
Scheduling	Black-box	Muta5onal	Fuzzing	
ACM	CCS	2013	

Maverick	Woo	
Carnegie	Mellon	University	
pooh@cmu.edu	

Our	Crew	

2	

David	Brumley	Maverick	Woo	 Samantha	Gottlieb	Sang	Kil	Cha	

3	

The	Story	

Typical	Exploit	Genera5on	

Fuzzing	 Bug	Triage	 Exploit	
Generation	

4	

crashes	 bugs	

Bug	Finding	

5	

Scheduling	is	Equally	Important	

Ordering	

Time	
Allocation	

Scheduling	Black-box	Muta5onal	Fuzzing	

6	

Scheduling	Black-box	Muta5onal	Fuzzing	

A	common	program	testing	technique	popularized	by	
Miller	et	al.	in	late	1980s	[18]	
	

•  Use	a	fuzzer	to	generate	test	inputs	to	program-under-test	
•  At	its	simplest,	look	for	crashes—memory	corruption,	
uncaught	exceptions,	failed	assertions,	etc.	

7	

Fuzzer	

Crash	

Termi-
nation	

Program	Test	
Input	

Scheduling	Black-box	Muta5onal	Fuzzing	

A	black-box	fuzzer	observes	a	program’s	I/O	behavior	only	
•  cf.	Whitebox	Fuzzing	by	Godefroid	et	al.	2012	[11]	
•  SimpliSication:	only	distinguish	termination	vs.	crash	
	
	

8	

Fuzzer	

Crash	

Termi-
nation	

Program	Mutated	
Input	

Seed	
Input	

PRNG(j)	

Detect	anomaly	by	mutating	a	valid	input	(=	seed)	

Scheduling	Black-box	Muta5onal	Fuzzing	

A	black-box	fuzzer	observes	a	program’s	I/O	behavior	only	
•  cf.	Whitebox	Fuzzing	by	Godefroid	et	al.	2012	[11]	
•  SimpliSication:	only	distinguish	termination	vs.	crash	
	

Given	a	seed	input	s	and	a	mutation	ratio	r:	
1.  Select	d	=	r	×	|s|	bits	in	s	uniformly	at	random	
2.  Flip	each	selected	bit	with	probability	½	
	

9	

Fuzzer	

Crash	

Termi-
nation	

Program	Mutated	
Input	

Seed	
Input	

PRNG(j)	

Scheduling	Black-box	Muta5onal	Fuzzing	

Key	Observations:	
1.  We	can	reproduce	a	program	crash	by	storing	

(a)	the	seed	input	and	(b)	the	PRNG	seed	
2.  Mutation	=	uniform	sampling	from	the	Hamming	cube	of	

radius	d	centered	at	s	
	

10	

Fuzzer	

Crash	

Termi-
nation	

Program	Mutated	
Input	

Seed	
Input	

PRNG(j)	

Scheduling	Black-box	Muta5onal	Fuzzing	

Key	Observations:	
1.  We	can	reproduce	a	program	crash	by	storing	

(a)	the	seed	input	and	(b)	the	PRNG	seed	
2.  Mutation	=	uniform	sampling	from	the	Hamming	cube	of	

radius	d	centered	at	s	
	

11	

“Fuzz	ConBiguration”	

(i)  program	p	
(ii)  seed	input	s	
(iii) mutation	ratio	r	

Fuzzer	

Crash	

Termi-
nation	

Program	Mutated	
Input	

Seed	
Input	

PRNG(j)	

Scheduling	Black-box	Muta5onal	Fuzzing	

Key	Observations:	
1.  We	can	reproduce	a	program	crash	by	storing	

(a)	the	seed	input	and	(b)	the	PRNG	seed	
2.  Mutation	=	uniform	sampling	from	the	Hamming	cube	of	

radius	d	centered	at	s	
	

12	

“Fuzz	ConBiguration”	

(i)  program	p	
(ii)  seed	input	s	
(iii) 0.04%	

Fuzzer	

Crash	

Termi-
nation	

Program	Mutated	
Input	

Seed	
Input	

PRNG(j)	

Scheduling	Black-box	Muta5onal	Fuzzing	

Key	Observations:	
1.  We	can	reproduce	a	program	crash	by	storing	

(a)	the	seed	input	and	(b)	the	PRNG	seed	
2.  Mutation	=	uniform	sampling	from	the	Hamming	cube	of	

radius	d	centered	at	s	
	

13	

“Fuzz	ConBiguration”	
=	

“(program,	seed)	pair”	
in	this	talk	

Fuzzer	

Crash	

Termi-
nation	

Program	Mutated	
Input	

Seed	
Input	

PRNG(j)	

Scheduling	Black-box	Muta5onal	Fuzzing	

A	fuzz	campaign	comprises	a	sequence	of	epochs:	
1.  takes	a	list	of	(program,	seed)	pairs	as	input	
2.  at	the	beginning	of	each	epoch,	picks	one	(program,	seed)	

pair	to	fuzz	based	on	data	collected	from	previous	epochs	
	
We	investigate	two	epoch	types:	
•  Fixed-run:	Sixed	number	of	fuzz	runs	in	each	epoch	
–  implemented	in	CMU	CERT	BFF	v2.6	[14]	

•  Fixed-time:	Sixed	amount	of	time	in	each	epoch	
–  proposed	in	this	paper	
–  slightly	harder	to	implement	

14	

Problem	Statement	
Given	a	list	of	K	fuzz	conSigurations	{(p1,	s1),	.	.	.	,	(pK,	sK)},	the	
Fuzz	Con?iguration	Scheduling	(FCS)	problem	seeks	to	
maximize	the	number	of	unique	bugs	discovered	in	a	fuzz	
campaign	that	runs	for	a	duration	of	length	T.	
	
Important	Assumptions:	
1.  Only	one	conSiguration	can	be	fuzzed	within	an	epoch	
2.  Separate	program	analysis	of	(pi,	si)	is	not	allowed	
3.  Bugs	from	different	(pi,	si)	are	disjoint	

15	

See	paper	for	
discussions	

How	to	Solve	the	FCS	Problem?	
Two	competing	goals	during	a	fuzz	campaign:	
	
	
	
	
Good	News:	
•  Clearly	a	Multi-Armed	Bandit	(MAB)	problem!	

16	

vs.	

Explore	each	(pi,	si)	
sufSiciently	often	so	
as	to	identify	pairs	
that	can	yield	new	bugs	

Exploit	knowledge	of	
(pi,	si)	that	are	likely	
to	yield	new	bugs	

	by	fuzzing	them	more	

Mul5-Armed	Bandits	

17	

MAB	in	Berlin	

18	

How	to	Solve	the	FCS	Problem?	
Two	competing	goals	during	a	fuzz	campaign:	
	
	
	
	
Good	News:	
•  Clearly	a	Multi-Armed	Bandit	(MAB)	problem!	
•  Lots	of	published	MAB	algorithms	
–  provably	optimal	algorithms	for	many	settings,	e.g.,	
Auer	et	al.	2002	[2]	handles	certain	adversarial	cases	

19	

vs.	

Explore	each	(pi,	si)	
sufSiciently	often	so	
as	to	identify	pairs	
that	can	yield	new	bugs	

Exploit	knowledge	of	
(pi,	si)	that	are	likely	
to	yield	new	bugs	

	by	fuzzing	them	more	

How	to	Solve	the	FCS	Problem?	
Bad	News:	recognizing	“FCS	∈	MAB”	is	not	enough	
	

Given	a	list	of	K	fuzz	conSigurations	{(p1,	s1),	.	.	.	,	(pK,	sK)},	the	
Fuzz	Con?iguration	Scheduling	(FCS)	problem	seeks	to	
maximize	the	number	of	unique	bugs	discovered	in	a	fuzz	
campaign	that	runs	for	a	duration	of	length	T.	
	

1.  Classic	MAB:	once	you	identify	a	good	beer,	it	stays	good	
⇒	drink	it	often	to	accumulate	rewards	J	

2.  Our	Setting:	each	program	has	a	?inite	number	of	bugs	
⇒	bug	exhaustion	gives	a	diminish	of	return	L	

	

We	are	not	aware	of	MAB	algorithms	that	cater	to	our	case…	
⇒	We	need	our	own	algorithms!	

20	

How	to	Solve	the	FCS	Problem?	
Bad	News:	recognizing	“FCS	∈	MAB”	is	not	enough	
	

Given	a	list	of	K	fuzz	conSigurations	{(p1,	s1),	.	.	.	,	(pK,	sK)},	the	
Fuzz	Con?iguration	Scheduling	(FCS)	problem	seeks	to	
maximize	the	number	of	unique	bugs	discovered	in	a	fuzz	
campaign	that	runs	for	a	duration	of	length	T.	
	

1.  Classic	MAB:	once	you	identify	a	good	beer,	it	stays	good	
⇒	drink	it	often	to	accumulate	rewards	J	

2.  Our	Setting:	each	program	has	a	?inite	number	of	bugs	
⇒	bug	exhaustion	gives	a	diminish	of	return	L	

	

We	are	not	aware	of	MAB	algorithms	that	cater	to	our	case…	
⇒	We	need	our	own	algorithms!	

21	

Scheduling	Black-box	Muta5onal	Fuzzing	

Key	Observations:	
1.  We	can	reproduce	a	program	crash	by	storing	

(a)	the	seed	input	and	(b)	the	PRNG	seed	
2.  Mutation	=	uniform	sampling	from	the	Hamming	cube	of	

radius	d	centered	at	s	
	

22	

Fuzzer	

Crash	

Termi-
nation	

Program	Mutated	
Input	

Seed	
Input	

PRNG(j)	

Previously	

Modeling	Black-box	Muta5onal	Fuzzing	

Consider	the	repeated	fuzzings	of	a	?ixed	(pi,	si)	and	let	
outcomei(j)	denote	the	j-th	outcome	in	the	sequence:	
•  Termination	⇒	ID	0	
•  Crash	⇒	bug	ID	obtained	from	bug	triage	
	

Key	Observation:	
BMF	is	memoryless,	i.e.,	outcomei(j)	are	i.i.d.	RVs	for	a	Sixed	i	

23	

Fuzzer	

Crash	

Termi-
nation	

Program	Mutated	
Input	

Seed	
Input	

PRNG(j)	

Coupon	Collector’s	Problem	(CCP)	
Suppose	every	box	of	breakfast	cereal	comes	with	a	coupon	
that	is	randomly	chosen	among	M	different	coupon	types	
•  How	many	boxes	do	you	expect	to	buy	before	you	have	
collected	at	least	one	coupon	of	each	type?	

	

Traditional	Setting	
•  Coupon	types	are	uniformly	distributed	⇒	Θ(M	log	M)	

Our	Setting	
•  Bugs	do	not	occur	uniformly	at	random	⇒	Weighted	CCP	
•  Prevalence	of	different	bugs	is	unknown	ahead	of	time	

24	

Coupon	Collector’s	Problem	(CCP)	
Suppose	every	box	of	breakfast	cereal	comes	with	a	coupon	
that	is	randomly	chosen	among	M	different	coupon	types	
•  How	many	boxes	do	you	expect	to	buy	before	you	have	
collected	at	least	one	coupon	of	each	type?	

	

Traditional	Setting	
•  Coupon	types	are	uniformly	distributed	⇒	Θ(M	log	M)	

Our	Setting	
•  Bugs	do	not	occur	uniformly	at	random	⇒	Weighted	CCP	
•  Prevalence	of	different	bugs	is	unknown	ahead	of	time	

25	

Also	observed	by	
Arcuri	2010	[1]	

WCCP	w/	Unknown	is	Intractable	
No	Free	Lunch	Theorem	
(you	did	pay	the	registration,	right?)	

26	

vs.	…	 …	

WCCP	w/	Unknown	is	Intractable	
No	Free	Lunch	Theorem	
Wolpert	and	Macready	2005	on	[22]	

•  “Any	two	optimization	
algorithms	are	equivalent	when	their	performance	
is	averaged	across	all	possible	problems”	

	

27	

vs.	…	 …	

“Bring	Your	Own	Prior”	
No	Free	Lunch	Theorem	
Wolpert	and	Macready	2005	on	[22]	

•  “Any	two	optimization	
algorithms	are	equivalent	when	their	performance	
is	averaged	across	all	possible	problems”	

	

28	

vs.	…	 …	

Circumvention	may	be	possible!	
•  NFL	Theorem	does	not	apply	if	we	
focus	on	distributions	that	are	more	
likely	to	occur	in	practice	

•  More	accurate	model	⇒	More	
accurate	predictions	⇒	More	bugs	

Rule	of	Three					aaaa	
Q: 	Suppose	we	have	Slipped	a	biased	H-T	coin	n	times	and	
	every	time	it	comes	up	H.	Does	Pr[T]	have	to	be	small?	

A: 	No,	so	long	as	Pr[T]	<	1,	our	observation	is	always	possible	
	
ConBidence	Intervals:	
Pr[T]	<	3/n	in	95%	of	all	“parallel	universes”		
	
Usage:	
1.  Suppose	(pi,	si)	has	yielded	n	different	outcomes	so	far	
2.  Collectively	call	all	n	outcome	types	H	
3.  With	95%	conSidence,	Pr[T	(i.e.,	new	outcome)]	<	3/n	

29	

See	discussion	
in	Jovanovic	
1997	[15]	

Algorithm	Design	Space	
We	explore	3	dimensions	in	algorithm	design	and	present:	
•  2	Epoch	Types	
–  Sixed-run	
–  Sixed-time	

•  5	MAB	Algorithms	
–  Round-Robin	
–  Uniform-Random	
–  EXP3.S.1	from	Auer	et	al.	2002	[2]	
– Weighted-Random	
–  ε-Greedy	

•  5	Belief	Metrics	

30	

w.r.t.	belief	metrics	

2	*	(3	+	2	*	5)	=	
26	Scheduling	
Algorithms	

Belief	Metrics	
The	belief	over	(pi,	si)	is	a	heuristic	to	estimate	the	likelihood	
of	yielding	a	new	outcome	in	the	next	fuzz	run	of	this	pair	
•  Weighted-Random	&	ε-Greedy	both	bias	towards	pairs	with	
higher	belief	

	
	

	

31	

3	RGR	=	#bugs	

1	RPM	=	3/#runs	

2	EWT	=	3/time	spent	

4		DENSITY	=	#bugs/#runs	

5	RATE	=	#bugs/time	spent	

#runs	
time	spent	×	 #runs	

time	spent	×	

#bugs	
3	×	

#bugs	
3	×	

No	Prior	 With	“Bug	Prior”	

The	Evalua5on	Challenge	
1.  Find	large	&	representative	data	sets	
If	an	algorithm	performs	well	on	such	data	sets,	then	we	gain	
conSidence	that	it	is	superior	for	current	practice	

2.  How	good	is	an	algorithm,	really?	
Is	an	algorithm	that	Sinds	200	bugs	in	10	days	good	or	bad?	
⇒ 	Need	to	know	max	#bugs	that	can	be	found	in	10	days,	
	but	this	is	circular!	We	are	trying	to	solve	this	problem!	
		

3.		How	to	try	many	algorithms	affordably?	
Yes,	we	tried	way	more	than	26	combinations…	J	

32	

How	To	Pull	This	Off	

33	http://s3.amazonaws.com/rapgenius/Silepicker%2FgkTHRLQsyzS3MggKloYA_money.jpg	

How	To	Pull	This	Off	
Step	1.	Select	two	representative	datasets:	
	Intra-Program:	100	randomly-sampled	seeds	for	FFMPEG	
	Inter-Program:	100	Sile	converters	in	Debian	w/	valid	seeds	

	

Step	2.	Fuzz	each	of	the	200	pairs	on	EC2	for	10	days—	

	48,000	CPU	hours	(~5.5	CPU	years)	later:	
	
	
	
Step	3.	Build	the	FUZZSIM	replay	system	to	simulate	any	
	scheduling	algorithm	with	no	additional	fuzzings	

34	

FUZZSIM	Overview		

•  Example	log	entry:		
(p=FFMPEG,	s=a.avi,	timestamp=100,	run=42,	PRNG=17)	

•  Can	simulate	any	schedule	using	log	Siles	
–  Including	Of?line	Optimal	(≈	dynamic	prog.	for	BOUNDED	KNAPSACK)	

35	

36	

37	

Recommendation	1:	
Use	Weighted	

Random	w/	Rate	

38	

Recommendation	2:	
Use	Fixed-Time	
Campaigns	

Comparison	with	CERT	BFF	v2.6	
CERT	BFF	is	the	state-of-the-art	fuzzing	framework	
–  Supports	fuzzing	one	program	w/	multiple	seeds	
–  Varies	mutation	ratio	online	
–  Fixed-run	epochs	
– Weighted-Random	MAB	algorithm	
–  use	Density	(#bugs/#runs)	as	belief	

39	

Fixed-time	Weighted-Random	Rate	Sinds	
on	average	1.5x	more	bugs	in	our	datasets	

(at	a	Sixed	mutation	ratio)	

RPM

Density
RR
EWT

RGR
Rate

Offline

0

50

100

0 1 2 3 4 5 6 7 8 9 10
days

#
b
u
g
s

Intra:	FFMPEG	Dataset	

Density

RPM
RR
EWT
RGR
Rate

Offline

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10
days

#
b
u

g
s

Inter:	File	Converters	Dataset	

40	

where	does	
the	1.5x	Sit?	

Future	Work	
Vary	mutation	ratio	
•  m	mutation	ratios	⇒	m-fold	cost	increase	
	
Online	bug	triage	
•  triage	time	is	currently	being	discounted	
	
Other	program	testing	techniques	
•  black-box	generational	(grammar-based)	fuzzing?	
•  concolic	execution?	

41	

42	

Start	

MAB	

Not	Enough!	

Summary	

43	

Start	

MAB	

Not	Enough!	

WCCP	

Summary	

44	

Start	

MAB	

Not	Enough!	

WCCP	

NFL	

Summary	

45	

Start	

MAB	

Not	Enough!	

WCCP	

NFL	

Rule	of	Three	

Summary	

Summary	

46	

Start	

MAB	

Not	Enough!	

WCCP	

NFL	

Rule	of	Three	

Algorithm	
Design	

Summary	

47	

Start	

MAB	

Not	Enough!	

WCCP	

NFL	

Rule	of	Three	

Algorithm	
Design	

Open	
Science	

h^p://security.ece.cmu.edu/fuzzsim/	

48	

