
p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

Journal of Interconnection Networks
Vol. 15, Nos. 1 & 2 (2015) 1550001 (27 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0219265915500012

Mutual Embeddings

ILKER NADI BOZKURT

Duke University, Department of Computer Science

Levine Science Research Center, 308 Research Drive, Durham, NC 27708

ilker@cs.duke.edu

HAI HUANG

Intel Corporation, Chandler, AZ 85226

hai.huang2@intel.com

BRUCE MAGGS

Duke University, Department of Computer Science - Akamai Technologies

Levine Science Research Center, 308 Research Drive, Durham, NC 27708

bmm@cs.duke.edu

ANDRÉA RICHA

Arizona State University

School of Computing, Informatics, and Decision Systems Engineering

Box 878809, Tempe, AZ 85287

andrea.richa@asu.edu

MAVERICK WOO

Carnegie Mellon University, CyLab

Robert Mehrabian Collaborative Innovation Center,

4720 Forbes Avenue, Pittsburgh, PA 15213

pooh@cmu.edu

Received 11 February 2015
Accepted 15 September 2015

This paper introduces a type of graph embedding called a mutual embedding. A mutual
embedding between two n-node graphs G1 = (V1, E1) and G2 = (V2, E2) is an identifica-
tion of the vertices of V1 and V2, i.e., a bijection π : V1 → V2, together with an embedding
of G1 into G2 and an embedding of G2 into G1 where in the embedding of G1 into G2,
each node u of G1 is mapped to π(u) in G2 and in the embedding of G2 into G1 each
node v of G2 is mapped to π−1(v) in G1. The identification of vertices in G1 and G2

constrains the two embeddings so that it is not always possible for both to exhibit small
congestion and dilation, even if there are traditional one-way embeddings in both direc-
tions with small congestion and dilation. Mutual embeddings arise in the context of finding
preconditioners for accelerating the convergence of iterative methods for solving systems
of linear equations. We present mutual embeddings between several types of graphs such
as linear arrays, cycles, trees, and meshes, prove lower bounds on mutual embeddings

1550001-1

http://dx.doi.org/10.1142/S0219265915500012

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

I. N. Bozkurt et al.

between several classes of graphs, and present some open problems related to optimal
mutual embeddings.

Keywords: Graph embedding; mutual embedding; support tree preconditioners.

1. Introduction

1.1. Graph embedding

Graph embeddings have proven useful in many contexts, such as mapping a graph

describing a computation onto a network of processors, minimizing area in a VLSI

layout, or enabling one network of processors to emulate another with a different

topology.15,17,20 Graph embedding has also been used in the design and analysis of

preconditioned iterative solvers for symmetric, diagonally dominant (SDD) systems

of linear equations. There has been a long line of work in this area in the last two

decades, culminating in Refs. 25 and 31. We refer the reader to Refs. 2, 3, 6, 11, 22, 25

and 31 for the history and references.

Graph embedding can be defined for weighted and unweighted graphs, and the

embedding can map an edge to a single simple path or to a set of simple paths each

with a weight (fraction). We give the definition for the general case for completeness,

i.e., fractional embedding for weighted graphs, even though except for Section 2 our

results in this paper deal with the simpler case, where we have unweighted graphs

and edges are mapped to single non-fractional paths.

Let G = (VG, EG) denote the guest graph and wG(e) denote the weight of an

edge e of G. Similarly, let H = (VH , EH) denote the host graph and wH(e) denote

the weight of an edge e of H. The embedding of G into H is specified by a pair of

mappings. The first mapping maps each vertex in G to a vertex in H. The second

mapping maps each edge e in G to a set of simple paths, denoted PH(e), between

the images of its endpoints in H, where each path is designated with a non-negative

fraction and the fractions over all paths in the set sum to 1.

The quality of an embedding can be measured by several quantities such as

congestion, dilation, expansion and load. Expansion is defined as |VH |/|VG| and

load is the maximum number of vertices of G mapped to a single vertex of H.

The dilation of an edge e in G is defined as maxp∈PH(e) |p|, i.e., the length of the

longest path in the set of paths e is mapped to in H; the dilation of the embedding

is the maximum dilation over all edges in G. The congestion of an edge h in H

is
∑

{e∈E(G)|h∈p,p∈PH(e)}
fp(e)wG(e)

wH (h) where p denotes a path in PH(e) and fp(e) its

fraction respectively. The congestion of the embedding is the maximum congestion

over all edges in H. In this work, we focus on load-1 embeddings between graphs of

the same size, so the congestion and dilation of the embedding are the quantities of

interest.

When we have an unweighted graph and each edge is mapped to a single path,

dilation is again the length of the longest path used in the embedding. The congestion

of an edge counts the appearance of that edge in the paths used in the embedding.

1550001-2

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

Mutual Embeddings

The congestion of the embedding is again the maximum congestion over all edges

in H.

Before we go on, let us present two small and well-known lemmas concerning the

congestion and dilation of an embedding for the simpler case described in the above

paragraph.

The first lemma relates the congestion of an embedding to the bisection width

of the guest and host graphs. Bisection width of a graph is the minimum number of

edges that has to be removed to obtain two disconnected subgraphs with the same

number of vertices. The second lemma relates the dilation of an embedding to the

diameter of the guest and host graphs.

In the following two lemmas, G1 and G2 are two arbitrary connected graphs and

let c1 and d1 denote the congestion and dilation of an embedding of G1 into G2

respectively.

Lemma 1.1. Let BW (G1) and BW (G2) denote the bisection widths of G1 and G2

respectively. Suppose G1 is embedded into G2 with load 1, then c1 ≥ BW (G1)
BW (G2)

.

Lemma 1.2. Let D(G1) and D(G2) denote the diameters of G1 and G2 respec-

tively. Suppose G1 is embedded into G2 with load 1, then d1 ≥ D(G2)
D(G1)

.

1.2. Mutual embedding

This paper introduces the notion of mutual embeddings, which is defined on two

graphs with the same number of vertices. Consider the graphs G1 = (V1, E1) and

G2 = (V2, E2) with |V1| = |V2|. A mutual embedding between G1 and G2 is an

embedding of G1 into G2 and another embedding of G2 into G1, with the additional

constraint that the vertex mappings in the two embeddings are functional inverses

of each other. Thus, it makes sense to simplify our notation by consolidating the

two mappings into a bijection π : V1 → V2.

Problem Statement. Given graphs G1 and G2, the mutual embedding problem

is to find the bijection π, and the mappings of edges of G1 to paths in G2, and vice

versa, while minimizing some function of the congestions and the dilations of the

two embeddings, denoted c1, c2, d1, and d2. For example, we may wish to minimize

the product c1c2d1d2.

Having said above, finding the optimal mutual embedding (in the desired sense)

between two graphs is a difficult problem. In fact, even finding optimal one way em-

beddings when we have two arbitrary graphs is difficult. Bandwidth minimization

problem, in which a minimum dilation embedding of an arbitrary graph to a line is

sought, is NP-hard.23 So, finding an embedding between two arbitrary graphs with

minimum dilation is NP-hard as well, as we can easily reduce bandwidth minimiza-

tion to finding an embedding with optimal dilation between two arbitrary graphs.

Finding an optimal embedding based on congestion is not easier either. This is

because the cutwidth minimization problem, which asks for an embedding of an

1550001-3

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

I. N. Bozkurt et al.

arbitrary graph into a line with minimum congestion, is NP-hard for general graphs

as well.9 Therefore we will limit ourselves to proving lower bounds for mutual em-

beddings in this paper. It is possible to find optimal embeddings between special

types of graphs and embeddings between different types of graphs have been studied

extensively.1,7,10,13–15,17,24,27–30 Some of the mutual embeddings we present in this

paper are based on previously discovered one-way embeddings between different

types of graphs.

There can be many different mutual embeddings between two graphs G1 and

G2. The next two examples show two different mutual embeddings between a linear

arraya and a cycle. Let G1 = (V1, E1) denote a cycle and G2 = (V2, E2) denote a

linear array, both with n nodes. Suppose the nodes in the linear array are numbered

1 through n in consecutive order, and that the nodes in the cycle are numbered in

a similar fashion with node n being connected to node 1. Throughout, we assume

that all graphs are undirected.

Example 1.1. Let the map π : V1 → V2 be such that π(i) = i. Each edge of the

linear array is mapped to the identical edge in the cycle. Each edge of the cycle is

mapped to the unique path between the images of its endpoints in the linear array.

This defines a mutual embedding which is shown in Figure 1.

For this mutual embedding, we have c2 = 1 and d2 = 1 since the linear array is

a subgraph of the cycle. We also have c1 = 2 and d1 = n − 1 because the edge

connecting nodes 1 and n in the cycle has dilation n − 1 in the linear array, and

adds congestion 1 to every edge in the linear array.

. . .1 2 3 n− 1 n

Fig. 1. An example mutual embedding between a linear array (dashed edges) and a cycle.

Example 1.2. Let the map π : V1 → V2 be such that

π(i) =

{

2i− 1, if 1 ≤ i ≤ ⌈n2 ⌉
2(n − i+ 1), otherwise.

Each edge of the linear array is mapped to the shortest of the two paths be-

tween the images of its endpoints. Each edge of the cycle is mapped to the unique

path between the images of its endpoints in the linear array. This defines a mutual

embedding. Figure 2 shows how the cycle is embedded into the linear array in this

example.

aWe prefer the term linear array to line, which is a topology where processors are arranged in a
line.

1550001-4

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

Mutual Embeddings

.

1

2 3 n− 1

n

Fig. 2. Another example mutual embedding between a linear array (dashed edges) and a cycle.

In this mutual embedding, the cycle is embedded into the linear array by using jumps

of size 2 starting from the first node. When we reach to the end of the linear array,

we make a turn and make jumps of size 2 again (1 where necessary). So, we have

c1 = 2 and d1 = 2. For the embedding of the linear array into the cycle, consider

the edge in the middle of the linear array. The path that this edge is mapped to has

to traverse half of the cycle either from left or right, so d2 = ⌈n2 ⌉. Now consider all

the edges of the linear array in the left half. All these edges will traverse the cycle

from the left, so cycle edges incident on vertex 1 of the linear array have c2 = ⌈n2 ⌉.
It is important to note that two embeddings taken together do not necessarily

form a mutual embedding. The embedding of the linear array into the cycle in

Example 1.1 (which has c2 = 1 and d2 = 1) and the embedding of the cycle into the

linear array in Example 1.2 (which has c1 = 2 and d1 = 2) do not form a mutual

embedding together. This is because the vertex mappings are not inverses of each

other. Moreover, the two embeddings of a mutual embedding constrain each other

and it is often not possible to find mutual embeddings with small congestion/dilation

in both directions. In examples 1.1 and 1.2, we have small congestion/dilation in one

direction; whereas, at least one of these quantities is Ω(n) in the other direction. If we

wanted to minimize maximum dilation/congestion instead, we could have another

mutual embedding in which we take jumps of size
√
n while embedding the cycle

to the linear array. Note that, we have d1d2 = Ω(n) for both examples. Later we

will show that for any mutual embedding between the linear array and the cycle,

we have d1d2 = Ω(n).

After these introductory examples, we will finish this section with some simple

observations. When we have a mutual embedding between graphs A and B, and a

mutual embedding between graphs B and C, we can use these mutual embeddings

to get a mutual embedding between A and C. Moreover, we will also get trivial

upper bounds on dilation and congestion from these two mutual embeddings. We

will state this obvious result as a theorem without proof.

Theorem 1.1. Suppose we have graphs A, B, and C and we have a mutual em-

bedding τ : A → B and another mutual embedding σ : B → C. Then, σ ◦ τ defines

a mutual embedding between A and C. Moreover, we have dA→C ≤ dA→BdB→C ,

cA→C ≤ cA→BcB→C , dC→A ≤ dC→BdB→A, and cC→A ≤ cC→BcB→A.

As a final observation, note that any lower bounds that apply to traditional

one-way embeddings carry over to mutual embeddings. For example, Koch et al.

proved lower bounds on congestion and dilation of embedding complete binary trees

into complete ternary trees15; a similar result can also be proved in the opposite

1550001-5

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

I. N. Bozkurt et al.

direction. In these lower bounds either the congestion or the dilation is ω(1) but not

both. Hence, in the mutual embedding, these lower bounds hold in both directions.

1.3. Notation and summary of results

In the rest of the paper, we continue using BW (G) and D(G) notation as in

Lemmas 1.1 and 1.2 to refer to the bisection width and the diameter of a graph

G respectively. In a mutual embedding of graphs G1 and G2, c1 and d1 refer to the

congestion and dilation of embedding G1 into G2 respectively. Similarly, c2 and d2
refer to the congestion and dilation of embedding G2 into G1 respectively. We also

use the notation dG→H to denote the dilation of embedding G into H, when the

the direction of embedding is not immediately clear from the context, such as the

embeddings in Section 4 where we have embeddings between three different graphs.

Unless otherwise stated, each graph in a mutual embedding is assumed to have n

vertices.

The rest of the paper is organized as follows. In Section 2, we describe the

relationship between mutual embeddings and support tree preconditioners. The em-

beddings in this section make use of fractional paths (flows). The contributions in

this section include a mutual embedding between a graph G and its Räcke comple-

ment (described later) and a different version of the (so called) congestion-dilation

lemma, which is a well-known result in support theory. Section 3 deals with mutual

embeddings between linear arrays and arbitrary graphs, and includes a result to

obtain lower bounds on products of dilations. This section includes an interesting

result showing that the product of dilations in a mutual embedding between a linear

array and cycle is Ω(n), even though the two graphs are very similar to each other,

and, simple and optimal embeddings exist in either direction. Section 4 generalizes

the technique given in the previous one to mutual embeddings between two arbi-

trary graphs. The relationship of product of dilations in our mutual embeddings

and distortion in metric space embeddings is examined in Section 5. The rest of

the paper examines mutual embeddings between meshes of different dimensions and

also between fat-trees and meshes. We discuss possible extensions and future work

in the conclusion.

2. Mutual Embeddings and Support Tree Preconditioners

The reader may ask the question, why are mutual embeddings important? One moti-

vation arises in analyzing the running time of a class of iterative solvers for systems

of linear equations Ax = b, where A is a Laplacian matrix, and, where another

Laplacian matrix B is used as a preconditioner. The support-tree conjugate gradi-

ent (STCG) algorithm of Gremban et al. is an example of such an iterative solver

for Laplacian systems,12 where the performance of the preconditioner is determined

by the support of B for A, denoted as σ(A/B). Following,11 the support of matrix

B for A is defined as

σ(A/B) = min{τ : τB −A is positive semi-definite}.

1550001-6

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

Mutual Embeddings

Gremban experimentally showed that STCG works well on meshes12 and also

bounded the number of iterations to converge for certain classes of graphs in his

thesis.11 In general, the iteration count of such solvers can be bounded by the gen-

eralized condition number of A and B, κ(A,B), which, for Laplacians, is equal

to σ(B/A)σ(A/B).22 Graph embedding comes in to the picture for bounding the

support, as shown by the following well-known so called congestion-dilation lemma.

Lemma 2.1. Given an embedding of G into H, σ(L(G)/L(H)) ≤ cG→HdG→H ,

where L(G) and L(H) denote the Laplacians of G and H respectively.

The proof and slight variations of the lemma can be found in Refs. 3 and 5. The

next lemma emphasizes that if we have a mutual embedding between two arbitrary

weighted graphs G1 and G2, we can bound the condition number (and, hence the

iteration count) for using L(G1) as a preconditioner for L(G2), and vice versa. The

quality of the mutual embedding, based on the quantity c1d1c2d2, is a direct indicator

of how well the graphs G1 and G2 support each other.

Lemma 2.2. Given a mutual embedding between G1 and G2,

κ(L(G1), L(G2)) ≤ c1d1c2d2.

Proof. The result follows from Lemma 4.8 of Gremban11 and the congestion-

dilation lemma. Note that, we cannot bound κ(A,B) using arbitrary embeddings

in two directions; a mutual embedding is necessary as implied by Lemma 4.8 of

Gremban.

Maggs et al. presented an algorithm for finding a preconditioner for arbitrary

graphs for the support tree approach22; in particular, they showed that the de-

composition trees of Bienkowski et al., proposed for constructing oblivious routing

schemes,4 can be used as preconditioners for STCG. Originally, Räcke showed that

by constructing a decomposition tree T corresponding to an arbitrary graph G, a

routing method which minimizes congestion can be obtained by routing requests

on T instead of G.26 The leaves of T correspond to vertices of G and each internal

node ut of T correspond to a cluster of nodes Sut of G. The root corresponds to the

entire vertex set. The decomposition trees proposed by Bienkowski et al. are sim-

ilar, however the authors also presented a polynomial time algorithm to construct

T . In either case, during the construction of T , a concurrent multi-commodity flow

problem (CMCFP) is solved for each cluster. The intermediate locations in a route

between nodes u and v of G are obtained from the leaf-to-leaf path between u and

v on T and the solutions of the CMCFPs in each cluster are used to find the set of

paths between the internal nodes of T .

When T is used as a preconditioner for G, an upper bound on κ(G,T) has to

be obtained to bound the number of iterations until convergence is achieved. Maggs

et al. obtains this upper bound in several steps. We briefly summarize their approach

1550001-7

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

I. N. Bozkurt et al.

below with the additional purpose of giving an example of a mutual embedding with

fractional flows (paths).

First, support is defined for matrices of different size and σ(G/T) is bounded by

embedding G into leaves of T , resulting in congestion ≤ 1 and dilation O(log n).

The Räcke complement is defined for bounding σ(T/G). As mentioned above,

Bienkowski et al. define a CMCFP for each cluster Sut (corresponding to a node ut in

T) during initialization. This CMCFP can be represented with a complete graphKut

on the vertices of Sut , with edge weights representing the demands. The overlapping

of these complete graphs is called the Räcke complement of T , denoted by RC(T).

RC(T) is a complete graph on the vertex set V and the weight of an edge (u, v) is the

sum of its weights (demands) in each Kut it appears in. Using a transitivity property

of the support, a bound on σ(T/G) is obtained by examining σ(T/RC(T)) and

σ(RC(T)/G) separately. σ(T/RC(T)) is bounded using an electrical argument by

viewing the weighted graph as a resistive network. Finally, σ(RC(T)/G) is bounded

by embedding RC(T) into G.

In the embedding of RC(T) into G, an edge (u, v) is mapped to the overlap-

ping of the flow paths between u and v in the solution of the CMCFPs which are

created during the construction of T . To bound the congestion and dilation of this

embedding, the embedding of each Kut is analyzed individually. The congestion in

each component is bounded by O(log3 n) and since there are O(log n) levels in the

decomposition tree, O(log4 n) is obtained as an upper bound on the congestion. An

upper bound on the dilation is obtained by making use of the concept of flow num-

ber introduced by Kolman and Scheideler.16 O(α−1(G)∆(G) log3 n) is the obtained

upper bound, where α = minU⊂V,|U |≤|V |/2 c(U, V \U) is the minimum edge expansion

of the graph and ∆ = maxv∈V c(v) is the maximum total incident weight on any

vertex.

Next, we will show that it is possible to find a good mutual embedding between

G and the corresponding Räcke complement RC(T). We describe the mutual em-

bedding for Räcke’s decomposition trees. For the decomposition trees of Bienkowski

et al., the mutual embedding is obtained in a similar fashion and we will highlight

the differences as we go along. The decomposition trees of Räcke are easier to ex-

plain, as there are nodes with different colors and differences in routing based on

color in the former.

Lemma 2.3. Let G = (V,E) be an arbitrary, weighted, connected graph and let T =

(VT , ET) be the corresponding decomposition tree as originally proposed by Räcke.

There is a mutual embedding between G and RC(T) such that dG→RC(T) = O(log n),

cG→RC(T) = 1, dRC(T)→G = O(α−1(G)∆(G) log2 n) and cRC(T)→G = O(log3 n).

Proof. Since the graphs G and RC(T) are defined on the same set of vertices, we

naturally map each node v of G to the same node v in RC(T).

The embedding of RC(T) into G is as given above. RC(T) is the union of com-

plete graphs Kvt corresponding to the flow problems in each cluster Svt . An edge

1550001-8

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

Mutual Embeddings

(u, v) is mapped to the overlapping of the flow paths in the solution of these CMCFPs

in which they appear in. Räcke showed that all the |VT | sets of flows in the CM-

CFP solutions can be overlapped and then embedded in G while inducing O(log3 n)

congestion, given the decomposition tree constructed by his algorithm. For the di-

lation of this embedding, n is a simple upper bound. However, as described above,

we can use the concept of flow number of Kolman and Scheideler and their flow

shortening lemma. In this case, we get the tighter bound, O(α−1(G)∆(G) log2 n);

where α = minU⊂V,|U |≤|V |/2 c(U, V \U) is the minimum edge expansion of the graph

and ∆ = maxv∈V c(v) is the maximum total incident weight on any vertex. For the

details, we refer the reader to Section 4.6 of Maggs et al.22

To embed G into RC(T), we will use the decomposition tree T as a bridge, by

first embedding G into T , and then embedding T into RC(T). T has more vertices

than G and RC(T), but we will only use it for finding an embedding between G and

RC(T). While embedding G into T , we map each vertex of G to the corresponding

leaf node in T . The dilation is O(log n) since this is the height of T . The congestion

of this embedding is 1, because the weight assigned to each edge of T is enough

to support the traffic between its cluster and the parent cluster. The weight of an

edge between ut and its child vt is defined as out(Svt) which is basically the sum

of all edge weights leaving the cluster Svt . For details, we again refer the reader to

Section 4.2 of Maggs et al.,22 where an embedding of G into T is described when

the decomposition trees of Bienkowski et al. is used. However, the edge weights are

assigned in the same way in both cases.

Now, we have to embed T into RC(T). Each leaf of T is mapped to the corre-

sponding (same) node in RC(T). The internal nodes of T don’t have corresponding

nodes in RC(T) (or G). Räcke suggests that whenever we have to simulate an algo-

rithm on T , we map each internal node ut of T randomly to one node u in its cluster

Sut with probability
wl+1(u)

wl+1(Sut)
, assuming ut is at level l. This is sufficient for routing

purposes, but we need an embedding between RC(T) and G, and hence we need to

preserve the connectivity between the clusters corresponding to internal nodes of T .

So, instead we map each internal node ut of T , fractionally to the nodes in its corre-

sponding cluster Sut using the probabilities given by Räcke. This leads to a natural

mapping of the edges as well. Each edge between a pair of internal nodes ut and vt
in T is fractionally embedded in RC(T) to connect all of the fractional pieces of ut
and vt, i.e. we have a set of fractional flows between clusters Sut and Svt . Without

loss of generality, assume ut is at level l−1 and vt is at level l and let u ∈ Sut and let

v ∈ Svt . The weight induced by (ut, vt) ∈ ET to the edge (u, v) ∈ RC(T) as a result

of this fractional mapping will be wl(u)
wl(Sut)

out(Svt)
wl+1(v)

wl+1(Svt)
. This exactly matches the

demand between u and v in the CMCFP for Sut . Since RC(T) is a union of complete

graphs Kut corresponding to these demands in the CMCFPs, this embedding gives

congestion 1 on RC(T). This embedding also has dilation 1, because each edge in

T is embedded as a fractional flow using a set of paths of length 1 between nodes

in RC(T).

1550001-9

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

I. N. Bozkurt et al.

Although, our embedding of T into RC(T) is not really a traditional embedding,

we can still compose the embedding of G into T and T into RC(T), because the

embedding of G into T does not map any nodes of G to internal nodes of T , only to

the leaves. This is why we are able to split them fractionally and just follow the flow

paths when we embed each edge of G into T and then each edge of T into RC(T).

Thus, the embedding of G into RC(T) has congestion 1 and dilation O(log n).

If we use the decomposition trees of Bienkowski et al. instead, we will have

cRC(T)→G = O(log4 n) instead. This is because, in this case the flows can be over-

lapped while inducing congestion O(log3 n) only at each individual level. Since there

are O(log n) levels of nodes, we get an additional logarithmic factor. For the dilation

of embedding G into RC(T), we will have an additional logarithmic factor as well,

i.e. we have dRC(T)→G = O(α−1(G)∆(G) log3 n). These differences result from the

way sparsest cuts are computed in Bienkowski et al.’s construction. Congestion and

dilation bounds in the other direction remain the same, even though the probabil-

ities used in the fractional node mappings will be different based on the color of

the node. This is because the distribution of the flow in this case depends not only

a node’s level but also its color. However, any edge of T can still be embedded in

RC(T) with congestion 1 when we assign the weights (probabilities) according to

the color of the nodes. For the details, we refer the interested reader to proofs of

Theorem 1 and Claim 2 in Ref. 4.

In passing, we want to mention that with an alternative definition of the dilation

in the fractional embedding case, the congestion-dilation lemma (hence Lemma 2.2)

will still hold. Suppose the dilation of an edge in the guest graph is defined to be

the (weighted) average path length between the images of its endpoints and let

avg dil(e) denote the (weighted) average dilation of an edge e in the embedding.

Lemma 2.4. In a fractional embedding P of G into H,

σ(L(G)/L(H)) ≤
(

max
h∈E(H)

cong(h)

)(

max
g∈E(G)

avg dil(g)

)

.

Proof. To prove this result, it is enough to examine the embedding of a single edge

of G into H. As showed by Gremban, L(G) and L(H) can be decomposed into m

positive semi-definite pieces such that L(G) =
∑m

i=1Ai and L(H) =
∑m

i=1 Bi, where

m = |E(G)|.11 Each Ai corresponds to an edge ei of G and each Bi corresponds to a

path (between vertices corresponding to the endpoints of ei) in H in the embedding.

The same decomposition can be used in the fractional setting as well with the

appropriate weights applied to the entries in each Bi based on the weights of the

paths. Suppose we obtained a set of values {τ1, τ2, . . . , τm} such that each τiBi −Ai

is positive semi-definite. Then τ∗B−A is positive semi-definite where τ∗ = maxi τi.

Now, we can proceed to bound the support for the embedding of a single edge of

G. Let ej be an edge of G, let Aj and Bj be the corresponding Laplacians for edge

ej and the fractional paths it is mapped to respectively. Let {pi,∀ 1 ≤ i ≤ k} be the

1550001-10

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

Mutual Embeddings

set of paths ej is mapped to in H, di be the length of pi, and let fi be the fraction

of path pi such that
∑k

i=1 fi = 1. Note that for an edge h belonging to a path pi,

its weight in Bj will be
fiw(ej)
cong(h) .

To bound σ(Aj/Bj) we will use an electrical argument. Note that when a

weighted graph is viewed as a resistive network, the weight of an edge corre-

sponds to the conductance between its endpoints. Hence, the conductance be-

tween the ends of e is w(e). The total conductance of the paths in Bj is at least
∑k

i=1
w(e)fi

di

(

maxh∈E(Bj)
cong(h)

) . As shown by Maggs et al. σ(Aj/Bj) is the minimum

number such that for all τ ≥ σ(Aj/Bj), τ copies of circuit Bj consumes as much

power as circuit Aj under any voltage settings on the nodes. To prove the lemma,

we have to show that

(

max
h∈E(Bj)

cong(h)

)

∗ avg dil(e) ∗
k

∑

i=1

w(e)fi

di

(

maxh∈E(Bj) cong(h)
) ≥ w(e),

meaning that with σ(Aj/Bj) copies of host Bj , the total conductance of the paths

will be at least the conductance between the endpoints of e. Note that avg dil(e) =
∑k

i=1 fidi. Hence, all we have to show is
∑k

i=1 fidi
∑k

i=1
fi
di

≥ 1. We will prove this

using induction. Suppose there are only two paths.

(f1d1 + f2d2)(f1/d1 + f2/d2) = f2
1 + f2

2 + f1f2d1/d2 + f1f2d2/d1

= f2
1 + f2

2 + f1f2(d1/d2 + d2/d1)

It is enough to show (d1/d2 + d2/d1) =
d21+d22
d1d2

≥ 2 because (f1 + f2)
2 = 1. This

holds because (d1 − d2)
2 ≥ 0.

Suppose we know (
∑k−1

i=1 fidi)(
∑k−1

i=1
fi
di
) ≥ 1 holds where

∑k−1
i=1 fi = 1 and di ≥

1,∀ 1 ≤ i ≤ k−1. We want to show
∑k

i=1 fidi
∑k

i=1
fi
di

≥ 1. Let gi = fi,∀ 1 ≤ i ≤ k−2

and let gk−1 = fk−1+fk. We have
∑k−1

i=1 gi = 1. Similarly, let d
′

i = di,∀ 1 ≤ i ≤ k−2

and let d
′

k−1 =
fk−1dk−1+fkdk

fk−1+fk
. We also have d

′

i ≥ 1,∀ 1 ≤ i ≤ k − 1. Then, by

the inductive hypothesis, (
∑k−1

i=1 gid
′

i)(
∑k−1

i=1
gi
d
′

i

) ≥ 1 holds. Note that
∑k−1

i=1 gid
′

i =
∑k

i=1 fidi. So, if we can show
∑k−1

i=1
gi
d
′

i

≤ ∑k
i=1

fi
di

we are done. The last inequality

is equivalent to
gk−1

d
′

k−1

≤ fk−1

dk−1
+ fk

dk
. Making the substitutions we get

(fk−1 + fk)
2

fk−1dk−1 + fkdk
≤ fk−1dk + fkdk−1

dkdk−1
,

and, after some manipulation we obtain

0 ≤ d2k−1 + d2k − 2dk−1dk.

1550001-11

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

I. N. Bozkurt et al.

The last inequality holds because the right hand side is equal to (dk−1 − dk)
2.

This concludes the proof, since

τ∗ = max
j

(

avg dil(ej) max
h∈Bj

cong(h)

)

≤
(

max
h∈E(H)

cong(h)

)(

max
g∈E(G)

avg dil(g)

)

.

Lemma 2.4 implies that a tighter bound can be obtained for the generalized

condition number in an application of Lemma 2.2 with the alternative definition

of dilation. However, we must stress that while enhancing preconditioned iterative

solvers based on support trees is our original motivation for studying mutual em-

beddings, recent progress in the area25,31 suggests that mutual embeddings should

be best seen as the beginning of an independent intellectual development instead

of a pursuit in accelerating iterative solvers. In the rest of the paper, we make the

simplifying assumption that the two edge mappings return only singleton sets, i.e.,

each edge in one graph is always mapped to a single path in the other.

3. Mutual Embeddings Between Linear Arrays And Arbitrary

Graphs

Graph embedding problems using linear arrays were considered by many researchers

before. Sekanina showed how to embed linear arrays into trees (hence to any con-

nected graph) with dilation 2.29 In the bandwidth minimization problem (which is

a graph layout problem, where dilation is called bandwidth), the vertices of a graph

are laid out in a line and the aim is to find the layout with minimal bandwidth. This

problem is NP-complete for general graphs23 and for some other simpler graphs such

as trees with maximum degree 3.8

While introducing mutual embeddings in Section 1, we presented several example

mutual embeddings between linear arrays and cycles. In all the examples, we had

d1d2 = Ω(n). We next show that this is true for any mutual embedding between a

linear array and a cycle.

Theorem 3.1. Let G1 = C be a cycle and let G2 = L be a linear array. In any

mutual embedding between L and C, d1d2 = Ω(n).

Proof. Let the nodes of the linear array be numbered from 1 to n consecutively

from left to right. Let’s also color node 1 blue and node n red. Again w.l.o.g. let’s

assume the cycle’s node 1 is mapped to the linear array’s node 1.

Let’s start following the cycle edges in one direction from node 1 until we hit

the line’s node n. In the process, we color each intermediate node and each cycle

edge blue. After that, we finish tracing the cycle edges from the line’s node n back

to node 1. In the process, we color each intermediate node and each cycle edge red.

The lengths of both the blue cycle path and the red cycle path are at least one.

Now, let’s examine the middle one third of the line. The nodes in this section

consist of either nodes of one color, or both blue and red nodes.

1550001-12

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

Mutual Embeddings

1 2 . . .
n

3
. . .

2n

3
. . . n

Fig. 3. Case 1 : All nodes in the middle have the same color. (Color online.)

1 n
n

3

2n

3

u v

2

Fig. 4. Case 2 : The middle one third of the linear array have both blue (disks) and red nodes (squares).
(Color online.)

If there is just one color in this region, then we are done because one of the cycle

edges in the other color must span over this section, which has a line-distance of

n/3, implying d1 = Ω(n). Figure 3 shows an example illustration of this case.

If we have both red and blue nodes in this region, then this section must contain

at least one linear array edge (u, v) such that u and v have different colors. In the

cycle, there are two paths between nodes corresponding to u and v. W.l.o.g. let us

assume u is colored blue, v is colored red, and (u, v) is mapped to the path which

includes linear array’s node n. This path starts from u, hops towards the line’s

node n through blue cycle edges, and then hops back to v through red cycle edges.

Figure 4 shows an example of this case.

Length of this cycle path is a lower bound on the dilation from linear array to

cycle. If we use dC(u, v) to denote the length of this path, then we have dC(u, v) ≤ d2.

Moreover, the average distance that is hopped in the line on this cycle path is a lower

bound on the dilation of cycle edges. Since the the total hopping distance covered

is at least n/3, we have d1 ≥ n/3
dC(u,v) ≥

n/3
d2

. Therefore, we have d1d2 ≥ n
3 = Ω(n).

Even though we have many examples with same or similar lower bounds on the

product of dilations for mutual embeddings between different types of graphs, we

find this one particularly interesting. The linear array and cycle are very similar to

each other, yet the addition of one more edge to the linear array and completing the

cycle results in an Ω(n) bound.

Next, we examine mutual embeddings between complete binary trees and linear

arrays and show that a similar result holds. Embedding complete binary trees into

lines was first considered by Paterson et al.,24 however the presented embeddings

required constant expansion (increased number of nodes in the host graph). Later,

Heckmann et al. showed how to embed complete binary trees into lines and grids

with optimal dilation.13 Below, we show that for any mutual embedding between

a complete binary tree and a linear array, the the product of dilations is Ω(n).

1550001-13

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

I. N. Bozkurt et al.

Then, we will generalize this idea for mutual embeddings between linear arrays and

arbitrary graphs.

Theorem 3.2. Let G1 = T = (VT , ET) be a complete binary tree, let G2 = L =

(VL, EL) be a linear array such that |VT | = |VL| = n. In any mutual embedding of

T and L, d1d2 = Ω(n).

Proof. Let π : T → L be an arbitrary mutual embedding between T and L. Label

the nodes in the linear array from left to right as 1, . . . , n. Let r be the root of the

complete binary tree and let Ts be a subtree rooted at a grand-child of r which

contains neither π−1(1) nor π−1(n). Note that there exists at least one such node

among the four grand-children of r and |Ts| = Ω(n). Let p, q ∈ Ts be the nodes such

that π(p) and π(q) is minimum and maximum among all nodes of Ts respectively.

Then π−1(π(p) − 1) /∈ Ts and π−1(π(q) + 1) /∈ Ts.

Since any path on the tree from a node outside Ts to a node inside Ts must pass

through s, we have dT (p, s) ≤ dT (p, π
−1(π(p)−1)), where dT (•, •) is the distance on

the tree. Hence, dT (p, s) ≤ d2 and by a similar argument for q we get dT (q, s) ≤ d2.

Combining these two inequalities, we get dT (p, q) ≤ 2d2. On the other hand, we can

relate d1 with dT (p, q). If dT (p, q) = 1, then obviously d1 ≥ |Ts|. If dT (p, q) > 1,

there is a set of nodes S on the paths between p and q, we can minimize d1 by

equally spacing the counterparts of the nodes in S in the linear array between π(p)

and π(q). Hence, we have d1 ≥ |Ts|/dT (p, q), since π mapped every node in Ts to

the linear array and it is 1-1. Therefore d1d2 ≥ |Ts|/2 = Ω(n).

The above proof can be generalized to prove lower bounds on product of dilations

for mutual embeddings between a linear array and an arbitrary graph G. The key

is to find a substructure of G, which the linear array must enter and leave at least

once. Suppose the distance between the entry point and the exit point is b, the size

of the substructure is s, then the product of the dilations is at least s
b . In most cases,

we want to select a substructure with Ω(n) nodes. Below, we formalize this idea into

a theorem for the general case after defining the boundary of a subgraph and the

diameter of the boundary.

Definition 3.1. The boundary of a subgraph H of a graph G, denoted ∂G(H), is

the set of vertices in H, which has at least one neighboring vertex outside H. More

precisely, ∂G(H) = {u : u ∈ H ⊂ G — ∃v /∈ H s.t. (u, v) ∈ E(G)}.

Definition 3.2. The diameter of the boundary ∂G(H) is the maximum dis-

tance in G between any two vertices of ∂G(H) plus 1, i.e., D(∂G(H)) =

maxu,v∈∂G(H) dG(u, v) + 1, where D(∂G(H)) denotes the diameter of the boundary,

and, dG(•, •) is the distance between two nodes in G.

Theorem 3.3. Let G1 = L = (VL, EL) be a linear array and G2 = G = (VG, EG)

be an arbitrary connected graph such that |VL| = |VG| = n. If there exists disjoint

1550001-14

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

Mutual Embeddings

subgraphs Hi ⊂ G, i = 1, 2, 3 such that (i) |Hi| ≥ n
c , where c is a fixed constant,

and (ii) D(∂G(Hi)) ≤ b, then d1d2 = Ω(nb).

Proof. The proof is very similar to the proof of Theorem 3.2. First we label the

nodes of L from one end to the other as 1, 2, . . . , n. Consider the embedding of L

into G, let σ denote the vertex mapping. There exists an Hi such that it contains

neither σ(1) nor σ(n). Let p, q ∈ Hi such that σ−1(p) and σ−1(q) have the smallest

and the largest labels in the linear array respectively. There exists a node r ∈ ∂G(Hi)

(respectively s ∈ ∂G(Hi)) such that the dilation d1 of embedding the linear array

into G satisfies d1 ≥ dG(p, r) (respectively d1 ≥ dG(q, s)). Hence, dG(p, q) ≤ 2d1 +

dG(r, s) ≤ 2d1 + b and consequently dG(p, q) ≤ 2d1 + dG(r, s) ≤ 2d1b. This holds

even when b = 1, because in this case the boundary contains just a single node, i.e.,

r = s and dG(r, s) = 0. On the other hand Hi contains
n
c nodes, which implies that

the dilation d2 of embedding G into the linear array satisfies d2 ≥ |Hi|/dG(p, q) ≥
n
c /dG(p, q) ≥ n

c /(2d1b). Hence, we have d1d2 ≥ n
2cb = Ω(nb).

Next we show some example applications of Theorem 3.3. The key to applying

the theorem is finding the subgraphs Hi.

Example 3.1. Mutual embedding between a linear array and a complete binary

tree.

This example serves as a sanity check, as we know d1d2 = Ω(n) from Theorem 3.2.

Each subtree in the proof of Theorem 3.2 has n
4 nodes and the diameter of the

boundary is 1. Hence the Ω(n) lower bound follows.

This bound is tight. As we mentioned before, Heckmann et al. showed how to

embed complete binary trees into lines with optimal dilation.13 Their algorithm

embeds the left subtree of the root into h blocks of size l = ⌈(2h − 1)/h⌉, where
h is the height of the tree. If there is an edge between two nodes, they are placed

either in the same block or in two adjacent blocks. The right subtree of the root is

embedded by mirroring the left, and the root is placed in-between. The dilation of

this embedding is Θ(n/ log n). In the embedding of the linear array into the complete

binary tree, each edge is mapped into the unique path in the tree. Since the height

of the tree is h = log n, the product of dilations is Ω(n).

Example 3.2. Mutual embedding between a linear array and a two-dimensional

square mesh.

Consider a
√
n×√

n mesh M . Each node of M can be identified by an ordered pair

(x, y), where 1 ≤ x, y ≤ √
n. Define Hi, i = 1, 2, 3 such that each Hi is a rectangular

slice of M containing one third of the nodes. More precisely, each Hi contains nodes

(x, y), where (i−1)
3

√
n + 1 ≤ x ≤ i

3

√
n and 1 ≤ y ≤ √

n. Then D(∂G(Hi)) ≤ 2
√
n

for each Hi and hence we have the lower bound of the mutual embedding between

a linear array and a mesh as Ω(n
2
√
n
) = Ω(

√
n).

1550001-15

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

I. N. Bozkurt et al.

The
√
n lower bound is tight (within a constant factor). We can embed the

linear array into the mesh as follows. First embed node 1 in the linear array into

the bottom-left corner of the mesh and then embed the consecutive
√
n − 1 nodes

along the bottom of the mesh. This way node
√
n is embedded into the bottom-right

corner. After that, embed node
√
n + 1 to the right-most node in the second layer

of the mesh, then embed the consecutive
√
n − 1 nodes from right back to the left

along second layer and so on. The embedding from the linear array to mesh has

dilation 1, while the embedding from the mesh to the linear array has dilation 2
√
n.

Hence, this mutual embedding reaches the lower bound Ω(
√
n).

The same technique can be used to obtain optimal mutual embeddings between

linear arrays and two-dimensional meshes of any aspect ratio. We will again use the

snake pattern to embed the linear array into the mesh. Starting from a corner of the

mesh, we can embed the nodes of the linear array consecutively along the shorter

side of the mesh and following the same pattern described above afterwards. For

example, if our two-dimensional mesh is n1/3 × n2/3 then we have c1 = d1 = 1 and

c2 = d2 = Ω(n1/3).

Note that, there can be cases where Theorem 3.3 results in a trivial lower bound.

For example, we know that d1d2 = Ω(n) for linear arrays and cycles. However, the

only way to find disjoint subgraphs in the cycle is defining n/3 consecutive vertices

as a subgraph Hi, and this results in a trivial lower bound 1.

We conclude this section with a small example showing a trade-off between

congestion in one direction and dilation in the other direction for mutual embeddings

between linear arrays and cycles.

Claim 1. Let G1 be a cycle and G2 be a linear array. In any mutual embedding of

G1 and G2 in which adjacent nodes of the linear array are not mapped to adjacent

nodes of the cycle has congestion at least 2, i.e. does not have optimal congestion.

Proof. Suppose we started drawing the linear array on the cycle from left to right,

i.e. mapping each edge of the linear array to to paths (edges) in the cycle. Let u and

v be two vertices of the linear array which are mapped to non-adjacent vertices in

the cycle. When (u, v) is mapped to a path, the node right after π(u) will be skipped

in the cycle. But at some point the mapping needs to visit this node, either in the

clockwise or in the counter-clockwise direction. In either case, a cycle edge has to

be used again, causing congestion at least 2.

Corollary 3.1. If c2 < 2, then d1 = n− 1.

Proof. The only possible way for c2 to be less than 2 is for every pair of adjacent

nodes in the linear array to be embedded in adjacent nodes in the cycle. But this

implies that two adjacent nodes of the cycle must be mapped to the two opposite

ends of the linear array.

1550001-16

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

Mutual Embeddings

4. Mutual Embeddings Between Arbitrary Graphs

In Section 3 we studied the problem of finding mutual embeddings between linear

arrays and arbitrary graphs. Using linear arrays as a bridge, we will introduce a

technique to find mutual embeddings between arbitrary graphs in this section. We

name the technique tri-embedding as our technique studies the embedding among

three graphs: one source, one target, and, one relay graph.

Let G1 and G2 be two arbitrary graphs and let L be a linear array. From The-

orem 1.1, we know that a mutual embedding σ : G1 → L and a mutual embedding

τ : L → G2 will give us a mutual embedding π = τ ◦ σ : G1 → G2. In fact, fixing

σ still allows us to find a τ for each arbitrary π. We also know that there is always

a “good” mutual embedding between a linear array L and an arbitrary graph G1

such that dL→G1 ≤ 2.29 We name such a mutual embedding between a graph and a

linear array a linear-embedding.

Definition 4.1. Let G be an arbitrary graph and L be a linear array. A mutual

embedding π between G and L that satisfies dL→G ≤ 2 is called a linear-embedding

of G.

In the following, we show how this embedding facilitates us to connect two ar-

bitrary graphs by a linear array. The main idea follows the proof of Theorem 3.3.

First we find a linear embedding σ of G1 (with L) and then we draw L on G2 (i.e.

find τ : L → G2), obtaining a mutual embedding π of G1 and G2. Similar to the

proof of Theorem 3.3, we find subgraphs Hi ⊂ G2, i = 1, 2, 3 with a proper bound-

ary diameter and Ω(n) vertices, such that L enters and leaves one subgraph Hi at

least once. W.l.o.g. assume H1 has a boundary that contains neither τ(1) nor τ(n),

and suppose p and q are the entry and exit points respectively. To apply the idea

in the proof of Theorem 3.3, we need to estimate the distance between π−1(p) and

π−1(q) on G1, which is determined by the mutual embedding of G1 and L. Although

the distance between τ−1(p) and τ−1(q) on L is lower bounded by the number of

nodes in H, which is Ω(n), the distance of π−1(p) and π−1(q) can be fairly small on

G1. Next, we define the k-th distortion of a linear-embedding which will be used to

estimate this distance.

Definition 4.2. Let L = (VL, EL) be a linear array, G = (VG, EG) be an arbitrary

graph and φ be a linear-embedding of G, where |VL| = |VG| = n. The k-th distortion,

λk(φ), of φ is defined as λk(φ) = mink≤dL(φ(u),φ(v))≤n
3
dG(u, v).

It is apparent that the |H|-th distortion of the linear-embedding of G1 is a lower

bound on the distance of π−1(p) and π−1(q) on G1. The following theorem formalizes

the above ideas.

Theorem 4.1. Let G1 and G2 be two arbitrary graphs with n nodes. If there exist

disjoint subgraphs Hi ⊂ G2, i = 1, 2, 3 such that

1550001-17

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

I. N. Bozkurt et al.

(i) n
c ≤ |Hi| ≤ n

3 , where c is a fixed constant,

(ii) D(∂G2(Hi)) ≤ b, and,

(iii) there exists a linear-embedding σ of G1, such that λn
c
(σ) ≥ γ, then

dG1→G2dG2→G1 = Ω(γb).

Proof. Let L be a linear array where the nodes are numbered from 1 to n and let

σ be a linear-embedding of G1 (with L). Any mutual embedding τ : L → G2 results

in a mutual embedding π = τ ◦ σ : G1 → G2. At least one of Hi ∈ G2, i = 1, 2, 3

contains neither τ(1) and τ(n). W.l.o.g. let’s assume H1 is that subgraph and τ(p)

and τ(q) are the entry and exit points of L in and out of H1.

First, we get an upper bound on the distance dG2(τ(p), τ(q)) and relate it with

dG1→G2 . Consider the node (p − 1) ∈ L, we have τ(p − 1) /∈ H1. Moreover,

dG1(σ
−1(p− 1), σ−1(p)) ≤ 2

since σ is a linear-embedding. Therefore,

dG1→G2 ≥ dG2(τ(p − 1), τ(p))

dG1(σ
−1(p− 1), σ−1(p))

≥ 1

2
dG2(τ(p), τ(p − 1)).

Consider the shortest path from τ(p − 1) to τ(p) on G2, it has to pass from the

boundary of H1. So we can find a vertex r ∈ ∂G2(H1) such that

dG2(τ(p), r) ≤ dG2(τ(p), τ(p − 1)) ≤ 2dG1→G2 .

Reasoning similarly for τ(q) we get

dG2(τ(q), s) ≤ 2dG1→G2 ,

where s ∈ ∂G2(H1) and the shortest path from τ(q) and τ(q + 1) passes from s.

Combining the above two inequalities, and adding dG2(r, s) to both sides, we get

dG2(τ(p), r) + dG2(τ(q), s) + dG2(r, s) ≤ 4dG1→G2 + dG2(r, s)

dG2(τ(p), τ(q)) ≤ 4dG1→G2 + b

dG2(τ(p), τ(q)) ≤ 4bdG1→G2 .

The last inequality holds even when b = 1 because then r = s and dG2(r, s) = 0.

Second, we obtain a lower bound on the distance of σ−1(p) and σ−1(q) on G1.

We know that dL(p, q) ≥ n
c since each node of H1 is mapped to a node of L between

p and q. With condition (iii) we have

dG1(σ
−1(p), σ−1(q)) ≥ λn

c
(σ) ≥ γ.

Combining the above two bounds, we get

dG2→G1 ≥ dG1(σ
−1(p), σ−1(q))

dG2(τ(p), τ(q))
≥ γ

4bdG1→G2

.

Hence, dG1→G2 .dG2→G1 ≥ γ
4b = Ω(γb).

1550001-18

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

Mutual Embeddings

Next, we present some examples to illustrate the power of the tri-embedding

technique introduced above.

Example 4.1. Mutual embedding between a two-dimensional square mesh and a

complete binary tree.

Let G1 be a mesh and G2 be a complete binary tree. The linear-embedding of the

mesh we adopt here is the one we introduced in Example 3.2, that is we embed the

line following from a corner of the mesh and follow a snake pattern. For the complete

binary tree we use as Hi the subtrees rooted at the four grandchildren of the root as

we did in Example 3.1. Hence for each Hi, we have |Hi| ≥ n
4 and D(∂G2(Hi)) ≤ 1.

We also have λn
4
≥

√
n
4 . Applying Theorem 4.1, we have the lower bound Ω(

√
n).

There is a mutual embedding reaching this lower bound. As we mentioned in

Example 3, Heckmann et al. showed how to embed complete binary trees into lines

and grids (two-dimensional meshes) with optimal dilation.13 Embedding of the tree

into the grid uses the algorithm for embedding into the line as a subroutine. De-

pending on the height of the tree being even or odd, subtrees of varying sizes are

embedded into rows and columns of the mesh. For details of this embedding the

interested reader may consult.13 The dilation of this embedding is Θ(
√
n/ log n).

Again, the edges of the grid are mapped to the unique paths in the tree, and since

the maximum path length is O(log n), the product of dilations is Θ(
√
n).

Example 4.2. Mutual embedding of a two-dimensional square mesh and a cycle.

Let G1 = C denote the cycle and let G2 = M denote the mesh. We use the following

linear-embedding of the cycle C: first embed a vertex in C into the left end of the

linear array L, and then embed consecutively all the vertices in C from left to right in

L. Clearly, we have λn
3
≥ n

3 in the cycle. In the mesh M , we find the same subgraphs

Hi as we did in Example 3.2. Hence we have |Hi| ≥ n
3 and D(∂M (Hi)) ≤ 2

√
n.

Applying Theorem 4.1, we have the lower bound Ω(
√
n). So, in this case the theorem

does not give us any new information since D(M) = 2
√
n and D(C) = n/2, and we

know that d2 ≥ D(C)
D(M) =

√
n
4 = Ω(

√
n) from Lemma 1.2.

It is not clear to us whether such a mutual embedding satisfying d1d2 = O(
√
n)

exists. We can easily embed the cycle into the mesh with dilation O(1), but in all

such examples we observed that d2 = Ω(n). Figure 5 shows two example mutual em-

beddings where d1 = O(1) and d2 = Ω(n). In both mutual embeddings, the cycle is

embedded into the mesh using a snake pattern, by tracing cycle edges consecutively.

We have d1 = 2 in the first example and d1 = 1 in the second example. However, in

both examples there is at least one mesh edge (shown inside an oval) which has to

travel roughly half of the cycle edges, resulting in d2 = Ω(n).

It is not difficult to find an embedding where d2 = O(
√
n) though. For example,

we can use the mutual embedding presented in Example 3.2 for linear arrays and

meshes, with only one change to account for the extra edge in the cycle. The end-

points of the extra cycle edge are mapped to opposite corners of the mesh in this

1550001-19

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

I. N. Bozkurt et al.

Fig. 5. Two example mutual embeddings between a two-dimensional mesh and a cycle.

1 2 . . .

√

n

√

n+ 1

.

.

.

n

3

3
√

n

2
√

n

.

.

.

n−

√

n

Fig. 6. A mutual embedding between a two-dimensional mesh and a cycle.

case, resulting in d1 = 2
√
n. As in Example 3.2, we have d2 = 2

√
n. Figure 6 shows

this mutual embedding, more precisely, how the cycle edges are mapped to mesh

edges. The mesh edges are mapped to the shortest paths in the cycle between the

nodes corresponding to the endpoints of mesh edges. Cycle’s node 1 and node n are

connected using the edges in the top row and leftmost column (the dashed arcs),

causing dilation 2
√
n. In Example 3.2, we had d1d2 = Ω(

√
n) for the linear array

and mesh. Yet, in this example too (at least when we use the same mutual embed-

ding), addition of one more edge and completing the cycle leads to an asymptotic

difference in the lower bound.

We conjecture that d1d2 = Ω(n) for the mesh and cycle, similar to the linear

array and cycle case. The examples in Figure 5 suggest a way of proving this result,

as the dilation of embedding the mesh to the cycle seems to be Ω(n) whenever

the cycle is embedded in the mesh with constant dilation. The investigation of this

claim either proves the conjecture or provides a counter-example. The cycle has to

be embedded into the mesh with constant dilation to reach the d1d2 = Ω(
√
n) bound

anyway (if our conjecture is false and it is possible to reach this lower bound) since

d2 = Ω(
√
n) from Lemma 1.2.

1550001-20

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

Mutual Embeddings

Example 4.3. Mutual embedding between a ladder and a cycle.

A ladder is a bi-partite graph defined on V = (XL,XR), where |XL| = |XR| = n
2 .

All the edges have the form (xL, xR), (xL, xR+1) or (xL+1, xR). The diameter of the

ladder is n
2 , exactly the same with a cycle. So a simple comparison of the diameters

gives a trivial lower bound 1.

Let G1 = C denote the cycle and let G2 = LD denote the ladder. For the ladder,

we define Hi, i = 1, 2, 3 as follows. Each Hi contains vertices {xL, xR : i−1
6 n + 1 ≤

xL, xR ≤ i
6n}. Therefore, we have |Hi| ≥ n

3 and D(∂(Hi)) ≤ 2. We also have λn
3
≥ n

3

in the cycle. Applying Theorem 4.1, we have the lower bound Ω(n).

The Ω(n) lower bound is tight as it is reached by the following mutual embedding.

First we embed 1L into a vertex in the cycle, and then we embed 2R, 3L, 4R, ... into

the cycle consecutively. We also embed 1R into the vertex in the cycle which is the

other neighbor of 1L, and then embed 2R, 3L, 4R, ... into the other side of the cycle

consecutively. In this way, dC→LD = 1, and dLD→C = n
2 as the edge (n4L,

n
4R

) is in

the ladder, and the distance of n
4L

and n
4R

in the cycle is n
2 .

5. Relationship with Distortion in Metric Space Embeddings

Most of the results we presented so far are about products of dilations in mutual

embeddings. On the surface, this quantity looks similar to the notion of distortion

in metric space embeddings. There, the aim is to find a low-distortion embedding

between two metric spaces (X,D) and (Y,D′) where X and Y are sets of points and

D and D′ are distance functions. The expansion (or stretch) e(f) of an embedding

f : X → Y is defined as

e(f) = max
x,y∈X,x 6=y

D′(f(x), f(y))
D(x, y)

.

Similarly, the contraction c(f) of f is defined as

c(f) = max
x,y∈X,x 6=y

D(x, y)

D′(f(x), f(y))
.

The distortion of the embedding is defined as the product of expansion and con-

traction, and it measures how much the distances change in the mapped space.

Scaling the distance functions do not change the distortion and the main interest

is to find a low-distortion embedding f with the non-contracting constraint, i.e.,

D′(f(x), f(y)) ≥ D(x, y) ∀x, y ∈ X.

The product of dilations in mutual embeddings seems similar to the distortion

of a metric space embedding, but, there are two key differences:

• We are only interested in the distances of images of adjacent vertices in the

graphs, not between the distances between the images of any two vertices of

the graph.

• There is no non-contracting constraint.

These differences may result in different asymptotic bounds for the same embedding

problem. For example, in Theorem 3.2 and Example 3.1 we showed that d1d2 =

1550001-21

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

I. N. Bozkurt et al.

Ω(n) for any mutual embedding between a complete binary tree and a linear array.

Following Example 3.1, we presented a mutual embedding reaching this lower bound,

using the embedding of complete binary trees into lines given by Heckmann et al.13

For the same graphs, the distortion lower bound is different in the metric space

embedding case. Kumamoto and Miyano showed that the optimal distortion of em-

bedding a complete binary tree into a line is Θ(n/ log n).18 Their proof is also based

on the proof of Heckmann et al. but because of the non-contracting constraint, the

vertices of the tree are not simply mapped to numbers 1 to n in the real line, they

are stretched further apart to meet the non-contracting constraint. Hence the ex-

pansion is not bounded by ⌈n/ log n⌉ as the dilation in the proof of Heckmann et al.

but bounded by a constant factor times ⌈n/ log n⌉. In contrast, the contraction is

bounded by 1 in the metric space embedding whereas the dilation of the mutual

embedding in the reverse direction is Θ(log n).

6. Mutual Embeddings Between Meshes

In this section we study mutual embeddings between meshes of different dimen-

sions. The problem of finding embeddings between meshes was studied by many

researchers.1,17,28,30 Aleliunas and Rosenberg showed how to embed a rectangular

grid into a square grid for various values of expansion and dilation, emphasizing

the trade-off between the two.1 Kosaraju and Atallah showed how to simulate one

mesh-connected processor array of arbitrary dimension with another with the help

of graph embeddings.17 The load in their embeddings is not 1, however, they proved

an asymptotic lower bound on the dilation of any embedding. Shen and Liang et al.

studied embeddings between two-dimensional meshes of the same size, and obtained

bounds on both congestion and dilation.30 The embeddings in this section have been

studied before by the mentioned authors and others, but we analyze them as mutual

embeddings. Even though some of the above mentioned works deal with embeddings

between graphs of different number of vertices, they include useful ideas such as fold-

ing and the snake pattern.

In Example 3.2 (Section 3), we presented an optimal mutual embedding between

a linear array and a two-dimensional square mesh. This construction easily gener-

alizes to mutual embeddings between linear arrays and higher dimensional meshes.

As an example, we show how to obtain a mutual embedding between a linear array

and a three-dimensional cubic mesh. Note that Rosenberg and Snyder showed that a

d-dimensional mesh can be embedded in a linear array with dilation Ω(n1−1/d)27 and

Kosaraju and Atallah’s lower bound is also a generalization of this specific result.17

Theorem 6.1. There is an optimal mutual embedding between a linear array (G1)

and a three-dimensional mesh (G2) where c1 = 1, d1 = 1, c2 = n2/3, and, d2 =

Θ(n2/3).

Proof. We can embed the linear array into the mesh with dilation and congestion

1 because the linear array is a subgraph of the three-dimensional mesh. The linear

1550001-22

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

Mutual Embeddings

array first snakes through one n1/3 × n1/3 level of the three-dimensional mesh, then

pops up to the next level, follows another snake pattern on that level and so on.

Bounds on c2 and d2 follow because the three-dimensional mesh edges on a single

level require congestion and dilation n1/3, but the n2/3 edges between two levels all

have the cross the same edge of the linear array. These edges cause congestion n2/3

and this is optimal since BW (3-d mesh)
BW (linear array) = n2/3. The dilation is also at least n2/3

–it is at most 2n2/3– because after the first node is visited at one level, the node at

the same position at the upper level can only be visited after we snake through all

the vertices in that level. The value of d2 is optimal (up to a constant factor), since
D(linear array)
D(3-d mesh) = n2/3.

It is easy to generalize Theorem 6.1 to other three-dimensional meshes besides

cubes.

Theorem 6.2. SupposeM is a three-dimensional mesh with dimensions n1 ≤ n2 ≤
n3. There is an optimal mutual embedding between a linear array L and M , where

cL→M = 1, dL→M = 1, cM→L = n1n2, and, dM→L = Θ(n1n2).

Proof. The proof is almost identical to the proof of Theorem 6.1, except that we

have to avoid the longest dimension in the snake pattern. The linear array first

snakes through one n1×n2 level of the three-dimensional mesh, then pops up to the

next level, follows another snake pattern on that level and so on. We have dL→M = 1

and cL→M = 1 since L is a subgraph of M . The n1n2 edges between two levels all

have the cross the same edge of the linear array. These edges cause congestion n1n2

and dilation Θ(n1n2).

Finding mutual embeddings between a square mesh and a cubic mesh is more

interesting. Let G1 be a
√
n × √

n two-dimensional mesh and let G2 be a n1/3 ×
n1/3 × n1/3 three-dimensional mesh.

Applying Theorem 4.1 we get d1d2 = Ω(n1/6). To see this let Hi be a n1/3 ×
n1/3× n1/3

3 sub-mesh of G2 for i = 1, 2, 3, s.t. H1∪H2∪H3 = G2. ThenD(∂G2(Hi)) ≤
3n1/3,∀ 1 ≤ i ≤ 3. For the linear-embedding σ of G1, let us choose the embedding

given in Example 3.2, where the linear array snakes through the square mesh. For

this linear-embedding, we have λn
3
(σ) ≥ 2

√
n. Therefore Theorem 4.1 yields d1d2 =

Ω(2
√
n

3n1/3) = Ω(n1/6). So the theorem does not provide any new information for this

mutual embedding; since we have d2 ≥ D(2-d mesh)
D(3-d mesh) =

√
n

n1/3 = n1/6 due to Lemma 1.2.

For the congestion, we have c2 ≥ BW (3-d mesh)
BW (2-d mesh) =

n2/3√
n

= n1/6.

There are several different embeddings of the three-dimensional mesh into the

two-dimensional mesh with congestion n1/6 and dilation Ω(n1/6), which is optimal

up to a constant factor. For example, suppose that we take each vertical column

in the three-dimensional mesh (n1/3 nodes), and collapse it down to an n1/6 × n1/6

square on the two-dimensional mesh, with the nodes in the column embedded in a

1550001-23

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

I. N. Bozkurt et al.

Fig. 7. Embedding of each column of a three-dimensional mesh into a square.

spiral pattern as shown in Figure 7. Each edge of the column is mapped to a single

edge inside the corresponding square as shown in the spiral pattern. In fact, this is

just another example of embedding a linear array into a mesh.

These squares tile the two-dimensional mesh. Each edge (u, v) between two nodes

u and v residing in adjacent columns is mapped to the shortest path between π(u)

and π(v) in the two-dimensional mesh, where π = VG2 → VG1 . Note that π(u) and

π(v) will be in adjacent squares. There are n1/3 rows and n1/3 columns of squares.

A column of the three-dimensional mesh with indices (i, j) will be mapped to the

square (i, j) in the two-dimensional mesh. Any two three-dimensional mesh edges

are within distance Ω(n1/6) in the two-dimensional mesh: if they lie in the same

vertical column of the three-dimensional mesh, then they lie in the same n1/6×n1/6

square on the two-dimensional mesh, and, any two edges between columns of the

three-dimensional mesh lie between nodes in adjacent squares of the two-dimensional

mesh. The congestion of this embedding is n1/6.

It is also not hard to see that the two-dimensional mesh is embedded in the

three-dimensional mesh with congestion n1/6 and dilation n1/6. Any two adjacent

two-dimensional mesh nodes are either embedded in the same vertical column of the

three-dimensional mesh at distance at most Ω(n1/6) because of the spiral pattern, or

embedded in adjacent vertical columns, but at distance at most n1/6. Any embedding

with dilation n1/6 that uses edges in only one dimension has congestion at most n1/6.

So, this mutual embedding has c1 = c2 = d1 = d2 = Ω(n1/6). However, it is an open

question whether this mutual embedding is optimal.

7. Mutual Embeddings Between Fat-Trees and Meshes

An interconnection network with n nodes and O(n) area is called area-universal if

it can simulate any network having O(n) area with O(log n) slowdown. The proof

that certain fat-tree networks21 are area-universal also provides a mutual embed-

ding between a fat-tree and a square mesh. For example, the area-universal fat-tree

described in Ref. 19 has n/ log2 n leaves, and attached to each leaf is a square mesh

with log2 n nodes. This fat-tree can be laid out in area O(n). With a little effort,

this layout can be converted into a mutual embedding between a 2n-node fat-tree

(where 2n includes the leaf nodes of the tree, the internal nodes, and the square

1550001-24

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

Mutual Embeddings

meshes) and a 2n-node square mesh. The embedding of the fat-tree in the mesh has

congestion O(1) and dilation O(
√
n), whereas the embedding of the mesh in the fat-

tree has dilation O(log n) and congestion O(log n). Note that by Lemma 1.2 there

is a lower bound of O(
√
n/ log n) on the dilation of the embedding of the fat-tree in

the mesh.

8. Conclusion and Future Directions

This paper has introduced the notion of mutual embeddings, and provided several

examples, along with some lower bounds. Perhaps the most surprising result is that

there are classes of graphs, such as linear arrays and cycles, where there are one-

way embeddings with constant congestion and dilation, but the product of dilations

is Ω(n) for every mutual embedding. One obvious direction for future work is to

discover better mutual embeddings for interesting classes of graphs. Another is to

improve our lower bound techniques. We presented techniques to prove bounds on

the product of the dilations; investigating techniques that provide lower bounds

on congestion, or lower bounds on, e.g., the products of congestion and dilation is

another direction for future work.

References

1. R. Aleliunas and A. L. Rosenberg. On embedding rectangular grids in square grids.

IEEE Transactions on Computers, 31(9):907–913, 1982.

2. Joshua Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-Ramanujan sparsi-

fiers. SIAM Journal on Computing, 41(6):1704–1721, 2012.

3. Marshall Bern, John R. Gilbert, Bruce Hendrickson, Nhat Nguyen, and Sivan Toledo.

Support-graph preconditioners. SIAM Journal on Matrix Analysis and Applications,

27(4):930–951, 2006.

4. Marcin Bienkowski, Miroslaw Korzeniowski, and Harald Räcke. A practical algorithm

for constructing oblivious routing schemes. In Proceedings of the Fifteenth Annual ACM

Symposium on Parallel Algorithms and Architectures, pages 24–33, 2003.

5. Erik G. Boman and Bruce Hendrickson. Support theory for preconditioning. SIAM

Journal on Matrix Analysis and Applications, 25(3):694–717, March 2003.

6. D. Chen and S. Toledo. Vaidya’s preconditioners: Implementation and experimental

study. Electronic Transactions on Numerical Analysis, 16:30–49, 2003.

7. F.R.K. Chung. Labelings of graphs. In L. Beineke and R. Wilson, editors, Selected

Topics in Graph Theory 3, pages 151–168. Academic Press, 1988.

8. M. R. Garey, R. L. Graham, D. S. Johnson, and D. E. Knuth. Complexity results for

bandwidth minimization. SIAM Journal on Applied Mathematics, 34(3):477–495, 1978.

9. F. Gavril. Some NP-complete problems on graphs. In Proceedings of the 11th Conference

on Information Sciences and Systems, pages 91–95, Baltimore, MD, USA, 1977. Johns

Hopkins University.

10. David S. Greenberg, Lenwood S. Heath, and Arnold L. Rosenberg. Optimal embeddings

of butterfly-like graphs in the hypercube. Mathematical systems theory, 23(1):61–77,

1990.

1550001-25

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

I. N. Bozkurt et al.

11. K. Gremban. Combinatorial Preconditioners for Sparse, Symmetric, Diagonally Domi-

nant Linear Systems. PhD thesis, Carnegie Mellon University, 1996. CMU-CS-96-123.

12. K. D. Gremban, G. L. Miller, and Marco Zagha. Performance evaluation of a new parallel

preconditioner. In Proceedings of the 9th International Parallel Processing Symposium,

pages 65–69, 1995.

13. Ralf Heckmann, Ralf Klasing, Burkhard Monien, and Walter Unger. Optimal embed-

ding of complete binary trees into lines and grids. Journal of Parallel and Distributed

Computing, 49(1):40–56, 1998.

14. Juraj Hromkovic, Vladimir Muller, Ondrej Sykora, and Imrich Vrto. On embedding

interconnection networks into rings of processors. In Daniel Etiemble and Jean-Claude

Syre, editors, PARLE ’92 Parallel Architectures and Languages Europe, volume 605 of

Lecture Notes in Computer Science, pages 51–62. Springer Berlin Heidelberg, 1992.

15. Richard R. Koch, F. T. Leighton, Bruce M. Maggs, Satish B. Rao, Arnold L. Rosenberg,

and Eric J. Schwabe. Work-preserving emulations of fixed-connection networks. Journal

of ACM, 44(1):104–147, 1997.

16. Petr Kolman and Christian Scheideler. Improved bounds for the unsplittable flow prob-

lem. Journal of Algorithms, 61(1):20–44, 2006.

17. S. Rao Kosaraju and Mikhail J. Atallah. Optimal simulations between mesh-connected

arrays of processors. Journal of ACM, 35(3):635–650, 1988.

18. Masao Kumamoto and Eiji Miyano. Optimal distortion embedding of complete binary

trees into lines. Information Processing Letters, 112(10):365–370, 2012.

19. F. T. Leighton, B. M. Maggs, A. G. Ranade, and S. B. Rao. Randomized routing and

sorting on fixed-connection networks. Journal of Algorithms, 17(1):157–205, 1994.

20. C. E. Leiserson. Area-efficient graph layouts. In Foundations of Computer Science,

1980., 21st Annual Symposium on, pages 270–281, Oct 1980.

21. Charles E. Leiserson. Fat-trees: Universal networks for hardware-efficient supercomput-

ing. IEEE Transactions on Computers, 34(10):892–901, Oct 1985.

22. Bruce M. Maggs, Gary L. Miller, Ojas Parekh, R. Ravi, and Shan Leung Maverick

Woo. Finding effective support-tree preconditioners. In Proceedings of the 17th ACM

Symposium on Parallelism in Algorithms and Architectures, pages 176–185, 2005.

23. Ch. H. Papadimitriou. The NP-completeness of the bandwidth minimization problem.

Journal of Computing, 16(3):263–270, 1976.

24. M. S. Paterson, W. L. Ruzzo, and L. Snyder. Bounds on minimax edge length for

complete binary trees. In Proceedings of the Thirteenth Annual ACM Symposium on

Theory of Computing, STOC ’81, pages 293–299, New York, NY, USA, 1981. ACM.

25. Richard Peng and Daniel A. Spielman. An efficient parallel solver for SDD linear sys-

tems. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,

STOC ’14, pages 333–342, New York, NY, USA, 2014. ACM.

26. H. Räcke. Minimizing congestion in general networks. In Proceedings of The 43rd Annual

IEEE Symposium on Foundations of Computer Science, pages 43–52, 2002.

27. Arnold L. Rosenberg and Lawrence Snyder. Bounds on the costs of data encodings.

Mathematical Systems Theory, 12(1):9–39, 1978.

28. M. Rottger and U.-P. Schroeder. Efficient embeddings of grids into grids. Discrete Ap-

plied Mathematics, 108(1-2):143–173, 2001. Workshop on Graph Theoretic Concepts in

Computer Science.

1550001-26

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

p
r
e
p
r
i
n
t

October 13, 2015 9:43

Mutual Embeddings

29. Milan Sekanina. On an ordering of the set of vertices of a connected graph. Publications

of the Faculty of Science, University of Brno, 412:137–142, 1960.

30. Xiaojun Shen, Weifa Liang, and Qing Hu. On embedding between 2D meshes of the

same size. IEEE Transactions on Computers, 46(8):880–889, 1997.

31. D. Spielman and S. Teng. Nearly linear time algorithms for preconditioning and solving

symmetric, diagonally dominant linear systems. SIAM Journal on Matrix Analysis and

Applications, 35(3):835–885, 2014.

1550001-27

