
PORs: Proofs of Retrievability for Large Files

Ari Juels1 and Burton S. Kaliski Jr.2

1 RSA Laboratories
Bedford, MA, USA
ajuels@rsa.com

2 EMC Corporation
Hopkinton, MA, USA
kaliski burt@emc.com

Abstract. In this paper, we define and explore proofs of retrievability (PORs). A POR scheme
enables an archive or back-up service (prover) to produce a concise proof that a user (verifier)
can retrieve a target file F , that is, that the archive retains and reliably transmits file data
sufficient for the user to recover F in its entirety.
A POR may be viewed as a kind of cryptographic proof of knowledge (POK), but one specially
designed to handle a large file (or bitstring) F . We explore POR protocols here in which the
communication costs, number of memory accesses for the prover, and storage requirements of
the user (verifier) are small parameters essentially independent of the length of F . In addition
to proposing new, practical POR constructions, we explore implementation considerations and
optimizations that bear on previously explored, related schemes.
In a POR, unlike a POK, neither the prover nor the verifier need actually have knowledge
of F . PORs give rise to a new and unusual security definition whose formulation is another
contribution of our work.
We view PORs as an important tool for semi-trusted online archives. Existing cryptographic
techniques help users ensure the privacy and integrity of files they retrieve. It is also natural,
however, for users to want to verify that archives do not delete or modify files prior to retrieval.
The goal of a POR is to accomplish these checks without users having to download the files
themselves. A POR can also provide quality-of-service guarantees, i.e., show that a file is
retrievable within a certain time bound.

Key words: storage systems, storage security, proofs of retrievability, proofs of knowledge

1 Introduction

Several trends are opening up computing systems to new forms of outsourcing, that is, delegation
of computing services to outside entities. Improving network bandwidth and reliability are reducing
user reliance on local resources. Energy and labor costs as well as computing-system complexity are
militating toward the centralized administration of hardware. Increasingly, users employ software
and data that reside thousands of miles away on machines that they themselves do not own. Grid
computing, the harnessing of disparate machines into a unified computing platform, has played a role
in scientific computing for some years. Similarly, software as a service (SaaS)— loosely a throwback
to terminal/mainframe computing architectures—is now a pillar in the internet-technology strategies
of major companies.

Storage is no exception to the outsourcing trend. Online data-backup services abound for con-
sumers and enterprises alike. Amazon Simple Storage Service (S3) [1], for example, offers an ab-
stracted online-storage interface, allowing programmers to access data objects through web-service
calls, with fees metered in gigabyte-months and data-transfer amounts. Researchers have investigated
alternative service models, such as peer-to-peer data archiving [12].

As users and enterprises come to rely on diverse sets of data repositories, with variability in
service guarantees and underlying hardware integrity, they will require new forms of assurance of

the integrity and accessibility of their data. Simple replication offers one avenue to higher-assurance
data archiving, but at often unnecessarily and unsustainably high expense. (Indeed, a recent IDC
report suggests that data-generation is outpacing storage availability [14].) Protocols like Rabin’s
data-dispersion scheme [33] are more efficient: They share data across multiple repositories with
minimum redundancy, and ensure the availability of the data given the integrity of a quorum (k-
out-of-n) of repositories. Such protocols, however, do not provide assurances about the state of
individual repositories—a shortcoming that limits the assurance the protocols can provide to relying
parties.

In this paper, we develop a new cryptographic building block known as a proof of retrievability
(POR). A POR enables a user (verifier) to determine that an archive (prover) “possesses” a file or
data object F . More precisely, a successfully executed POR assures a verifier that the prover presents
a protocol interface through which the verifier can retrieve F in its entirety. Of course, a prover can
refuse to release F even after successfully participating in a POR. A POR, however, provides the
strongest possible assurance of file retrievability barring changes in prover behavior.

As we demonstrate in this paper, a POR can be efficient enough to provide regular checks of
file retrievability. Consequently, as a general tool, a POR can complement and strengthen any of a
variety of archiving architectures, including those that involve data dispersion.

1.1 A first approach

To illustrate the basic idea and operation of a POR, it is worth considering a straightforward design
involving a keyed hash function hκ(F). In this scheme, prior to archiving a file F , the verifier
computes and stores a hash value r = hκ(F) along with secret, random key κ. To check that the
prover possesses F , the verifier releases κ and asks the prover to compute and return r. Provided
that h is resistant to second-preimage attacks, this simple protocol provides a strong proof that the
prover knows F . By storing multiple hash values over different keys, the verifier can initiate multiple,
independent checks.

This keyed-hash approach, however, has an important drawback: High resource costs. The keyed-
hash protocol requires that the verifier store a number of hash values linear in the number of checks
it is to perform. This characteristic conflicts with the aim of enabling the verifier to offload its storage
burden. More significantly, each protocol invocation requires that the prover process the entire file
F . For large F , even a computationally lightweight operation like hashing can be highly burdensome.
Furthermore, it requires that the prover read the entire file for every proof—a significant overhead
for an archive whose intended load is only an occasional read per file, were every file to be tested
frequently.

1.2 Our approach

We introduce a POR protocol in which the verifier stores only a single cryptographic key—irrespective
of the size and number of the files whose retrievability it seeks to verify—as well as a small amount
of dynamic state (some tens of bits) for each file. (One simple variant of our protocol allows for the
storage of no dynamic state, but yields weaker security.) More strikingly, and somewhat counterin-
tuitively, our scheme requires that the prover access only a small portion of a (large) file F in the
course of a POR. In fact, the portion of F “touched” by the prover is essentially independent of the
length of F and would, in a typical parameterization, include just hundreds or thousands of data
blocks.

Briefly, our POR protocol encrypts F and randomly embeds a set of randomly-valued check
blocks called sentinels. The use of encryption here renders the sentinels indistinguishable from other
file blocks. The verifier challenges the prover by specifying the positions of a collection of sentinels
and asking the prover to return the associated sentinel values. If the prover has modified or deleted
a substantial portion of F , then with high probability it will also have suppressed a number of
sentinels. It is therefore unlikely to respond correctly to the verifier. To protect against corruption

by the prover of a small portion of F , we also employ error-correcting codes. We let F̃ refer to the
full, encoded file stored with the prover.

A drawback of our proposed POR scheme is the preprocessing / encoding of F required prior
to storage with the prover. This step imposes some computational overhead—beyond that of simple
encryption or hashing—as well as larger storage requirements on the prover. The sentinels may
constitute a small fraction of the encoded F̃ (typically, say, 2%); the error-coding imposes the
bulk of the storage overhead. For large files and practical protocol parameterizations, however, the
associated expansion factor |F̃ |/|F | can be fairly modest, e.g., 15%.

Fig. 1. Schematic of a POR system. An encoding algorithm transforms a raw file F into an encoded file F̃
to be stored with the prover / archive. A key generation algorithm produces a key κ stored by the verifier
and used in encoding. (The key κ is independent of F in some PORs, as in our main scheme.) The verifier
performs a challenge-response protocol with the prover to check that the verifier can retrieve F .

To illustrate the intuition behind our POR protocol a little better, we give two brief example
scenarios.

Example 1. Suppose that the prover, on receiving an encoded file F̃ , corrupts three randomly selected
bits, β1, β2, β3. These bits are unlikely to reside in sentinels, which constitute a small fraction of F̃ .
Thus, the verifier will probably not detect the corruption through POR execution. Thanks to the
error-correction present in F̃ , however, the verifier can recover the original file F completely intact.

Example 2. Suppose conversely that the prover corrupts many blocks in F̃ , e.g., 20% of the file. In
this case (absent very heavy error-coding), the verifier is unlikely to be able to recover the original file
F . On the other hand, every sentinel that the verifier requests in a POR will detect the corruption
with probability about 1/5. By requesting hundreds of sentinels, the verifier can detect the corruption
with overwhelming probability.

We additionally consider schemes based on the use of message-authentication codes (MACs)
applied to (selected) file blocks. The principle is much the same as in our sentinel-based scheme.
The verifier performs spot-checks on elements of F̃ . Error-coding ensures that if a sizeable fraction
of F̃ is uncorrupted and available, as demonstrated by spot-checks, then the verifier can recover F
with high probability.

1.3 Related work

Data-integrity protection is one of the fundamental goals of cryptography. Primitives such as digital
signatures and message-authentication codes (MACs), when applied to a full file F , allow an entity
in possession of F to verify that it has not been subjected to tampering.

A more challenging problem is to enable verification of the integrity of F without explicit knowl-
edge of the full file. The problem was first described in broad generality by Blum et al. [8], who
explored the task of efficiently checking the correctness of a memory-management program. Follow-
on work has explored the problem of dynamic memory-checking in a range of settings. In recent work,
for instance, Clarke et al. [11] consider the case of a trusted entity with a small amount of state,
e.g., a trusted computing module, verifying the integrity of arbitrary blocks of untrusted, external,
dynamically-changing memory. Their constructions employ a Merkle hash-tree over the contents of
this memory, an approach with fruitful application elsewhere in the literature. In this paper, with
our exploration of PORs, we focus on memory-integrity checking in the special case of a static file.

In networked storage environments, cryptographic file systems (CFSs) are the most common
tool for system-level file-integrity assurance (see, e.g., [22] for a good, recent survey). In a CFS,
one entity, referred to as a security provider, manages the encryption and/or integrity-protection of
files in untrusted storage providers. The security provider may be either co-located with a physical
storage device or architected as a virtual file system.

Cryptographic integrity assurance allows an entity to detect unauthorized modifications to por-
tions of files upon their retrieval. Such integrity assurance in its basic form does not enable the
detection of modification or deletion of files prior to their retrieval or on an ongoing basis. It is this
higher degree of assurance that a POR aims to provide.

A POR permits detection of tampering or deletion of a remotely located file—or relegation of the
file to storage with uncertain service quality. A POR does not by itself, however, protect against loss
of file contents. File robustness requires some form of storage redundancy and, in the face of potential
system failures, demands the distribution of a file across multiple systems. A substantial literature,
e.g., [4,?,?], explores the problem of robust storage in a security model involving a collection of servers
exhibiting Byzantine behavior. The goal is simulation of a trusted read/write memory register, as
in the abstraction of Lamport [24]. In such distributed models, the robustness guarantees on the
simulated memory register depend upon a quorum of honest servers.

While many storage systems operating in the Byzantine-failure model rely on storage duplication,
an important recent thread of research involves the use of information dispersal [33] and error-coding
to reduce the degree of file redundancy required to achieve robustness guarantees, as in [10]. Similarly,
we use error-correction in our main POR construction to bound the effects of faults in a storage
archive in our constructions.

Although a POR only aims at detection of file corruption or loss, and not prevention, it can work
hand-in-hand with techniques for file robustness. For example, a user may choose to disperse a file
across multiple service providers. By executing PORs with these providers, the user can detect faults
or lapses in service quality. She can accordingly re-distribute her file across providers to strengthen
its robustness and availability. In peer-to-peer environments, where service quality may be unreliable,
such dynamic reallocation of resources can be particularly important.

As we explain in detail in section 2, a POR is loosely speaking a kind of proof of knowledge
(POK) [5] conducted between a prover and a verifier on a file F . A proof of knowledge serves to
demonstrate knowledge by the prover of some short secret y that satisfies a predicate specified by
the verifier. Generally, as in an authentication protocol, the essential design property of a POK is to
preserve the secrecy of y, i.e., not to reveal information about y to the verifier. The concept of zero-
knowledge [17, 18] captures this requirement in a strict, formal sense. In a POR, the design challenge
is different. The verifier has potentially already learned the value F whose knowledge the prover is
demonstrating (as the verifier may have encoded the file to begin with). Since F is potentially quite
large, the main challenge is to prove knowledge of F (or information from which F can be recovered)
using computational and communication costs substantially smaller than |F |.

PORs are akin to other unorthodox cryptographic proof systems in the literature, such as proofs
of computational ability [40] and proofs of work (POWs) [21]. Memory-bound POWs [13] are similar
to the use of PORs for quality-of-service verification in that both types of proof aim to characterize
memory use in terms of the latency of the storage employed by the prover. Very close in spirit
to a POR is a construction of Golle, Jarecki, and Mironov [19], who investigate “storage-enforcing
commitment schemes.” Their schemes enable a prover to demonstrate that it is making use of storage
space at least |F |. The prover does not prove directly that it is storing file F , but proves that it is
has committed sufficient resources to do so.

The use of sentinels in our main scheme is similar is spirit to a number of other systems that
rely on the embedding of secret check values in files, such as the “ringers” used in [20]. There the
check values are easily verifiable computational tasks that provide evidence for the correct processing
of accompanying tasks. PORs bear an important operational difference in that they involve “spot
checks” or auditing, that is, the prover is challenged to reveal check values in isolation from the
rest of the file. The distinguishing feature of the POR protocols we propose here is the way that
they amplify the effectiveness of spot-checking for the special case of file-verification by combining
cryptographic hiding of sentinels with error-correction.

The earliest POR-like protocol of which we are aware is one proposed by Lillibridge et al. [25].
Their goal differs somewhat from ours in that they look to achieve assurance of the availability of a
file that is distributed across a set of servers in a peer relationship. To ensure that a file is intact,
Lillibridge et al. propose application of error-coding to a file combined with spot-checks of file blocks
conducted by system peers. Their approach assumes separate MACs on each block and does not
directly address error-correction for the single-server case, , and the paper does not establish formal
definitions or bounds on the verification procedure.

A more theoretical result of relevance is that of Naor and Rothblum (NR) [31]. They show that the
existence of a sub-linear-size proof of file recoverability implies the existence of one-way functions.1

NR propose a protocol in which an error-correcting code is applied to a file F and blocks are then
MACed. By checking the integrity of a random subset of blocks, a verifier can obtain assurance
that the file as a whole is subject to recovery. NR also provide a simple, formal security definition
and prove security bounds on their construction. The NR security definition is similar to our formal
POR definition and more general, but is asymptotic, rather than concrete. Thus, in their proposed
scheme, NR consider encoding of an entire file as a single codeword in an error-correcting code. Such
encoding is inefficient in practice, but yields good theoretical properties. For our purposes, the NR
definition also omits some important elements. It assumes that the verifier has direct access to the
encoded file F̃ , in essence that F̃ is a fixed, published string. Thus the definition does not cover
the case of a server that reports file blocks in F̃ inconsistently: In essence, the NR definition does
not define an extractor for F . Additionally, the NR definition does not capture the possibility of a
proof that relies on functional combination of file blocks, rather than direct reporting of file blocks.
(We consider a POR scheme here, for instance, in which sentinels are XORed or hashed together to
reduce bandwidth.)

More recent work has considered the application of RSA-based hashing as a tool for constructing
proofs of recoverability. Filho and Barreto [16], for example, propose a scheme that makes indirect
use of a homomorphic RSA-based hash introduced by Shamir [34], briefly as follows. Let N be an
RSA modulus. The verifier stores k = F mod φ(N) for file F (suitably represented as an integer).
To challenge the prover to demonstrate retrievability of F , the verifier transmits a random element
g ∈ ZN . The prover returns s = gF mod N , and the verifier checks that gk mod N = s. This
protocol has the drawback of requiring the prover to exponentiate over the entire file F . In work
contemporaneous with our paper here, Ateniese et al. [3] have considered an elegant application
of RSA-based hashing to individual file blocks. In their scheme, homomorphic composition of file-

1 Note that our sentinel-based POR scheme interestingly does not require one-way functions, as sentinels
may be randomly generated. The contradiction stems from the fact that our scheme requires a key with
size linear in the number of protocol executions.

block check-values supports spot-checking of files and yields short proofs. As it relies on modular
exponentiation over files, their approach is computationally intensive, and also relies on a somewhat
lightly explored “knowledge-of-exponent” hardness assumption [6] adapted to the RSA setting. Their
security definition hinges on the prover providing correct check values to the verifier, rather than
directly characterizing bounds on file retrievability.

Shah et al. [37] also very recently proposed methods for auditing storage services. In their
approach, a third-party auditor verifies a storage provider’s possession of an encrypted file via a
challenge-response MAC over the full (encrypted) file; the auditor also verifies the storage provider’s
possession of a previously committed decryption key via a conventional proof-of-knowledge protocol.
This result is noteworthy for its detailed discussion of the role of auditing in a storage system, but
again does not offer a formal security model.

1.4 Our contribution

We view our main contribution as threefold. First, we offer a formal, concrete security definition of
PORs that we believe to be of general interest and applicability in practical settings. Second, we
introduce a sentinel-based POR scheme with several interesting properties: Of theoretical signifi-
cance, the data in sentinels, and thus the resulting PORs, can be made independent of the stored
file; a strong proof can be very compact (on the order of 32 bytes in practice, with some caveats);
the scheme supports hierarchical proofs; and the computational requirements for the prover and
verifier are minimal. Our sentinel scheme highlights the benefits of pre-determined verifier queries
in a POR—counterbalanced by a bound on the total number of such queries. We explore variations
on our basic POR scheme with different sets of tradeoffs. As a final contribution, we offer concrete
analysis, practical design guidance, and optimizations of general interest in POR construction.

Organization

In section 2, we introduce a formal definition of a POR, and explain how this definition differs from
the standard cryptographic view of proofs of knowledge. We introduce our main POR scheme in
section 3, briefly discuss its security, and describe several variants. We describe the adaptation and
application of our POR scheme to the problem of secure archiving and quality-of-service checking
in section 4. We conclude in section 5 with a brief discussion of future research directions. We prove
our main theorem in appendix A.

2 Definitions

2.1 Standard proof-of-knowledge definitions and PORs

Bellare and Goldreich (BG) established a standard, widely referenced definition of proofs of knowl-
edge in [5]. Their definition centers on a binary relation R ⊆ {0, 1}∗× {0, 1}∗.

A language LR = {x : ∃ y s.t. (x, y) ∈ R} is defined as the set of values x that induce valid
relations. The set R(x) = {y : (x, y) ∈ R} defines the witnesses associated with a given x. Typically,
relations of interest are polynomial, meaning that the bitlength |y| of any witness is polynomial in
|x|.

In the BG view, a proof of knowledge is a two-party protocol involving a prover P and a verifier
V . Each player is a probabilistic, interactive function. The BG definition supposes that P and V
share a common string x. A transcript includes the sequence of outputs of both players in a given
interaction.

The BG definition relies upon an additional function, an extractor algorithm K that also takes x
as input and has oracle access to P . Additionally, V has an associated error function κ(x), essentially
the probability that V accepts transcripts generated by a prover P that does not actually know (or

use its knowledge of) a witness for x. For every prover P , let p(x) be the probability that on input
x, prover P induces a set of transcripts that V accepts.

Briefly, then, in the BG definition, a poly-time verifier V characterizes a proof of knowledge if the
following holds: There exists a polynomial f(x) such that for all sufficiently large |x|, for every prover
P , the extractor K outputs a witness y ∈ R(x) in expected time bounded by f(x)/(p(x) − κ(x)).
(The BG definition also has a non-triviality requirement: There must exist a legitimate prover P ,
i.e., a prover that causes V to accept with probability 1 for any x ∈ LR.)

Intuitively, the BG definition states that if prover P can convince verifier V that x ∈ LR, then
P “knows” a witness y. The stronger P ’s ability to convince a verifier, the more efficiently a witness
y can be extracted from P .

While very broad, the BG definition does not naturally capture the properties of POR protocols,
which have several distinctive characteristics:

1. No common string x: In a POR, P and V may not share any common string x: P may merely
have knowledge of some file F , while V possesses secret keys for verifying its ability to retrieve
F from P and also for actually performing the retrieval.

2. No natural relation R: Since a POR aims to prove that the file F is subject to recovery from
P , it would seem necessary to treat F as a witness, i.e., to let y = F , since F is precisely what
we would like to extract. In this case, however, if we regard x as the input available to V , we
find that there is no appropriate functional relation R(x, y) over which to define a POR: In fact,
x may be perfectly independent of F .

3. Split verifier/extractor knowledge: It is useful in our POR protocols to isolate the ability
to verify from the ability to extract. Thus, K may take a secret input unknown to either P or
V .

As we show, these peculiarities of PORs give rise to a security definition rather different than
for ordinary POKs.

2.2 Defining a POR system

A POR system PORSYS comprises the six functions defined below. The function respond is the only
one executed by the prover P . All others are executed by the verifier V . For a given verifier invocation
in a POR system, it is intended that the set of verifier-executed functions share and implicitly modify
some persistent state α. In other words, α represents the state of a given invocation of V ; we assume
α is initially null. We let π denote the full collection of system parameters. The only parameter
we explicitly require for our system and security definitions is a security parameter j. (In practice,
as will be seen in our main scheme in section 3, it is convenient for π also to include parameters
specifying the length, formatting, and encoding of files, as well as challenge/response sizes.) On any
failure, e.g., an invalid input or processing failure, we assume that a function outputs the special
symbol ⊥.

keygen[π]→ κ: The function keygen generates a secret key κ. (In a generalization of our protocol to
a public-key setting, κ may be a public/private key pair. Additionally, for purposes of provability
and privilege separation, we may choose to decompose κ into multiple keys.)

encode(F ; κ, α)[π]→ (F̃η, η): The function encode generates a file handle η that is unique to a given
verifier invocation. The function also transforms F into an (enlarged) file F̃η and outputs the pair
(F̃η, η).

Where appropriate, for a given invocation of verifier V , we let Fη denote the (unique) file whose
input to encode has yielded handle η. Where this value is not well defined, i.e., where no call by
verifier V to encode has yielded handle η, we let Fη

def= ⊥.

extract(η; κ, α)[π] → F : The function extract is an interactive one that governs the extraction by
verifier V of a file from a prover P . In particular, extract determines a sequence of challenges that
V sends to P , and processes the resulting responses. If successful, the function recovers and outputs
Fη.

challenge(η; κ, α)[π]→ c. The function challenge takes secret key κ and a handle and accompanying
state as input, along with system parameters. The function outputs a challenge value c for the file
η.

respond(c, η)→ r. The function respond is used by the prover P to generate a response to a challenge
c. Note that in a POR system, a challenge c may originate either with challenge or extract.

verify((r, η); κ, α)→ b ∈ {0, 1}. The function verify determines whether r represents a valid response
to challenge c. The challenge c does not constitute explicit input in our model; it is implied by η
and the verifier state α. The function outputs a ‘1’ bit if verification succeeds, and ‘0’ otherwise.

2.3 POR security definition

We define the security of a POR protocol in terms of an experiment in which the adversary A plays
the role of the prover P . Let us first give some preliminary explanation and intuition.

Definition overview The adversary A consists of two parts, A(“setup”) and A(“respond”). The
component A(“setup”) may interact arbitrarily with the verifier; it may create files and cause the
verifier to encode and extract them; it may also obtain challenges from the verifier. The purpose
of A(“setup”) is to create an archive on a special file Fη∗ . This archive is embodied as the second
component, A(“respond”). It is with A(“respond”) that the verifier executes the POR and attempts
to retrieve Fη∗ .

In our model, an archive—whether honest or adversarial—performs only one function. It receives
a challenge c and returns a response r. An honest archive returns the correct response for file F̃η; an
adversary may or may not do so. This challenge/response mechanism serves both as the foundation
for proving retrievability in a POR and as the interface by which the function extract recovers a
file Fη. In the normal course of operation, extract submits a sequence of challenges c1, c2, c3 . . . to
an archive, reconstructs F̃η from the corresponding responses, and then decodes F̃η to obtain the
original file Fη.

In our security definition, we regard A(“respond”) as a stateless entity. (That is, its state does not
change after responding to a challenge, it has no “memory.”) On any given challenge c, A(“respond”)
returns the correct response with some probability; otherwise, it returns an incorrect response ac-
cording to some fixed probability distribution. These probabilities may be different from challenge
to challenge, but because of our assumption that A(“respond”) is stateless, the probabilities re-
main fixed for any given challenge value. Put another way, A(“respond”) may be viewed as set of
probability distributions over challenge values c.

It may seem at first that the assumption of statelessness in A(“respond”) is too strong. In
practice, after all, since an extractor must send many more queries than a verifier, a stateful adversary
can distinguish between the two. Thus, by assuming that A(“respond”) is stateless, our definition
discounts the (quite real) possibility of a malicious archive that responds correctly to a verifier, but
fails to respond to an extractor. Such a stateful adversary responds correctly to challenges but still
fails to release a file.

We believe, however, that our POR definition is among the strongest possible in a real-world
operational environment and that it captures a range of useful, practical assurances. There is in fact
no meaningful way to define a POR without assuming some form of restriction on adversarial behav-
ior. As we have explained, unless the POR protocol is indistinguishable from extract, a Byzantine

adversary can always fail when it detects an extraction attempt. Thus, the most appropriate secu-
rity definition seems to be one that characterizes the ability of a verifier to extract a file Fη from a
“snapshot,” i.e., from the full (and, by assumption, unchanging) state of A(“respond”). The verifier
effectively is able to “rewind” the adversary as desired during execution to preserve the adversary’s
lack of state. In a real-world environment, this ability corresponds to access to a memory dump or
backup tape for an adversarial server.

For some applications, our modeling of A(“respond”) may actually be too strong. For example,
if the purpose of a POR is to ensure availability or quality-of-service in an archive, then there may
be no reason to assume the possibility of adversarial corruption of a file. An adversary’s only real
economic incentive may be to minimize its storage cost, i.e., to delete file blocks or relegate them to
slow storage. Our POR security definition may be modified to meet this weaker requirement, and
we consider such an “erasing” adversary later in the paper. Our concern here, however, is to create
a foundational definition with broad real-world applicability.

Briefly, our security definition involves a game in which the adversary A seeks to “cheat” a
verifier V . A tries to create an environment in which V believes that it will be able to retrieve a
given file Fη∗ with overwhelming probability, yet cannot. Thus the aim of A(“setup”) is to induce
a verifier state α and create state (δ, η∗) in A(“respond”) such that: (1) V accepts responses from
A(“respond”) to challenges with high probability and (2) V fails with non-negligible probability to
retrieve Fη∗ from A(“respond”) on invoking extract.

Definition details We let Oencode, Oextract, Ochallenge, and Overify represent oracles respectively for
functions encode, extract, challenge, verify in a single invocation of verifier V . These oracles take κ
and α as implicit inputs, i.e., inputs not furnished by (or revealed to) the adversary. Additionally,
these oracles may modify state α, which is initially null. We denote by the symbol ‘·’ those input
values that the adversary has the freedom to specify in its oracle calls.

We let ‘*’ designate protocol values created by A in the course of our experiment. We let δ denote
adversarial state—in particular, the state information passed from A(“setup”) to A(“respond”). As
above, we let π denote the parameter set for a POR system PORSYS. Where appropriate for brevity,
however, we drop π from our notation.

In our first experiment Expsetup, the adversary A(“setup”) is permitted to interact arbitrarily
with system oracles. At the end of the experiment A(“setup”) specifies a file handle η∗ and state δ
as input to the adversarial function
A(“respond”) for the next experiment.

Experiment Expsetup
A,PORSYS[π]

κ← keygen(j); α← φ; % generate key, initialize oracle state

(δ, η∗)←AO(“setup”); % accessing O, A creates archive

output (α, δ, η∗) % output full oracle and archive states

In our next experiment, the adversarial archive A(“respond”) responds to a challenge issued by the
verifier. The adversary is deemed successful if it generates a response accepted by the verifier.

Experiment Expchal
A,PORSYS(α, δ, η∗)[π]

c∗ ←Ochallenge(η∗; κ, α); % issue “challenge”

r∗ ←A(δ, c∗)(“respond”); % adversary outputs response

β ←Overify((r∗, η∗); κ, α); % verify adversarial response

output β % output ‘1’ if response correct,

otherwise ‘0’

We define Succchal
A,PORSYS(α, δ, η∗)[π] = pr

[
Expchal

A,PORSYS(α, δ, η∗)[π] = 1
]
, i.e., the probability that

the adversarial archive succeeds in causing the verifier to accept.
Given these experiment specifications, we now specify our definition of security for a POR. Our

definition aims to capture a key intuitive notion: That an adversary with high probability of success
in Expchal must “possess” Fη∗ in a form that may be retrieved by the verifier, i.e., by an entity
with knowledge of κ and α. By analogy with security definitions for standard proofs of knowledge,
we rely on the extractor function extract. One special feature of a POR systems is that extract is
not just a component of our security proof. As we have already seen, it is also a normal component
of the POR system. (For this reason, A actually has oracle access to extract in Expsetup.) A priori,
A(“respond”) cannot distinguish between challenges issued by challenge and those issued by extract.

In our security definition, the function extract is presumed to have oracle access toA(δ, ·)(“respond”).
In other words, it can execute the adversarial archive on arbitrary challenges. Since A is cast simply
as a function, we can think of extract as having the ability to rewind A. The idea is that the file Fη∗

is retrievable from A if extract can recover it. The respond function of the adversary is the interface
by which extract recovers F .

We thus define

Succextract
A,PORSYS(α, δ, η∗)[π] = pr

[
F = Fη∗

∣∣ F ← extractA(δ,·)(“respond”)(η∗; κ, α)[π]
]
.

Let a poly-time algorithm A be one whose running time is bounded by a polynomial in security
parameter j. Our main security definition is as follows.

Definition 1. A poly-time POR system PORSYS[π] is a (ρ, λ)-valid proof of retrievability (POR)
if for all poly-time A and for some ζ negligible in security parameter j,

pr
[Succextract

A,PORSYS(α, δ, η∗) < 1− ζ,

Succchal
A,PORSYS(α, δ, η∗) ≥ λ

∣∣∣ (α, δ, η∗)
← Expsetup

A,PORSYS

]
≤ ρ.

At an intuitive level, our definition establishes an upper bound ρ on the probability thatA(“setup”)
generates a “bad” environment—i.e., a “bad” adversarial archive (δ, η∗) in A(“respond”) and sys-
tem state α in the verifier. We regard an environment as “bad” if the verifier accepts adversarial
responses with probability at least λ, but extraction nonetheless fails with non-negligible probability
ζ. Note that we treat ζ asymptotically in our definition for simplicity: This treatment eliminates the
need to consider ζ as a concrete parameter in our analyses.

Remarks

– We can also define a (ρ, λ)-valid proof of retrievability for an erasing adversary. Such an adversary
is only permitted to reply to a challenge with either a correct response or a null one. In section 4,
we consider an important practical setting for this variant.

– In our security definition, the adversary can make an arbitrary number of oracle calls in the
setup phase of the experiment, prior to the challenge phase. Thus the adversary can “condition”
the archive as desired, causing the verifier, for instance to issue an arbitrary number of queries
prior to the challenge phase. In our sentinel-based POR protocol, if all sentinels are consumed
prior to the challenge phase, then Ochallenge emits the special ⊥, and the adversary fails to return
a correct response. In this way, we model a bound t on the number of challenges our POR can
support. An alternative approach is to define a (ρ, λ, t)-valid proof of retrievability, in which the
adversary must make fewer than t calls to Ochallenge. Most of the protocols we propose in this
paper have bounded t, but POR schemes with unbounded t are desirable, of course.

– Note that we do not give A oracle access in Expchal. This is a simplifying assumption: We rule
out the possibility of A learning additional information from the verifier beyond what it may

have already learned in Expsetup. In Expchal, we are only testing the ability to retrieve a file at a
given point in time, after any corruptions or deletions have already occurred. Prior challenges are
formally considered part of the setup when evaluating the bounds on the current challenge. The
impact of additional oracle access during the challenge phase itself is worth further exploration.

3 Sentinel-Based POR Scheme

Our main POR scheme of interest is the sentinel-based one described in the introduction. Before
giving details, we outline the general protocol structure.

Setup phase: The verifier V encrypts the file F . It then embeds sentinels in random positions in
F , sentinels being randomly constructed check values. Let F̃ denote the file F with its embedded
sentinels.

Verification phase: To ensure that the archive has retained F , V specifies the positions of some
sentinels in F̃ and asks the archive to return the corresponding sentinel values.

Security: Because F is encrypted and the sentinels are randomly valued, the archive cannot
feasibly distinguish a priori between sentinels and portions of the original file F . Thus we achieve
the following property: If the archive deletes or modifies a substantial, ε-fraction of F̃ , it will with
high probability also change roughly an ε-fraction of sentinels. Provided that the verifier V requests
and verifies enough sentinels, V can detect whether the archive has erased or altered a substantial
fraction of F̃ . (Individual sentinels are, however, only one-time verifiable.)

In practice, a verifier wants to ensure against change to any portion of the file F . Even a single
missing or flipped bit can represent a semantically significant corruption. Thus, detection of ε-fraction
modification alone is insufficient. With a simple improvement, however, we can ensure that even if
the archive does change an ε-fraction (for arbitrarily large ε), the verifier can still recover its file.
Very simply, before planting sentinels in the file F , the user applies an error-correcting code that
tolerates corruption (or erasure, if appropriate) of an ε-fraction of data blocks in F̃ . The verifier also
permutes the file to ensure that the symbols of the (encrypted) code are randomly dispersed, and
therefore that their positions are unknown to the archive.

We emphasize one strongly counterintuitive aspect of our POR scheme: The sentinels, which con-
stitute the content of a POR proof, are generated independently of the bitstring whose retrievability
they are proving. By contrast, as explained above, in an ordinary proof of knowledge (POK), the
content of a proof depends on the values that are the subject of the proof, i.e., the witness.

3.1 Sentinel scheme details

We now describe our sentinel-based POR, which we call Sentinel-PORSYS[π].
We employ an l-bit block as the basic unit of storage in our scheme. We employ an error-correcting

code that operates over l-bit symbols, a cipher that operates on l-bit blocks, and sentinels of l bits
in length. While not required for our scheme, this choice of uniform parameterization has the benefit
of conceptual simplicity. It is also viable in practice, as we demonstrate in our example parameter
selections in section 3.4. We also assume for simplicity the use of an efficient (n, k, d)-error correcting
code with even-valued d, and thus the ability to correct up to d/2 errors.

Suppose that the file F comprises b blocks, F [1], . . ., F [b]. (We assume that b is a multiple of k,
a coding parameter. In practice, we can pad out F if needed.) We also assume throughout that F
contains a message-authentication code (MAC) value that allows the verifier to determine during
retrieval if it has recovered F correctly.

The function encode entails four steps:

1. Error correction: We carve our file F into k-block “chunks.” To each chunk we apply an
(n, k, d)-error correcting code C over GF [2l]. This operation expands each chunk into n blocks
and therefore yields a file F ′ = F ′[1], . . . , F ′[b′], with b′ = bn/k blocks.

2. Encryption: We apply a symmetric-key cipher E to F ′, yielding file F ′′. Our protocols require
the ability to decrypt data blocks in isolation, as our aim is to recover F even when the archive
deletes or corrupts blocks. Thus we require that the cipher E operate independently on plaintext
blocks. One option is to use a l-bit block cipher. In this case, we require indistinguishability under
a chosen-plaintext attack; it would be undesirable, for example, if an adversary in a position to
influence F were able to distinguish the data contents of blocks.2 In practice, an appropriate
choice of cipher E would be a tweakable block cipher [27] such as XEX [35]. A second option is
to employ a stream cipher E. On decryption, portions of the keystream corresponding to missing
blocks may simply be discarded.

3. Sentinel creation: Let f : {0, 1}j × {0, 1}∗ → {0, 1}l be a suitable one-way function. We
compute a set of s sentinels {aw}sw=1 as aw = f(κ, w). We append these sentinels to F ′′, yielding
F ′′′. (Thus, we can accommodate up to bs/qc challenges, each with q queries.)

4. Permutation: Let g : {0, 1}j×{1, . . . , b′+s} → {1, . . . , b′+s} be a pseudorandom permutation
(PRP) [28]. We apply g to permute the blocks of F ′′′, yielding the output file F̃ . In particular,
we let F̃ [i] = F ′′′[g(κ, i)].

The function extract requests as many blocks of F̃ as possible. It then reverses the operations of
encode. In particular, it permutes the ciphertext blocks under g−1, strips away sentinels, decrypts,
then applies error correction as needed to recover the original file F . Note that if the code C is
systematic, i.e., a code word consists of the message followed by error-correction data, then error-
correcting decoding is unnecessary when the archive provides an intact file.

To bolster the success probability of extract against probabilistic adversaries, i.e., adversaries that
do not respond deterministically to a given challenge value, we do the following. If simple recovery
fails, then extract makes an additional γ − 1 queries for each block and performs majority decoding
over the resulting responses. Given sufficiently large γ, this approach recovers a given block with high
probability provided that the adversary outputs a correct response for each block with probability
non-negligibly greater than 1/2. (We assume the probabilities for each block are independent, as
further discussed in appendix A.)

The function challenge takes as input state variable σ, a counter initially set to 1. It outputs
the position of the σth sentinel by reference to g, i.e., it outputs p = g(b′ + σ) and increments σ;
it repeats this process q times, i.e., generates positions for q different sentinels. The prover function
respond takes as input a single challenge consisting of a set of q positions, determines the values
of the q corresponding blocks (sentinels in this case), and returns the values. (See section 3.5 for
some simple bandwidth optimizations.) The function verify works in the obvious manner, taking a
challenge pair (σ, d) as input and verifying that the prover has returned the correct corresponding
sentinel values.3

Purpose of the permutation step: The permutation step in our protocol serves two purposes.
First, it randomizes the placement of sentinels such that they can be located in constant time and
storage; only the sentinel generation key need be stored.

The second purpose relates to error correction. In principle, we could treat our entire file as a
single message in an error-correcting code with a large minimum distance, e.g., a Reed-Solomon
code. In practice, however, such coding can be challenging—even for erasure-coding. (See [15] on a
recent effort to scale a Tornado code to large block sizes.) It is for this reason that we carve our file
F into chunks. It is important to disperse the constituent blocks of these chunks in a secret, random
manner. An adversary with knowledge of the location in F̃ of the blocks belonging to a particular
chunk could excise the chunk without touching any sentinels, thereby defeating our POR scheme.

2 In the case of re-use of a file-encryption key, which we deprecate here, it might be necessary to enforce
security against chosen ciphertext attacks.

3 Of course, it is possible for the verifier to pick σ at random from {1, . . . , s}, rather than storing it as a
counter value. In this case, by the Birthday Paradox, the power of the verifier degrades as the number of
used sentinels approaches

√
s.

While pseudorandom-permutation primitives are most often designed to operate over bitstrings,
and thus power-of-two-sized domains, Black and Rogaway [7] describe simple and efficient pseudorandom-
permutation constructions over domains Zk for arbitrary integers k. Their constructions are suitable
for use in our POR scheme.

3.2 Security

We summarize our security results here; a formal analysis of the security of Sentinel-PORSYS[π] may
be found in appendix A. Let C = b′/n be the number of constituent chunks (which include data, not
sentinels). We define ε to be an upper bound on the fraction of data blocks and previously unused
sentinels corrupted by the adversary. The total number of such blocks is at most b′+s, and decreases
over time as sentinels are consumed in verifier challenges. As may be expected, the security of our
POR system depends on q, the number of sentinels per challenge, not the total number of available
sentinels. (The total number of challenges depends, of course, on the total number of sentinels.)

We make a “block isolation” assumption in appendix A—an extension of the general statelessness
assumption —such that the probability distribution of responses to individual queries (i.e., blocks)
are independent of one another.

In a simplified model that assumes ideal properties for our underlying cryptographic primitives
(with little impact on practical parameterization), and under our block-isolation assumption, we
prove the following:

Theorem 1. Suppose that γ ≥ 24(j ln 2 + ln b′). For all ε ∈ (0, 1) such that µ < d/2 where µ =
nε(b′ + s)/(b′ − ε(b′ + s)), Sentinel-PORSYS[π] is a (ρ, λ)-valid POR for ρ ≥ Ce(d/2−µ)(d/2µ)−d/2

and λ ≥ (1− ε/4)q.

As a technical aspect of our proof, we consider a block to be “corrupted” if A(“respond”) returns
it correctly with probability less than 3/4. (The constant 3/4 is arbitrary; our proofs work for any
constant greater than 1/2, with changes to the constants in our theorem.) Recall that our security
definition for a POR treats the extraction probability 1 − ζ in an asymptotic sense for the sake of
simplicity. We analyze γ—the number of queries made by extract on a given block—accordingly.
Given the lower bound γ ≥ (j ln 2 + ln b′), we can show that the verifier recovers all uncorrupted
blocks from A(“respond”) with overwhelming probability.4

The value ρ bounds the probability of more than d/2 corruptions in any chunk.
Our bound for λ simply reflects the probability of an adversary successfully returning q sentinels

when it has corrupted an ε-fraction of blocks.

3.3 POR efficiency

Of course, application of an error-correcting (or erasure) code and insertion of sentinels enlarges
F̃ beyond the original size of the file F . The expansion induced by our POR protocol, however,
can be restricted to a modest percentage of the size of F . Importantly, the communication and
computational costs of our protocol are low. As we mention below, the verifier can transmit a short
(e.g., 128-bit) seed constituting a challenge over an arbitrary number of sentinels; the verifier can
similarly achieve a high level of assurance on receiving a relatively compact (e.g., 256-bit) proof from
the archive.

Perhaps the most resource-intensive part of our protocols in practice is the permutation step:
This operation requires a large number of random accesses, which can be slow for a file stored on disk
(but less so for random-access memory). Our POR construction requires only a single permutation
pass, however, and it is possible in some measure to batch file accesses, that is, to precompute a
4 Since extract needs to perform multiple queries only in the presumably rare case of a file-retrieval failure

against a probabilistic adversary, we can make γ large if necessary in most practical settings, as when an
adversarial archive is taken offline and “rewound” to extract block values.

sequence of accesses and partition them into localized groups as in batch sorting. Such detailed
questions of system efficiency lie outside the scope of our investigation here.

3.4 An example parameterization

A block size of l = 128 is one natural choice; 128 bits is the size of an AES block and yields sentinels
of sufficient size to protect against brute-force sentinel-guessing attacks. Let us consider use of the
common (255, 223, 32)-Reed-Solomon code over GF [28], i.e., with one-byte symbols. By means of the
standard technique of “striping” (see, e.g., [9]), we can obtain a (255, 223, 32)-code over GF [2128],
i.e., over file blocks, which is convenient for our parameterization in this example. A chunk consists
then of n = 255 blocks.

Let us consider a file F with b = 227 blocks, i.e., a 2-gigabyte file. This file expands by just over
14% under error-coding to a size of b′ = 153, 477, 870. Suppose that we add s = 1, 000, 000 sentinels.
Thus the total number of blocks to be stored is b′ + s = 154, 477, 870, the total number of blocks in
the file F̃ . The total file expansion is around 15%.

Consider ε = 0.005, i.e., an adversary that has corrupted 1/2% of the data blocks and unused
sentinels in F̃ . Now C = b′/n = 601, 874, and µ = nε(b′ + s)/(b′ − ε(b′ + s)) ≈ 1.29. (Recall
µ is an upper bound on the mean number of corrupted blocks per chunk.) By Theorem 1, ρ ≥
Ce(d/2−µ)(d/2µ)−d/2 ≈ 601, 874×e14.71(12.41)−16 ≈ 4.7×10−6. In other words, the probability that
the adversary renders the file unretrievable5 —which is bounded above by the minimum ρ for this
ε—is less than 1 in 200,000.

Suppose that we let q = 1, 000, i.e., the verifier queries 1,000 sentinels with each challenge. Since
the total number of sentinels is s = 1, 000, 000, the verifier can make 1,000 challenges over the life of
the file (a challenge per day for about three years). The probability of detecting adversarial corruption
of the file —which is bounded below by the maximum 1−λ for this ε—is at least 1−(1−ε/4)q ≈ 71.3%
per challenge. This is not overwhelmingly large, of course, but probably suffices for most purposes,
as detection of file-corruption is a cumulative process. A mere 12 challenges, for instance, provides
detection-failure probability of less than 1 in 1,000,000.

Of course, for larger ε, the probability of file corruption is higher, but so too is that of detection
by the verifier. We also believe that the bounds in our main theorem can be tightened through a
more detailed proof.

3.5 Variant protocols

While we rely on our basic sentinel scheme as a conceptual starting point, there are a number of
attractive variant protocols. We explore some of them here, giving brief overviews without accom-
panying formalism.

Erasure codes and erasing adversaries As we explain in section 4, in our envisaged real-world
applications, the major concern is with erasing adversaries, rather than general ones. Moreover, we
can appeal to erasure codes which are more efficient as a class than general error-correcting codes.

Modern erasure codes, e.g., fountain codes such as Raptor codes [2], operate in linear time and
are amenable in some cases to practical application to fairly large files or file segments without any
need for chunking [15]. Additionally, it is possible (if not generally practical) to treat a full file as
a single message in an error-correcting code with large minimum distance. In such cases, we can
obtain considerably tighter bounds on the security of our POR system.

Consider a system Sentinel-PORSYS[π] that is: (1) Implemented against an erasing adversary
without chunking using an erasure code with minimum distance d + 1 or (2) Implemented against a
fully capable adversary using an error-correcting code with minimum distance 2d and no chunking.
5 We assume negligible ζ in this example. It may be seen, for instance, that γ = 1800 yields a majority-

decoding failure probability ζ < 2−80.

In both cases, if ε ≤ d/(b′+s), then the file F is fully recoverable. Additionally, we make the following
observation (whose proof follows straightforwardly from the analysis underlying our main theorem):

Observation 1 Suppose that ε ≤ d/b′. Then Sentinel-PORSYS[π] is a (ρ, λ)-valid POR for ρ ≥ 0
and λ ≥ (1− ε/4)q in the cases just noted.

Erasure codes such as fountain codes by themselves, however, do not provide robust guarantees
over an adversarial channel. Their strong resilience bounds apply only to erasures in a stochastic
channel. Thus, to achieve the bounds given here in a POR, our encoding steps of encryption and
permutation are still essential.6 These steps effectively reduce an adversarial channel to a stochastic
one. Additionally, for very large files, application of a fountain code across the entire file can be
challenging, as such codes typically require repeated random accesses across the full file. Thus,
chunking may still be desirable, and permutation can then provide enhanced resilience by eliminating
chunk structure.

When file blocks are MACed, it is effectively possible to convert an erasure code into an error-
correcting code. The decoding process simply discards corrupted blocks.

Bandwidth optimizations There are two types of bandwidth optimizations to consider:

Prover-to-verifier optimizations can reduce the size of the response transmitted by an archive to a
verifier. In our basic sentinel POR, the archive can compress a sequence a1, . . . , aq of sentinels prior
to transmission. One possibility is to hash them. While a useful heuristic, this approach introduces
a problem: Without relying on a random oracle assumption, and/or assuming the oracle embodied
in some trusted device, e.g., a TPM or remote server, it is unclear how to construct an efficient
corresponding extract function.

Another appealing approach is for the archive to compute an XOR value, α = ⊕q
i=1ai. This

response format alone does not give rise to an efficient and robust extract function. Instead, it is
helpful for the archive to transmit a second value α′, an XOR over a random subset of {a1, . . . , aq}
designated by the verifier. For the sake of efficiency, the verifier can specify this subset by means of
a pseudorandom seed β. The function extract can thereby recover each data block by rewinding the
archive and challenging it repeatedly with different values of β, for each set of block locations.

An interesting feature of XORing is that it can be employed for compression in a hierarchical
POR setting. Suppose that an archive breaks F̃ into pieces and distributes the pieces among a
collection of subordinate archives. On receiving a set of challenges, the primary archive can parcel
them out appropriately to the subordinates. Each subordinate can return an XOR of its respective
responses, which the primary archive itself can then XOR together as its response to the verifier.
This process is transparent to the verifier and can operate recursively over a tree of archives.

Verifier-to-prover optimizations can reduce the size of the challenge transmitted by a verifier to
an archive.

Rather than transmitting its ith challenge as a sequence of sentinel positions Wi = {wi,1, . . . , wi,q},
the verifier could potentially transmit a pseudorandom seed κsentpos,i from Wi is derived. The seed
κsentpos,i itself can be derived from a master seed κsentpos.

However, if sentinels are appended and permuted, as in our basic scheme, then it is not directly
possible for the prover to derive Wi from κsentposi: The secret permutation g will disperse sentinels
such that the prover cannot locate them. Instead, we can modify our scheme so that either (a) the
sentinels are inserted into the designated positions after permutation or (b) the sentinels are written
over the contents of the file in those positions. The former involves a serial merge operation; the

6 Even though fountain codes can be keyed to operate over pseudorandomly selected file blocks, permutation
still imparts stronger erasure resilience. That is because the code structure can be exploited by an adversary
to delete pseudorandom seeds accompanying packets, without erasing other packet elements. Thus it is
helpful to remove such local structure.

latter can be done in parallel, and thanks to the error-coding of the file, the overwriting can later
be corrected (with appropriate adjustments to the parameters to accommodate the s additional
“errors”).

Turning data blocks into sentinels A particularly attractive variant scheme, given its minimal
prover storage, is one in which data blocks effectively play the role of sentinels. When the file is
encoded—as a last encoding step, for instance—the ith challenge is prepared as follows. A series
of (pseudo)random data-block positions Wi = {wi,1, . . . , wi,q} is selected. A MAC Mi is computed
over the corresponding data blocks αi = {ai,1, . . . , ai,q} using verifier key κMAC . The value Mi is
stored with the file. A challenge takes the form of the set of positions Wi, and the position of Mi (if
not known to the prover). The prover returns the pair (αi, Mi), which the verifier may check quite
inexpensively.

As an alternative, the verifier may store an encrypted version of the MAC, and send the MAC
key to the prover for evaluation as in previous challenge-response schemes, except that here a subset
of blocks is MACed.

In contrast to our basic sentinel scheme, which requires tq extra blocks of storage to support
t queries, each over q sentinels, this “data-to-sentinels” scheme requires only O(t) extra blocks of
storage. With our proposed optimizations, challenges and responses may comprise just a small,
constant number of data blocks.

Authenticated blocks All of the variants described above, as with our basic sentinel protocol, rely
on challenge precomputation. They consequently “use up” challenges, and allow for only a bounded
number t of challenge/response invocations. Using MACs, however, along the lines of the NR and
Lillibridge et al. protocols, we can effectively eliminate this bound.

Building on our basic POR protocol, we might omit the sentinel insertion step from Sentinel-PORSYS,
and add the following, final step after permutation. We partition the file F̃ into sequentially indexed
segments of v blocks for appropriate parameter v (say, 5). To each segment we append a MAC under
key κ of the contents of the blocks within the segment, the segment index, and the file handle. For
the purposes here, the bit-length of a MAC can be small, e.g., 20 bits, since it is the aggregate effect
on multiple blocks that is being measured. Thus, the resulting file expansion need not be prohibitive.
For example, with 20-byte blocks, v = 5, and 20-bit MACs, the incremental file expansion due to
MACing would be only 2.5%. As applied to our setting in Example 3.4, for instance, the total file
expansion would be 16.5%, as opposed to 15% as parameterized in that example for sentinels.

This is essentially an adaptation of the NR / Lillibridge et al. schemes to our basic POR protocol
structure. The steps of encryption and permutation—not present in the basic form of those schemes—
play an important practical role. Given the need for chunking in our error-correcting code, these two
operations hide local structure. In fact, though, even without the need for chunking, concealment of
local structure still amplifies the robustness of the scheme. As an adversary cannot feasibly identify
a single MACed segment, it is forced to spread corruptions or erasures uniformly over segments,
increasing the probability of verifier detection. (Segment positions are revealed by verifier queries,
but this causes only a gradual degradation in detection probability.)

This MAC-based approach is quite efficient in terms of file-expansion overhead, computational
costs, and bandwidth. It has an important drawback, though: It does not permit the prover to
return a digest of its responses, i.e., to hash or XOR them together. The MAC-based variant does
have the interesting feature of permitting a model in which challenges derive from a (fresh) common
reference string or public source of randomness. (Another possible but less efficient way to verify the
correctness of file blocks is use of a Merkle tree in which each segment corresponds to a leaf, and
the verifier stores the root.)

PIR schemes Another variant on Sentinel-PORSYS that allows for an unbounded number of queries
involves the use of private information retrieval (PIR) [23]. In explicitly requesting the value of a

sentinel from the prover, the verifier discloses the location of the sentinel. A PIR scheme, in contrast,
permits a verifier to retrieve a portion of a file F̃ from a prover without disclosing what it has
retrieved. Thus, by retrieving sentinels using PIR, the verifier can re-use sentinels, i.e., let q = s,
with no effective degradation in security.

While capable of communication costs of O(log2(|F̃ |)) per retrieved sentinel bit [26], PIR schemes
require access to all of F̃ and carry high computational costs. Recent work suggests that PIR schemes
may be no more efficient in practice than transferring all of F̃ [39].

4 Practical Application to Storage Services

We now describe an application of our POR scheme to an archive service provided by a Storage
Service Provider (SSP). Multiple service levels may be offered, corresponding to different storage
“tiers” (disks of varying speeds, tape, etc.) or a combination (see, e.g., [38]). An SSP and a client
typically operate under a service level agreement (SLA) specifying properties such as throughput,
response time, availability, and recovery-time objectives [32]. We consider primarily the case where
the SSP stores the file (or perhaps a share of it, as in [25]), but the client itself does not retain a
copy; if the client did, it could just verify retrievability by sampling and comparing random blocks
against its own copy, without the need for the POR per se.

The price of the service is set by the SSP at some profit margin above the cost of providing the
service at a given level (equipment, maintenance, staff, facilities, etc.). An SSP is thus motivated
legitimately to increase its profit margin by reducing cost while maintaining the same service level;
in a competitive marketplace this will ultimately reduce the price, which is a benefit to clients as
well. (Indeed, one of the reasons for outsourcing to an SSP is the client’s belief that the SSP can
reduce the cost more effectively than the client alone.)

Internet Service Providers (ISPs) and Application Service Providers (ASPs) follow a similar
economic model, but with an important difference. An ISP or ASP’s service levels are effectively
tested continuously by clients for most functions as a part of their regular interactions with the
services. An SSP’s service levels, on the other hand, particularly for its retrieval service, are only
tested when that function is actually run, which in general is infrequent. Furthermore, retrieval is
the very reason for which the client is paying for service levels: The client does not (in general) pay
a higher price to have archive data stored faster, but rather to ensure that it can be accessed faster.

Without a requirement to provide continuous service level assurances, an SSP may also be willing
to take the risk of decreasing its cost by not maintaining an agreed service level. For instance, an
SSP may move files it considers less likely to be accessed to a lower tier of storage than agreed. These
lapses are exacerbated by the possibility that the SSP may itself rely on other SSPs to store files
or parts of them. For instance, to meet an agreed availability level, an SSP may replicate data on
geographically distributed sites, perhaps employing information dispersal techniques as suggested
in section 1.3. Some of these sites may be operated by other SSPs, who in turn may have their
own motivations to reduce cost, legitimate or otherwise. If a site knows that its occasional outage
will be overlooked (indeed, planned for) due to the presence of its replication peers, it may opt to
increase its frequency of “outages” by placing a fraction of files on lower tiers—or not storing them
at all. (This is akin to the “freeloading” threat described by Lillibridge et al. for peer-to-peer storage
systems.)

Another reason a malicious SSP may corrupt or delete certain files (or portions of them) is their
content. Encryption partially mitigates this threat since an SSP does not directly know the content
of encrypted files, but it may still be possible for other parties to inform the SSP by back channels of
which files to “misplace,” or to cause the misplacement themselves by physical attack. E-discovery
of documents is one scenario motivating these concerns.

Equipment failures and configuration errors may also result in file placement that does not meet
an SLA; the breach of agreement may simply be due to negligence, not malice.

One way for a client to obtain assurance that a file can be accessed at a given service level, of
course, is for the client actually to access the file from time to time. Indeed, file access would be part
of a typical “fire drill” operation for disaster recovery testing. If randomly chosen files are accessible
at a given service level, then it is reasonable to assume that other files will be accessible as well.
However, the highest assurance for a specific file requires access to the file itself.

We envision that a POR scheme would be applied to a storage service as follows. As part of its
SLA, an SSP would offer periodic, unannounced execution of a POR for selected files. In the POR,
a block would be considered to be an erasure if it cannot be read within the agreed response time
(after accounting for variations in network latency, etc.). The client, taking the role of verifier, would
thereby obtain (probabilistic) assurance that the agreed service level continues to be met for the
file. If the SSP is trusted to provide file integrity, then an erasure code would be sufficient for error
correction.

A POR scheme can also be applied by a third party to obtain assurance that files are accessible
(as also observed in [37]). For instance, an auditor may wish to verify that an SSP is meeting its
SLAs. To ensure that the POR corresponds to a file actually submitted for storage, the auditor
would rely on the client to provide a storage “receipt” including the keys the verification operations.
(The key for decrypting the file need not be provided—thus enforcing privilege separation between
the auditor and the client.) As another example, one party’s legal counsel may wish to verify that an
archive stored at an SSP correctly corresponds to a document manifest submitted by another party.
The separation of encryption and verification enables the legal counsel (and the court) to verify
that the other party has met a requirement to archive a collection of files, without yet learning the
content of those files—and, due to the POR, without having to access every block in every file.

5 Conclusion

Thanks to its basis in symmetric-key cryptography and efficient error-coding, we believe that our
sentinel-based POR protocol is amenable to real-world application. As storage-as-a-service spreads
and users rely on external agents to store critical information, the privacy and integrity guarantees
of conventional cryptography will benefit from extension into POR-based assurances around data
availability. Contractual and legal protections can, of course, play a valuable role in laying the
foundations of secure storage infrastructure. We believe that the technical assurances provided by
PORs, however, will permit even more rigorous and dynamic enforcement of service policies and
ultimately enable more flexible and cost-effective storage architectures.

Our introduction of PORs in this paper leads to a number of possible directions for future
research. One broad area of research stems from the fact that our main POR protocol is designed
to protect a static archived file F . Any näıvely performed, partial updates to F would undermine
the security guarantees of our protocol. For example, if the verifier were to modify a few data blocks
(and accompanying error-correcting blocks), the archive could subsequently change or delete the set
of modified blocks with (at least temporary) impunity, having learned that they are not sentinels.
A natural question then is how to construct a POR that can accommodate partial file updates—
perhaps through the dynamic addition of sentinels or MACs.

Another important vein of research lies with the implementation of PORs. We have described a
host of design parameters, modeling choices, and protocol variants and tradeoffs. Sorting through
these options to achieve an efficient, practical POR system with rigorous service assurances remains
a problem of formidable dimensions.

Acknowledgments

Thanks to Guy Rothblum, Amin Shokrollahi, and Brent Waters for their helpful comments on this
work.

References

1. Amazon.com. Amazon simple storage service (Amazon S3), 2007. Referenced 2007 at
aws.amazon.com/s3.

2. A. Shokrollahi. Raptor codes. IEEE Transactions on Information Theory, 52(6):2551–2567, 2006.
3. G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song. Provable data

possession at untrusted stores, 2007. To appear.
4. R. Bazzi and Y. Ding. Non-skipping timestamps for Byzantine data storage systems. In R. Guerraoui,

editor, DISC ‘04, pages 405–419. Springer, 2004. LNCS vol. 3274.
5. M. Bellare and O. Goldreich. On defining proofs of knowledge. In E.F. Brickell, editor, CRYPTO ‘92,

pages 390–420. Springer, 1992. LNCS vol. 740.
6. M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-round zero-knowledge proto-

cols. In M. Franklin, editor, CRYPTO ‘04, pages 273–289. Springer, 2004. LNCS vol. 3152.
7. J. Black and P. Rogaway. Ciphers with arbitrary finite domains. In B. Preneel, editor, CT-RSA ‘02,

pages 114–130. Springer, 2002. LNCS vol. 2271.
8. M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of memories.

Algorithmica, 12(2/3):225–244, 1994.
9. C. Cachin and S. Tessaro. Asynchronous verifiable information dispersal. In Reliable Distributed Systems

(SRDS) ‘05, pages 191–202, 2005.
10. C. Cachin and S. Tessaro. Optimal resilience for erasure-coded Byzantine distributed storage. In DSN

‘06, pages 115–124, 2006.
11. D.E. Clarke, G.E. Suh, B. Gassend, A. Sudan, M. van Dijk, and S. Devadas. Towards constant bandwidth

overhead integrity checking of untrusted data. In IEEE S & P ‘05, pages 139–153, 2005.
12. B.F. Cooper and H. Garcia-Molina. Peer to peer data trading to preserve information. ACM Trans.

Inf. Syst., 20(2):133–170, April 2002.
13. C. Dwork, A. Goldberg, and M. Naor. On memory-bound functions for fighting spam. In D. Boneh,

editor, CRYPTO ‘03, pages 426–444. Springer, 2003. LNCS vol. 2729.
14. IDC. J.F. Gantz et al. The Expanding Digital Universe: A Forecast of Worldwide Information Growth

through 2010, March 2007. Whitepaper.
15. J. Feldman. Using many machines to handle an enormous error-correcting

code. In IEEE Information Theory Workshop (ITW), 2006. Referenced 2007 at
http://www.columbia.edu/Sjf2189/pubs/bigcode.pdf.

16. D.L.G. Filho and P.S.L.M. Barreto. Demonstrating data possession and uncheatable data transfer, 2006.
IACR eArchive 2006/150. Referenced 2007.

17. O. Goldreich. Randomness, interactive proofs, and zero-knowledge–a survey. In A Half-Century Survey
on The Universal Turing Machine, pages 377–405. Oxford University Press, 1988.

18. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-systems. SIAM
J. Comput., 18(1):186–208, 1989.

19. P. Golle, S. Jarecki, and I. Mironov. Cryptographic primitives enforcing communication and storage
complexity. In M. Blaze, editor, Financial Cryptography ‘02, pages 120–135. Springer, 2002. LNCS vol.
2357.

20. P. Golle and I. Mironov. Uncheatable distributed computations. In D. Naccache, editor, CT-RSA ‘01,
pages 425–440. Springer, 2001. LNCS vol. 2020.

21. M. Jakobsson and A. Juels. Proofs of work and bread pudding protocols. In B. Preneel, editor, Com-
munications and Multimedia Security, pages 258–272. Kluwer, 1999.

22. V. Kher and Y. Kim. Securing distributed storage: Challenges, techniques, and systems. In StorageSS
‘05, pages 9–25. ACM, 2005.

23. E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database, computationally-private
information retrieval. In FOCS ‘97, pages 364–373. IEEE Computer Society, 1997.

24. L. Lamport. On interprocess communication. Part II: Algorithms. Distributed Computing, 1(2):86–101,
1986.

25. M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M. Isard. A cooperative Internet backup scheme.
In USENIX Annual Technical Conference, General Track 2003, pages 29—41, 2003.

26. H. Lipmaa. An oblivious transfer protocol with log-squared communication. In J. Zhou and J. Lopez,
editors, Information Security Conference (ISC) ‘05, pages 314–328. Springer, 2005. LNCS vol. 3650.

27. M. Liskov, R.L. Rivest, and D. Wagner. Tweakable block ciphers. In M. Yung, editor, CRYPTO ‘02,
pages 31–46. Springer, 2002. LNCS vol. 2442.

28. M. Luby and C. Rackoff. How to construct pseudorandom permutations and pseudorandom functions.
SIAM J. Comput., 17:373–386, 1988.

29. D. Malkhi and M.K. Reiter. An architecture for survivable coordination in large distributed systems.
IEEE Transactions on Knowledge and Data Engineering, 12(2):187–202, 2000.

30. J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine storage. In DISC ‘02, pages 311–325.
Springer, 2002. LNCS vol. 2508.

31. M. Naor and G. N. Rothblum. The complexity of online memory checking. In 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 573–584, 2005.

32. E. St. Pierre. ILM: Tiered services and the need for classification. In Storage Networking World (SNW)
‘07, April 2007. Slide presentation.

33. M. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance. JACM,
36(2):335–348, April 1989.

34. R. Rivest. The pure crypto project’s hash function. Cryptography Mailing List Posting. Referenced
2007 at http://diswww.mit.edu/bloom-picayune/crypto/13190.

35. P. Rogaway. Efficient instantiations of tweakable blockciphers and refinements to modes OCB and
PMAC. In P.J. Lee, editor, ASIACRYPT ‘04, pages 16–31. Springer, 2004. LNCS vol. 3329.

36. K. Sakurai and T. Itoh. On the discrepancy between serial and parallel of zero-knowledge protocols
(extended abstract). In E.F. Brickell, editor, CRYPTO ‘92, page 246259. Springer, 1992. LNCS vol.
740.

37. M.A. Shah, M. Baker, J.C. Mogul, and R. Swaminathan. Auditing to keep online storage services honest,
2007. Presented at HotOS XI, May 2007. Referenced 2007 at http://www.hpl.hp.com/
personal/Mehul Shah/papers/hotos11 2007 shah.pdf.

38. X. Shen, A. Choudhary, C. Matarazzo, and P. Sinha. A multi-storage resource architecture and I/O
performance prediction for scientific computing. J. Cluster Computing, 6(3):189–200, July 2003.

39. R. Sion and B. Carbunar. On the computational practicality of private information retrieval. In Network
and Distributed Systems Security Symposium (NDSS) ‘07, 2007. To appear.

40. M. Yung. Zero-knowledge proofs of computational power (extended summary). In J.J. Quisquater and
J. Vandewalle, editors, EUROCRYPT ‘89, pages 196–207. Springer, 1989. LNCS vol. 434.

A Proofs

For simplicity, we make ideal assumptions on our underlying cryptographic primitives. We assume
an ideal cipher, a one-way permutation instantiated as a truly random permutation, and a PRNG
instantiated with truly random outputs. Given well-constructed primitives, these ideal assumptions
should not impact our security analysis in a practical sense. Viewed another way, we assume param-
eterizations of our cryptographic primitives such that the probability of an adversary distinguishing
their outputs from suitable random distributions is negligible. The error terms in our theorems
should therefore be small. (In a full-blown proof, we would create a series of games/simulators that
replace primitives incrementally with random distributions.)

This ideal view yields a system in which block values are distributed uniformly at random in
the view of the adversary. Thus the adversary cannot distinguish between blocks corresponding to
message values and those corresponding to sentinels, and cannot determine which blocks are grouped
in chunks more effectively than by guessing at random.

Additionally, in this model, because A(“respond”) is assumed to be stateless, i.e., subject to
rewinding, the verifier can make an arbitrary number of queries on a given block. These queries
are independent events, i.e., for a given block at location i, the probability p(i) that A(“respond”)
responds correctly is equal across queries. Hence we can model the adversary A(“respond”) as a
probability distribution {p(i)} over blocks in the archived file.

We also, as explained above, adopt our simplifying block-isolation assumption for our proofs.
Furthermore, if p(i) is non-negligibly greater than 1/2 (for convenience, we choose p(i) ≥ 3/4,

but any bound > 1/2 would do), it is possible for an extractor to recover block i with overwhelming
probability via majority decoding after a modest number of queries. Thus, we can simplify our model
still further. Once we have bounded out the probability of the adversary failing to retrieve a block
i with p(i) ≥ 3/4, we may think effectively of A(“respond”) in our ideal model as a collection of

“bins,” each corresponding to a given block i. The adversary is modeled as corrupting a block by
throwing a “ball” into the corresponding bin. If a bin contains a ball, then we assume p(i) < 3/4, and
thus that the corresponding block is not retrievable. If a bin doesn’t contain a ball, the corresponding
block is retrievable. (If we restrict our attention to deterministic adversaries, then we have a further
simplification: p(i) = 1 if the block is retrievable, p(i) = 0 if corrupted / deleted.)

Let us define b′′ as the total number of data blocks and previously unused sentinels; thus, b′+q ≤
b′′ ≤ b′ + s. Recall that we define ε as the fraction of the b′′ such blocks corrupted by the adversary.
In the ball-and-bin view, therefore, the adversary throws a number of balls ≤ εb′′ into the b′′ bins
representing this aggregate of blocks. Provided that no chunk receives too many balls, i.e., provided
that no chunk of n error-correcting blocks in a codeword has more than d/2 corruptions, extract can
recover the file F completely. We use the ball-and-bin model to achieve bounds on the probability of
success of extract. We also use the model to bound the probability of detecting adversarial corruption
of F .

As the only adversarial function we refer to explicitly in our proofs is A(“respond”), we write A
for conciseness.

Block-isolation assumption: We assume that, during the respond operation, the probabilities
that the individual blocks returned by the prover are correct are independent of one another. For
example, we exclude adversaries who return correct values for all the blocks simultaneously with
some probability p < 1/2. In such a case, verification would succeed with probability p, but the
file would almost always be unretrievable. This is a natural extension of the statelessness of the
adversary: Not only does the adversary not remember from one challenge to the next, but it does
not remember from one block to the next whether it has responded correctly. The extractor can
thus “rewind” query by query within a challenge, as well as challenge by challenge. Put another
way, we can assume that queries are made in serial, rather than in parallel, and that the adversary
is rewound between each one. This brings to mind past discussions about the distinctions between
serial and parallel zero-knowledge protocols (e.g., [36]). The block-isolation assumption is the basis
for our use of the ball-and-bin model.

A.1 Bounding lemmas

We begin with some technical lemmas to establish bounds within our ball-and-bin model. The
lynchpin of these lemmas is the well-known Chernoff probability bounds on independent Bernoulli
random variables, as expressed in the following lemma.

Lemma 1 (Chernoff Bounds). Let X1, X2, . . . , XN be independent Bernoulli random variables
with pr[Xi = 1] = p. Then for X =

∑N
i=1 Xi and µ = E[X] = pN , and any δ ∈ (0, 1], it is the

case that pr[X < (1 − δ)µ] < e−µδ2/2 and for any δ > 0, it is the case that pr[X > (1 + δ)µ] <
(eδ/(1 + δ)1+δ)µ.

Now let us consider a simple algorithm that we refer to as a γ-query majority decoder. It operates
in two steps: (1) The decoder queries A on a given block i a total of γ times, receiving a set R of
responses and then (2) If there exists a majority value r ∈ R, the decoder outputs r; otherwise it
outputs ⊥. For simplicity of analysis, we exclude the possibility of ties; i.e., we assume that γ is odd.

We state the following lemma without proof, as it follows straightforwardly from Lemma 1.

Lemma 2. Let γ be an odd integer ≥ 1. The probability that a γ-query majority decoder operating
over b′ blocks correctly outputs every block i for which p(i) ≥ 3/4 is greater than 1− b′e−3γ/72.

Our next lemma bounds the probability, given εb′′ bins with balls, i.e., corrupted blocks, that
any chunk is corrupted irretrievably.

Lemma 3. Suppose εb′′ (for ε ∈ [0, 1]) balls are thrown into b′ < b′′ ≤ b′+s bins without duplication,
i.e., with at most one ball per bin. Suppose further that the bins partitioned randomly into C = b′/n

chunks, each comprising n distinct bins. Let µ = nε(b′ + s)/(b′ − ε(b′ + s)). If µ < d/2, then the
probability that any chunk receives more than d/2 balls is less than Ce(d/2−µ)(d/2µ)−d/2.

Proof: Since balls are thrown without duplication, the maximum probability that a given chunk
receives a ball is achieved under the condition that εb′′−1 balls have already landed outside the chunk.
Thus, the probability that a ball lands in a given chunk is less than p = n/(b′−εb′′) ≤ n/(b′−ε(b′+s)).

The number of balls that lands in a given chunk is therefore bounded above by a Bernoulli process
in which Xi is the event that the ith ball lands in the chunk, pi = p, and X =

∑εb′′

i=1 Xi, which in
turn is bounded above by a process with E[X] = µ < nε(b′ + s)/(b′ − ε(b′ + s)).

Now pr[X > d/2] = pr[X > (1 + δ)µ] for δ = d/2µ − 1. By Lemma 1, we have pr[X > d/2] <
e(d/2−µ)(d/2µ)−d/2. Since there are C chunks, the lemma follows.

Our next lemma offers a lower bound on the probability that the verifier detects file-corruption
by A when at least an ε-fraction of bins contain balls, i.e., A responds incorrectly with probability
greater than 1/4 in each of an ε-fraction of data blocks and unused sentinels.

Lemma 4. Suppose that εb′′ (for ε ∈ [0, 1]) balls are thrown into b′′ bins without duplication. Suppose
that A is queried on q bins, each chosen uniformly at random (and independently) and that A provides
an incorrect block with probability > 1/4 if a bin contains a ball. Then the probability that A provides
at least one incorrect block is greater than 1− (1− ε/4)q.

Proof: Let Xi be a Bernoulli random variable s.t. Xi = 1 if A provides an incorrect block on
the ith query. Since a bin contains a ball with probability ε, and a bin with a ball corresponds to a
block incorrectly emitted by A with probability greater than 1/4, pr[Xi = 0] < 1− ε/4. It is easy to
see that pr[Xi = 0 |X1, . . . , Xi−1, Xi+1, . . . , Xq = 0] ≤ pr[Xi = 0]. Therefore pr[X = 0] < (1− ε/4)q.

A.2 Main theorem

We state the following theorem about our sentinel-based practical scheme Sentinel-PORSYS[π]:

Theorem 1. Suppose that γ ≥ 24(j ln 2 + ln b′). For any ε ∈ (0, 1) such that µ < d/2 where
µ = nε(b′+s)/(b′−ε(b′+s)), Sentinel-PORSYS[π] is a (ρ, λ)-valid POR for ρ ≥ Ce(d/2−µ)(d/2µ)−d/2

and λ ≥ (1− ε/4)q.

Proof: Consider a given value of ε in our balls-and-bins model. By Lemma 4, the probability for
this value of ε that A causes the verifier to accept is less than (1− ε/4)q. Accordingly, the POR is
λ-valid for any λ ≥ (1− ε/4)q for this ε. (To achieve a higher bound would require a smaller value
of ε.)

Given this value of ε, by Lemma 2, the probability of recovering correct values for all blocks that
have not received balls is at least 1− ζ for ζ < b′e−3γ/72. For γ ≥ 24(j ln 2 + ln b′), we have ζ < 2−j,
which is negligible (indeed, exponentially small) in j.

Assuming, then that no chunk has received more than d/2 balls, the verifier can recover data
associated with every chunk of the file. By Lemma 3, this condition fails to hold with probability at
most Ce(d/2−µ)(d/2µ)−d/2. (Lemma 3 assumes that the balls are thrown only at data blocks; this is
the worst case for interdependence between ρ and λ, occurring when none of the balls hits sentinels.)
Thus the POR is simultaneously ρ-valid for any ρ < Ce(d/2−µ)(d/2µ)−d/2 for this ε.

