elements ⊥,>.

3. the syntactic category C(T) of the algebraic theory T with just two
constant symbols ⊥,> (and no equations).

The equivalence of these three specifications of C× is an easy application of
Lawvere duality.

Remark 8. There are many other notions of cube category and cubical sets
in the literature. See [2] for comparisons of some.

Next, consider the representable objects,

y : C× ↪→ cSet

and let
In := y([n]) = HomC×(− , [n]).
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We can regard the objects In as the “geometric n-cubes”; indeed we have
In ∼= I × · · · × I, because the Yoneda embedding preserves products. Note
that by the Yoneda lemma, for any cubical set X, maps In //X correspond
uniquely to elements of the set Xn = X([n]), which are called the “n-cubes
of X”.

Proposition 9. For any cubical set X, the pathobject X I is the “shift by one
dimension” of X,

(X I)n ∼= X(n+1) .

Proof.

(X I)n ∼= Hom(y[n], X I) ∼= Hom(In, X I) ∼= Hom(In × I, X)
∼= Hom(In+1, X) ∼= Hom(y[n+ 1], X) ∼= X(n+1).

This combinatorial description of the pathobject X I as a shift in dimen-
sion has consequences for the model of type theory; in particular, it leads
to certain equations holding strictly that are usually satisfied only weakly or
“up to homotopy”.

Corollary 10. The pathobject functor X 7→ X I has a right adjoint.

Proof. The functor X 7→ X I is given by precomposition with the “successor”
functor S : C× // C× with S[n] = [n + 1], since X I([n]) = X([n + 1]) =
X(S[n]) = (S∗(X))([n]). But precomposition always has both left and right
adjoints S! a S∗ a S∗, the right one of which can be calculated as:

S∗(X)n ∼= Hom(y[n], S∗X) ∼= Hom(S∗(y[n]), X) ∼= Hom(C×(S(−), [n]), X).

We need the following fact in order to calculate the right adjoint further.
We mention that a similar fact holds for the generic object in the object
classifier topos SetFin, and in the Schanuel topos Sh(Aut(N)), and is used
to give an algebraic treatment of variable binding in the theory of “abstract
higher-order syntax”.

Lemma 11. For the 1-cube I in cSet, we have II ∼= I + 1.
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Proof. For any [n] ∈ C× we have:

(II)n ∼= I(n+1)
∼= Hom(I(n+1), I) ∼= C×([n+ 1], [1]) ∼= B([1], [n+ 1]) ∼= n+ 3.

On the other hand,

(I + 1)n ∼= In + 1n ∼= Hom(In, I) + 1 ∼= B([1], [n]) + 1 ∼= (n+ 2) + 1.

The isomorphism is natural in n.

Definition 12. Let us write

XI = S∗(X)

for the right adjoint of the path object functor X I = S∗X.

Corollary 13. We have the following calculation for the right adjoint XI:

(XI)n ∼= Hom(In, XI)

∼= Hom((In)I, X)

∼= Hom((II)n, X)
∼= Hom((I + 1)n, X)
∼= Hom(In + Cn

n−1In−1 + · · ·+ Cn
1 I + 1, X)

∼= Xn ×X
Cnn−1

n−1 × · · · ×X
Cn1
1 ×X0,

where Cn
k =

(
n
k

)
is the usual binomial coefficient.

2.2 Box filling

We now turn to the determination of the right maps for our AWFS. We know
that they should at least have the path-lifting property, since that is forced by
the rules of type theory. We also know that for any type A, the interpretation
of the Id-type should be a right map into A×A, since it is a dependent type.
Finally, we want to use the pathobject AI as the interpretation of IdA in
view of the foregoing considerations. These constraints lead us directly to
the box-filling condition.

Proposition 14. AI // A× A has path lifting if and only if A has (2-)box
filling.
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Before giving the proof, we require some conventions that will be useful
later on. Diagramatically, path lifting for AI // A × A means that for any
(outer) square of the form

1

��

// AI

��

I //

<<

A× A

(4)

there is a diagonal filler as indicated. There are two maps 0, 1 : 1 ⇒ I, and
the path lifting condition is required with each of these cases occurring on
the left.

An open 2-box in the 2-cube I2 is by definition a subobject

t2
j,e � I2

obtained as the union, in the poset Sub(I2), of all the face maps αdi : I � I2

but one,

t2
j,e =

⋃
(i,d) 6=(j,e)

αdi .

The index j = 1, 2 is the coordinate in which the box is open, while e = 0, 1
indicates which face of the box is missing, bottom or top. Because we are in
the symmetric situation, where the product I × I can be twisted, it suffices
to consider only boxes that are open in the first coordinate, since the others
can be constructed from those. Thus we may omit the index j, writing t2

e

for t2
1,e. Moreover, let us write t2 = t2

1 and u2 = t2
0. The (upper and lower)

open n-boxes tn,un � In are defined analogously.
The open 2-box can be constructed as the dotted arrow in the following

pushout diagram, in which we write ∂I = 1 + 1 � I for the boundary of the
1-cube I.

1× ∂I

��

// 1× I

��

��

I× ∂I //

..

t2
##

##

I× I

This is the upper open box determined by the case where 1 : 1 // I is on the
far left; the case of 0 : 1 // I determines the lower open box u2 � I2, but
we will not always mention this case separately.
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Definition 15. A cubical set A has n-box filling if every map to it from an
open upper n-box extends to the whole n-cube,

tn
��

��

// A

In

>>

and similarly for the lower box un � In. A map B //A has n-box filling if
every commutative square of the following form has a diagonal filler,

tn
��

��

//B

��

In

>>

// A

and similarly for the lower box un � In.

Proof of the Proposition. The 2-box filling condition is clearly equivalent to
saying that given any maps a and b commuting with the span in the upper-
left corner of the following diagram, there exists a 2-cube c : I × I // A
making the whole diagram commute.

1× ∂I

��

// 1× I

�� a

��

I× ∂I //

b //

I× I

c

""

A

(5)

This formulation eliminates the pushout and replaces the open box by a
decomposition.

Now let us rewrite diagram (4) with the projection from the path object
AI // A× A replaced by

Ai : AI // A× A ∼= A1+1 = A∂I

where i := [0, 1] : ∂I = 1 + 1 // I is the copair, to give:

1

��

// AI

Ai
��

I //

>>

A∂I
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But this is just the exponential transpose of the diagram (5), where the
corresponsing transposed maps are as indicated:

1

��

a′ // AI

Ai
��

I
b′
//

c′
>>

A∂I

(6)

The foregoing can be generalized to higher dimensions as follows (see [2]):

Proposition 16. For any cubical set X and any n ≥ 1, the canonical map
X I //X ×X has n-box filling iff X has (n+ 1)-box filling.

Since 1-box filling in any object X is trivial, we conclude that a cubical
set X has n-box filling for all n ≥ 1 just in case X I //X ×X does. In this
way, we are led to make the following definition.

Definition 17. A map of cubical sets f : Y // X is a Kan fibration if it
has n-box filling for all n ≥ 1. A cubical set X is a Kan complex if the map
X // 1 is a Kan fibration.

Remark 18. Since the composition of two maps with n-box filling clearly also
has n-box filling, if an object A has (n + 1)-box filling then its pathobject
AI has only n-box filling. Thus if we want all types to have Id-types, and if
we have Σ-types so that we can form IdA =

∑
x,y:A IdA(x, y), then we are led

to take as the types those cubical sets that have n-box filling for all n, i.e.
the Kan complexes, and as the dependent types the Kan fibrations. It seems
remarkable that the constraints imposed by modelling Id-types have led us
directly to the definition of Kan complex and Kan fibration!

2.3 Uniformity

We could now use Quillen’s small object argument to make a WFS in which
the R-maps are the Kan fibrations, by taking as a generating set of left maps
all the open box inclusions. Since we want an algebraic WFS, however, we
shall instead use a refinement of the small object argument due to R. Garner,
and appropriate to an algebraic notion of fibration (see [7]).
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Definition 19. A uniform Kan complex is a cubical set X equipped with
the following structure:

1. For each open box tn � In, each k ≥ 1, and each map b : Ik×tn //X,
there is given an extension φ(b) : Ik × In //X of b along the product
map Ik × tn � Ik × In.

Ik × tn
��

��

b //X

Ik × In
φ(b)

;; (7)

2. The chosen extensions φ(b) are natural in Ik, in the sense that for each
map of cubes α : Ij // Ik, one has

φ(b ◦ (α× 1)) = φ(b) ◦ (α× 1),

as indicated in the following commutative diagram.

Ij × tn
��

��

α×1
// Ik × tn

��

��

b //X

Ik × In

φ(b(α×1))

33

α×1
// Ij × In

φ(b)

;; (8)

3. The foregoing also holds for all lower open boxes un � In.

The uniform Kan condition turns the box filling property of an object
X into an explicitly given structure (X,φ) on X, namely a natural choice of
fillers φ(b) for all (generalized) open boxes b : Ik×tn //X. The generalization
to maps is straightforward:

Definition 20 (cf. [4]). A uniform Kan fibration is a map f : Y // X
equipped with the following structure:

1. For each open box tn � In, each k ≥ 1, and each (outer) square of
the form

Ik × tn
��

��

b // Y

f

��

Ik × In a
//

φ(a,b)

;;

X

(9)

with the product map Ik × tn � Ik × In on the left, there is given a
diagonal filler φ(a, b) as indicated.
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2. These chosen fillers are natural in Ik, in the sense that for any α :
Ij // Ik, one has

φ(a, b) ◦ (α× 1) = φ(a ◦ (α× 1), b ◦ (α× 1)) ,

as indicated below, in which φ′ = φ(a ◦ (α× 1), b ◦ (α× 1)).

Ij × tn
��

��

α×1
// Ik × tn

��

��

b // T

f

��

Ij × In
α×1

//

φ′

33

Ik × In a
//

φ(a,b)

77

X

(10)

3. The foregoing also holds for all lower open boxes un � In.

Clearly, X is a uniform Kan complex just in case X // 1 is a uniform
Kan fibration

Theorem 21. There is an algebraic weak factorization system (L,R) on cSet
for which the R-algebras are exactly the uniform Kan fibrations.

This is a direct application of Garner’s small object argument [7] (see
also [6] for a related development). We will nonetheless sketch the details of
the argument in the next section, because some modifications of it will be
required thereafter.

3 The AWFS of uniform box filling

In order to make an AWFS (L,R) on cSet in which the R-algebras are the
uniform Kan fibrations, we will first turn the description of uniform box filling
structure on a map f : X //Y into that of an algebra structure for a suitable
pointed endofunctor T : cSet/Y // cSet/Y . We then use a theorem of Kelly
[8] to produce the algebraically free monad T∞ on T , which will be the R part
of the desired AWFS. To simplify the exposition, we consider only the case
where Y = 1, i.e. Kan complexes rather than Kan fibrations, but the general
case is entirely analogous. Thus we are constructing the “free uniform Kan
complex” on an arbitrary cubical set X, which may be regarded as a notion
of ∞-groupoid. The analogy to the construction of the free groupoid on a
graph is a useful one to bear in mind.
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Consider first a box filling structure φ on a cubical setX. For each open n-
box in : tn � In, each k, and for each (generalized) open box b : Ik×tn //X
in X, there is given an extension φ(b) : Ik × In //X to a (k+ n)-cube in X,
naturally in Ik:

Ik × tn
��

1×in
��

b //X

Ik × In
φ(b)

;;

Transposing, we obtain an assignement b 7→ φ(b) of the form:

Ik b //

φ(b) !!

Xt
n

X In ,

Xin

OO

such that X in ◦ φ(b) = b, again naturally in Ik.
But since the cubes Ik are the representables, by Yoneda the assignment φ

is given by composing with a unique natural transformation φ : Xt
n

//X In ,
which is a section of X in ,

Xt
n

φ
��

X In ,

Xin

OO

Transposing by In, we obtain the equivalent diagram:

Xt
n × tn
��

1×in

��

eval //X

Xt
n × In

φ

<<

Finally, forming the pushout of the span formed by 1× in and the evalu-
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ation map evaln,

Xt
n × tn
��

1×in

��

evaln //X

tnX

��

= //X

Xt
n × In //T n(X)

φ

DD (11)

we obtain an object T n(X) with a map tnX : X // T n(X) such that retractions
φ of tnX correspond bijectively to n-box filling structures on X.

Since T n is clearly functorial in X, we have an endofunctor

T n : cSet // cSet

with an (evidently natural) point tn : 1 //T n. Summing over all dimensions
n, and again forming the pushout,

∐
nX
tn × tn
��

∐
n1×in

��

[evaln]
//X

tX

��

= //X

∐
nX
tn × In //T (X)

φ

DD (12)

we obtain an endofunctor T : cSet // cSet with a point t : 1 // T , the alge-
bras for which are box filling structures on X, but now for all dimensions n.
It is easy to see that (T, t)-algebra homomorphisms h : (X,φ) // (Y, ψ) cor-
respond exactly to maps h : X //Y that preserve the box filling structures,
in the obvious sense. Summarizing, we have shown:

Proposition 22. The category of (T, t)-algebras for the pointed endofunctor

T : cSet // cSet

defined by (12) is isomorphic to the category of uniform Kan complexes.

Next we use a method due to Kelly (see [7, 8]) to construct the alge-
braically free monad (T∞, t∞, µ) from the pointed endofunctor (T, t). This
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monad comes with a natural map η : T //T∞ such that t∞ = η ◦ t, inducing
a comparison functor,

η∗ : (T∞, t∞, µ)-Alg // (T, t)-Alg ,

which is an isomorphism of categories. Here (T∞, t∞, µ)-Alg is the category
of algebras for the monad, while (T, t)-Alg is the category of algebras for the
pointed endofunctor. We henceforth refer to these more briefly as T∞-Alg
and T -Alg respectively.

Lemma 23. The endofunctor T : cSet // cSet preserves ω-colimits.

Proof. The pathobject functor X I preserves all colimits, since it has a right
adjoint by Corollary 10; hence so do all the functors X In . Since the open
boxes tn are finite colimits of (n − 1)-cubes, the functors Xt

n
are finite

limits of functors of the form X In−1
, and therefore preserve filtered colimits.

Therefore T is a pushout of functors that preserve ω-colimits.

Proposition 24. There is a monad T∞ on cSet with a map of pointed end-
ofunctors T // T∞ inducing an isomorphism,

T∞-Alg ∼= T -Alg .

Proof. (sketch, cf. [7]) To construct T∞(X) for any cubical set X, begin with
tX : X // TX and consider

TX
TtX //

tTX
// T 2X ,

which need not agree. Take the coequalizer c to obtain a new object, called
T2X,

TX
TtX //

tTX
// T 2X

c // T2X .

Now let T1X = TX and t1 = t : X // T1X and c1 = c : T 2X // T2X, and
continue as follows:

TX
TtX //

tTX
// T 2X

c1

##

Tt1 // TT2X

c2

##

Tt2 // TT3X // . . .

X

t

OO

t1
// T1X

tT1

OO

t2
// T2X

tT2

OO

t3
// T3X

tT3

OO

t3
// . . .
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At each successive step, tn+1 := cn ◦ tTn and cn+1 := coeq(Ttn, tTn+1 ◦ cn).
Finally, set T∞(X) := lim−→n

Tn(X) and let (t∞)X : X // T∞(X) be the
canonical map. It follows from the foregoing lemma that t : T∞(X) ∼=
T (T∞(X)), and so T∞ is the (algebraically) free monad on T .

Remark 25. This essentially completes the proof of Theorem 21: there is an
AWFS (L,R) on cSet in which the R-algebras are the uniform Kan fibrations.
For an object X, a uniform Kan structure φ on X is the same thing as a T -
algebra structure map φ : TX //X, and by the foregoing, these correspond
precisely to T∞-algebra structures φ : T∞(X) // X. Moreover, the free
T -algebra on X is simply T∞(X), with the isomorphism t−1 : TT∞(X) ∼=
T∞(X) as its T -structure map.

More generaly, for any map f : Y // X of cubical sets, we have that
R(f) = T∞(f) : Ỹ //X is the “free uniform Kan fibration” on f , as indicated
in

Y

f
&&

(t∞)f
// Ỹ

T∞(f)
��

X

(13)

while L(f) = (t∞)f : Y // Ỹ is the unit at f of the T∞ monad. The object
E(f) = Ỹ is simply the domain of R(f), constructed as a colimit.

3.1 Connections

For the model of Id-types, we need the following fact, which is easily checked
along the lines of Proposition 14.

Lemma 26. If A is a uniform Kan complex, then the canonical map from
the pathobject AI // A× A is a uniform Kan fibration.

Now let A be (uniform) Kan and consider the canonical pathobject fac-

torization A
r
// AI

p
// A × A of the diagonal. By the foregoing lemma,

the second factor p : AI // A × A is also Kan, and so we just need the
“constant path” map r : A // AI to be an L-map. Specifically, it should
have a coalgebra structure for the copointed endofunctor

L : A/cSet −→ A/cSet ,

which takes maps f : A // X to their first factors L(f) : A // E(f).
According to the construction of the AWFS just given (see Remark 25), an
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L-coalgebra structure map for r : A // AI is therefore a diagonal filler for
the following square.

A

r
��

L(r)
//E(r)

R(r)
��

AI

==

=
// AI

(14)

where R(r) : E(r) // AI is the free fibration on r : A // AI. Since R(r) is
an R-algebra, this is exactly an instance of Id-elimination, as in (1).

Proposition 27. Let A be a Kan complex, π : B //AI a Kan fibration, and
b : A //B a map making the following outer square commute.

A

r
��

b //B

π
��

AI
j

>>

=
// AI

(15)

Then there is a diagonal map j as indicated making the lower triangle com-
mute, π ◦ j = 1.

For the proof we shall require the following:

Definition 28. A connection on a cubical set X is a map

c : X I //X I×I

such that for each n-cube (a : a0
// a1) in X I, the (n+ 1)-cube c(a) has the

form:
a0

ra0

��

ra0 // a0

a

��
a0

c(a)

a′
// a1

(16)

where r : X //X I is the degeneracy (i.e. the “constant path”).
The connection is called strict if in the above we always have a′ = a. It

is called normal if c(r(x)) = r(r(x)) for all n-cubes x in X.

Lemma 29. Every Kan complex A has a connection c : AI // AI×I.

Proof. Use the box filling in A.
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Proof. (Proposition) We shall use the uniform Kan structure on A and π :
B // AI to construct a section j : AI // B of π. Since we know that π has
path-lifting, it will suffice to have, for every n-box a : a0

// a1 in AI, a path
of the form c(a) : r(a0) // a (naturally in n). For then we can take b(a0) as
a lift of r(a0) to get j(a) as the transport

j(a) := c(a)∗(b(a0))

of b(a0) along the path c(a). We then have π(j(a)) = π(c(a)∗(b(a0))) = a by
the definition of transport.

The required path c(a) : r(a0) //a, for any a, is provided by the connec-
tion on A, as given by the lemma.

Now consider the top triangle in (17), i.e. jr = b, as is required in order
to have a diagonal filler in (14). By definition, we have j(a) := c(a)∗(b(a0)),
and so j(rx) = c(rx)∗(b(x)). Thus we will have jr = b if the following two
conditions are satisfied:

1. the connection c is strict: c(rx) = r(rx),

2. the transport in π : B // AI along any degenerate path r(x) : x // x
is trivial: r(x)∗ = 1.

Both of these conditions will follow from the following strengthening of
the notion of a uniform Kan fibration.

Definition 30. A uniform Kan fibration f : B // A, with structure φ,
is normal if the filler assigned by φ to a degenerate open box is always
degenerate. Thus e.g. in the following outer commutative square,

tn+1

i

��

b //

πi

""

B

f

��

In

c

??

In+1

π

<<

a
//

φ(a,b)

JJ

A

if the open (n + 1)-box b is degenerate, b = cπi for some n-cube c in B and
projection π : In+1 // In in the direction in which tn+1 is open, then the
filler φ(a, b) is also degenerate, and specifically φ(a, b) = cπ.
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Generally, the assignment φ(a, b) must satisfy the following condition: for
any generalized open box i : Ik × tn+1 // Ik × In+1 and any (k + n)-cube
c : Ik × In //B we have:

φ(fcπ, cπi) = cπ ,

where π : In+1 // In is the projection in the direction in which tn+1 is open,
all as indicated below.

Ik × tn+1

i

��

//B

f

��

Ik × In

c

;;

Ik × In+1

π

88

//

φ

HH

A .

Lemma 31. If A is a normal Kan complex, then AI // A× A is a normal
Kan fibration.

Proof. Straightforward.

Lemma 32. Every normal Kan complex A has a normal connection c :
AI // AI×I.

Proof. Using normal box filling in A to define the connection results in a
normal connection.

Lemma 33. If f : Y // X is a normal Kan fibration, then the transport
operation along any degenerate path r(x) : x // x in X is trivial.

Proof. Transport is determined by 1-box filling, and so it is trivial if f is
normal.

Using normal fibrations now allows a strengthening of Proposition 27.

Proposition 34. Let A be a normal Kan complex, π : B // AI a normal
Kan fibration, and b : A // B a map making the following outer square
commute.

A

r
��

b //B

π
��

AI
j

>>

=
// AI

(17)
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Then there is a diagonal filler j as indicated, making both triangles commute,
π ◦ j = 1 and jr = b.

Proof. Again we set j(a) := c(a)∗(b(a0)) and it just remains to check that
jr = b. But now we have:

jr(x) = c(r(x))∗(b(x)) = r(r(x))∗(b(x)) = b(x)

where the second equation is because the connection in A is normal, and the
third because the transport in B // AI along r(r(x)) is trivial.

Remark 35. On reflection, it should come as no surprise that the fibrations
in our model must be normal in this sense in order to also model the Id-
computation rule: the syntactic model has the closely related property that
the transport operation along any reflexivity term is (definitionally) trivial,
in virtue of the Id-computation rule.

Of course, to model Id-types in general we require not only the factoriza-
tions of the form A //AI //A×A for Kan complexes A, but also all those
of the form A //AI //A×X A, for Kan fibrations A //X, at least for X
Kan, and where the exponential AI is made in the slice category cSet/X. As
elsewhere, we consider only the case X = 1 for ease of exposition, but the
general case holds as well.

4 Normalization

Let X be a Kan complex with uniform box-filling structure φ, so that for any
open box b : tn //X there is an associated filler φ(b) : In //X extending
b,

tn

in

��

b //X

In
φ(b)

77

.

Since we have symmetries of cubes, we may restrict attention to boxes i :
tn // In that are open in the first dimension (in either direction). The filling
structure is then normal if, for any (n− 1)-cube c : In−1 //X, we have

φ(cπi) = cπ ,
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as in
tn

in

��

cπi //X

In−1

c

==

In

π

<<

φ(cπi)

KK

,

where π : In // In−1 is the first projection, so that πi : tn // In−1 projects
the open box onto its “bottom”. Of course, the same condition applies also
to generalized open boxes b : Ik × tn //X.

This condition can be reformulated equivalently by saying that the section
φ in the diagram

X In

Xi

��

Xt
n

φ
;;

=
//Xt

n

must also make the upper triangle in the following diagram commute:

X In−1

Xπi

��

Xπ
//X In

Xi

��

Xt
n

φ
::

=
//Xt

n
.

Transposing, we obtain the condition:

X In−1× In

Xπi×1
��

1×π
//X In−1× In−1

eval
��

Xt
n × In

φ
//X

Xt
n × tn

1×i

OO

eval
//X .

=

OO
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Or, equivalently,

X In−1× In

Xπi×1
��

eval(1×π)
//X

=

��

Xt
n × In

φ
//X

Xt
n × tn

1×i

OO

eval
//X .

=

OO

Using a coproduct to “fold” along φ, we obtain:

(Xt
n × tn) + (X In−1× In)

[1×i,Xπi×1]

��

[eval, eval(1×π)]
//X

Xt
n × In

φ

66

Pushing out as in (11), we have:

(Xt
n × tn) + (X In−1× In)

[1×i,Xπi×1]

��

[eval, eval(1×π)]
//X

ṫnX

��

= //X

Xt
n × In // Ṫ n(X)

φ

DD

.

(18)

This last description provides an object Ṫ n(X) with a map ṫnX : X // Ṫ n(X)
such that retractions φ of ṫnX correspond uniquely to normal n-box filling
structures on X.

Finally, as in (12), we can sum over all n to obtain a pointed endofunctor
Ṫ : cSet //cSet, the algebras for which correspond to normal Kan complexes.

Theorem 36. There is an algebraic weak factorization system (L,R) on cSet
for which the R-algebras are exactly the normal Kan fibrations.

Proof. (sketch) We have already constructed a pointed endofunctor

Ṫ : cSet // cSet,
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the algebras for which are the normal Kan complexes X // 1. The general
construction for normal Kan fibrations f : X // Y is entirely analogous. It
just remains to show that Ṫ preserves ω-colimits, so that Kelly’s construction
of the algebraically free monad Ṫ //Ṫ∞ again applies. But this follows just as
in Lemma 23, by inspecting the components in the defining diagram (18).

Proposition 37. For any normal Kan complex A, the canonical pathobject
factorization A // AI // A× A is an (L,R) factorization.

Proof. The second factor AI // A × A is normal by Lemma 31. The first
factor r : A // AI is an L-map iff there is a diagonal filler for the square in
(14). This is provided by Proposition 17.

With this, we have reached our goal:

Corollary 38. The category cSet of cartesian cubical sets admits an inter-
pretation of type theory with Id-types based on an algebraic weak factorization
system, in which the Id-types are taken to be path-objects IdA = AI satisfying
the standard Id-elimination and computation rules.

5 An application: Factorization

The factorization of an arbitrary map f : X //Y given by the Ṫ∞ monad is
not easy to describe directly. But in case X and Y are Kan, there is another
factorization that can be described explicitly: the “graph” or “homotopy im-
age” factorization. This is a well-known construction from homotopy theory,
but the proof that it works in this case is not trivial. We can use the inter-
pretation of type theory to give an “alternate” proof (or at least a different
perspective on the usual proof).

Let A and B be (normal, uniform) Kan complexes, and take any map
f : A //B. We will construct a factorization

A i //

f
��

Ã

f̃

��

B

with i ∈ L and f̃ ∈ R.
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Consider the following pullback diagram:

Pf //

��

f̃

��

BI

��

A×B
f×1

//

π2

��

B ×B

B

Take Ã = Pf and f̃ the indicated composite, which, note, is an R-map, since
each factor is, by the assumption that both A and B are Kan.

For the factorization i : A // Ã, take the unique map determined as in:

A

i

""

f
//

f

!!

(1,f)

!!

B

rB

$$

Pf //

��

BI

��

A×B
f×1

//

π2

��

B ×B

B

As a dependent type, Pf //B is constructed as follows:

x : A ` f(x) : B, y, y′ : B ` IdB(y, y′)

x : A, y : B ` IdB(fx, y)

y : B `
∑
x:A

IdB(fx, y)

Under propositions-as-types, this is the “image”

{y : B | ∃x : A. f(x) = y} //B.
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In the factorization
A i //

f
  

Pf

f̃

��

B

the term i has the form

x : A ` i(x) : Pf(fx),

=
∑
x:A

IdB(fx, fx) .

Indeed, it is given by setting

i(x) := (x, refl(fx)) .

We know that f̃ : Pf //B is a (normal, uniform) Kan fibration, because
it is a composite of pullbacks of such, as already noted; but we need to see
that i : A // Pf as just defined is an L-map. Consider

Pf =
∑
x:A

∑
y:B

IdB(fx, y)

and take any C // Pf in R, i.e.:

x : A, y : B, z : IdB(fx, y) ` C(x, y, z) .

Consider the lifting problem

A d //

i

��

C

��

Pf =
//

φ

<<

Pf .

Thus we are given

x : A ` d(x) : C
(
x, fx, refl(fx)

)
,

and we seek

x : A, y : B, z : IdB(fx, y) ` φ(x, y, z) : C(x, y, z) .
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such that:
φ(x, fx, refl(fx)) = d(x) .

But this is a known inference, for which see [5], Lemma 11.
There is, of course, also a purely algebraic proof of this factorization;

cf. [3], Proposition 6.1.4.
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