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ABSTRACT

A novel methodology is introduced for quantifying the added value of remotely sensed soil moisture
products for global land surface modeling applications. The approach is based on the assimilation of soil
moisture retrievals into a simple surface water balance model driven by satellite-based precipitation prod-
ucts. Filter increments (i.e., discrete additions or subtractions of water suggested by the filter) are then
compared to antecedent precipitation errors determined using higher-quality rain gauge observations. A
synthetic twin experiment demonstrates that the correlation coefficient between antecedent precipitation
errors and filter increments provides an effective proxy for the accuracy of the soil moisture retrievals
themselves. Given the inherent difficulty of directly validating remotely sensed soil moisture products using
ground-based observations, this assimilation-based proxy provides a valuable tool for efforts to improve soil
moisture retrieval strategies and quantify the novel information content of remotely sensed soil moisture
retrievals for land surface modeling applications. Using real spaceborne data, the approach is demonstrated
for four different remotely sensed soil moisture datasets along two separate transects in the southern United
States. Results suggest that the relative superiority of various retrieval strategies varies geographically.
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A Novel Method for Quantifying Value in Spaceborne Soil Moisture Retrievals

1. Introduction

Despite significant advances in the development of
remote sensing techniques for surface soil moisture, ob-
jective quantification of value for soil moisture retriev-
als remains an elusive goal. Traditional remote sensing
product validation is based on the direct intercompari-
son of retrieved quantities with, presumably higher-
accuracy, ground-based measurements. Significant
progress has been made in the design of field experi-
ments and operational networks that facilitate the up-
scaling of point-scale soil moisture ground observations
to a spatial support comparable to the resolution of
spaceborne microwave radiometers (Jackson et al.
1999; Famiglietti et al. 1999; Jacobs et al. 2004; Cosh et
al. 2004). However, these approaches are still generally
limited in space (by the extent of the network) and/or
time (by the length of the field experiment).

A broader view of assigning value to remote sensing
retrievals also requires that some consideration be
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given to the manner in which data will be utilized in
higher-order applications. A key application for re-
motely sensed soil moisture retrievals is their assimila-
tion into land surface models at the core of atmospheric
and hydrologic prediction systems (Leese et al. 2001).
A robust determination of value for remote sensing
observations in modeling applications should reflect
our ability to obtain comparable information from
other observational resources. For global soil moisture
products, the fundamental issue is how much marginal
value retrievals add to model-based soil moisture esti-
mates above and beyond what is obtainable from water
balance modeling using globally available precipitation
products (Crow et al. 2005a). Past work has demon-
strated the potential for enhancing soil moisture pre-
dictions from global land surface models using space-
borne soil moisture products (Reichle and Koster
2005), but such efforts are generally hampered by limi-
tations in the availability and accuracy of ground-based
soil moisture observations.

Here we propose an alternative methodology for
quantifying the value of soil moisture remote sensing
retrievals for global land surface modeling applications.
The approach is based on the assimilation of remotely
sensed soil moisture retrievals into a simple linear wa-
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ter balance model (driven by satellite-based global pre-
cipitation products) using a standard Kalman filtering
methodology. The novelty of the approach originates
not from its simple data assimilation and modeling
methodology, rather the manner in which filtering re-
sults are subsequently interpreted. Specifically, filter in-
crements (discrete additions or subtractions of water
suggested by the filter in response to soil moisture re-
trievals) are compared to antecedent rainfall errors—
calculated as the difference between currently available
global precipitation products and higher-quality gauge-
based products available only in precipitation data-rich
areas of the globe. The correlation between past rain-
fall errors and current filter increments reflects the abil-
ity of the soil moisture retrievals to add value to model-
based soil moisture estimates obtained using currently
available global precipitation products. Our central hy-
pothesis is that the strength of this correlation can be
interpreted as a robust proxy for the added value of
spaceborne soil moisture in global modeling applica-
tions and therefore provides valuable feedback infor-
mation for developers of spaceborne soil moisture
products.

If verified, the advantage of this approach over tra-
ditional validation techniques would be twofold. First,
it would provide a framework for quantifying the value-
added information content in remote sensing obser-
vations. That is, its utility above and beyond soil mois-
ture information that is currently available from analy-
sis of global precipitation products. In addition, it
would allow any precipitation data-rich area of the
globe (e.g., the contiguous United States) to be treated
as a continental-scale test bed site for quantifying
the value of spaceborne soil moisture retrievals over
the larger fraction of the globe that is precipitation
data—poor. Currently such test beds are limited to rela-
tively sparse space and time periods in which suffi-
ciently dense ground-based soil moisture observations
are available.

Section 2 describes the datasets and study sites em-
ployed in the analysis. The development of the data
assimilation—-based approach is described in section 3.
Section 4 tests the proposed approach using syntheti-
cally generated remote sensing observations, and
section 5 uses the approach to establish a large-scale
test bed in the southern United States in which four
separate spaceborne soil moisture datasets are evalu-
ated.

2. Data and study sites

Two separate daily precipitation datasets are used in
the analysis. Satellite-based precipitation products are
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taken from the one latitude-longitude degree daily
(1DD) Global Precipitation Climatology Project (GPCP)
rainfall product based on infrared retrievals from the
Television Infrared Observation Satellite (TIROS) Op-
erational Vertical Sounder (TOVS) and the Geosta-
tionary Operational Environmental Satellite (GOES)
and passive microwave measurements from the Special
Sensor Microwave Imager (SSM/I) (Huffman et al.
2001). Over some continental areas, GPCP-1DD
monthly rainfall totals are corrected to match sparse
ground-based observations (Huffman et al. 2001).
However, at finer time scales the product relies exclu-
sively on satellite-based precipitation estimates. For
many areas of the world, such satellite-based products
represent the best available source of precipitation
data. Nevertheless they are prone to error, especially
over land (McPhee and Margulis 2005). The second
precipitation dataset is the National Centers for Envi-
ronmental Prediction’s (NCEP’s) Climate Prediction
Center (CPC) retrospective rainfall product over the
contiguous United States. The product is based on com-
bining CPC real-time rain gauge observations with
those from available non-real-time networks to yield
approximately 13 000 rain gauge observations of daily
rainfall. Following the approach of McPhee and Mar-
gulis (2005), CPC data processed as part of the North
American Land Data Assimilation System (NLDAS)
project (see Cosgrove et al. 2003) is aggregated into a
daily (0000-0000 UTC ) 1° latitude-longitude product
to match the temporal and spatial attributes of the
GPCP-1DD dataset. As noted by McPhee and Margulis
(2005), CPC-based daily rainfall products derived in
this manner likely represent the best currently available
estimate of daily rainfall accumulations within the con-
tiguous United States.

Four separate remotely sensed soil moisture datasets
are also considered in the analysis. The first two are
based on X-band (10.6 GHz) brightness temperature
(Ty) observations from the Tropical Rainfall Measur-
ing Mission (TRMM) Microwave Imager (TMI) and
the soil moisture datasets described in Bindlish et al.
(2003) (TMIgpa) and Gao et al. (2006) (TMI; spem)-
The TMI,; gpem product is based on application of the
Land Surface Microwave Emission Model (LSMEM)
described in Drusch et al. (2001) and Gao et al. (2004).
TMI X-band Tz observations are available on a roughly
daily basis since late 1997 and have a ground-based
spatial resolution of approximately 38? km?. Because of
TRMM orbital characteristics, observations are avail-
able only for the latitude band between 40° north and
south. The second two soil moisture products are based
on the application of the LSMEM (AMSR-E; syipm)
and Njoku et al. (2003) retrieval approaches to X-band
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F1G. 1. Location of 1° lat-lon study boxes. Boxes 1-4 are referred to as the Texas/Oklahoma
(TX/OK) transect. Boxes 5-8 are referred to as the Alabama/Georgia (AL/GA) transect.

observations obtained from the Advanced Microwave
Scanning Radiometer (AMSR-E) aboard the National
Aeronautics and Space Administration (NASA) Aqua
satellite. The Njoku et al. (2003) algorithm provides the
basis of the official NASA level 3 AMSR-E soil mois-
ture product (AMSR-Eyss4). The algorithm has been
modified from its original form to eliminate reliance on
C-band observations corrupted by large amounts of ra-
dio frequency interference over the United States (E.
Njoku 2006, personal communication). AMSR-E X-
band Ty observations have been globally available
since mid-2002 with a global repeat time of 2 to 3 days
and spatial resolution of approximately 40> km?. All
soil moisture products were aggregated in time and
space to form a daily 1° latitude—longitude soil moisture
product consistent with the GPCP-1DD rainfall prod-
uct.

The analysis will focus on the eight 1° latitude—
longitude boxes shown in Fig. 1. The first four boxes
stretch from the panhandle area of Texas (TX) into
central Oklahoma (OK) and will be referred to as the
“TX/OK transect.” This transect samples across a
strong precipitation and vegetation gradient with semi-
arid shrublands prevailing in the west (box 1) and more
humid, and densely vegetated, cropland and forest
cover emerging along its eastern edge (box 4). The
other four boxes span an area of the southeastern
United States from northern Alabama (AL) to south-
western Georgia (GA) and will be referred to as the
“AL/GA transect.” Relative to the TX/OK transect,
denser vegetation and more pronounced topography
within the AL/GA transect present a greater challenge
for soil moisture remote sensing. Land cover is gener-
ally a mixture of forested upland areas, crops (corn,
soybean, peanuts, and cotton), and pasture.

3. Methodology

The methodology is based on a simple antecedent
precipitation index (API) approach to water balance
modeling. Here, API for day i is defined as

API, = yAPI, | + P, 1)

where P; is satellite-based GPCP-1DD precipitation
and vy is the API loss coefficient. The API model is
applied separately to each of the 1° latitude—longitude
boxes shown in Fig. 1. For simplicity, vy is set equal to
0.85 for all boxes. The impact of error in the specifica-
tion of vy is addressed in section 4a.

a. Kalman filtering

For linear forecasting models with Gaussian errors, a
Kalman filter provides the optimal method of updating
the expectation and error covariance of a model state
forecast (e.g., API) with noisy observations (e.g., re-
motely sensed soil moisture retrievals 6gg). The first
step in this process is defining a measurement operator
capable of converting 6gxg retrievals into API values.
Here the operator is defined by calculating a least
squares regression line (with slope b and intercept a)
for the observed long-term relationship between API
and 6gg. Separate regression relationships are calcu-
lated for each of the 1° latitude—longitude boxes shown
in Fig. 1. However, data within each box are temporally
lumped and potential seasonal variability is neglected.
Unlike (1), API values used to define this relationship
are derived from the gauge-based CPC rainfall product.

Using a and b defined by these regression relation-
ships, the Kalman filters predicts that the optimal up-
dating of expected API at time i—based on the simul-
taneous observation of Oys—is given by
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API = API; + K(0gs, — a — bAPI; ), )
where K is the Kalman gain
K, =bT; /(b°T; +S), (3)

T is the dynamic error in model-predicted API, and S is
the error in Ogg retrievals. The “—” and “+” symbols in
(2) and (3) reflect quantities before and after updating,
respectively. The update equation in (2) relates the
magnitude of changes in API soil moisture budgeting
warranted by consideration of fzg observations. These
updates, K; (6gs, — a — b API;), are commonly re-
ferred to as “analysis increments.” The Kalman gain K
describes how optimal choices for increments depend
on the magnitude of b, T, and S. Note how either large
observation error (§) or a lack of sensitivity between
observations and model states (low b) are associated
with small analysis increments (low K). Conversely,
larger model forecast uncertainty 7" or lower observa-
tion error S increases K and leads to larger adjustments
to API via (2). Since the availability of observations
reduces uncertainty in API forecasts, model forecast
error T is also adjusted at measurement times via

T, =1 - bK)T; . 4)

Between soil moisture observations, and the adjust-
ment of API and 7 via (2) and (3), the model state API
is temporally updated using observed P and (1). In par-
allel, model forecast error 7 is updated in time follow-
ing

T, =v’T , + 0, (5)

where Q relates the uncertainty added to an API fore-
cast as it is propagated from time i — 1 to .

Selecting appropriate values for the observation vari-
ance S in (3) and the forecast noise parameter Q in (5)
is often a challenging aspect of Kalman filtering. An
important diagnostic tool for addressing this problem is
the statistical analysis of filter innovations, Ogs — (a +
bAPI;"), encountered when applying (2) (Reichle et al.
2002). For fully linear systems where Q and § are cor-
rectly specified, implementation of the Kalman filter
will lead to a temporal sequence of normalized filter
innovations

;= [6rs, — (a + BAPL JPAL’T, +8)  (6)

that are mean one (Dee 1995).

The overall Kalman filter analysis stream goes as fol-
lows. Magnitudes of API and T are initialized at some
default value and are propagated to the first observa-
tion time using (1) and (5). At this time, API and T are
updated for the impact of observed 6y using (2) and
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(4). Updated T and API values are then temporally
repropagated using (1) and (5) until the next observa-
tion time and the cycle is repeated. For calibration of
synthetic filtering results presented in section 4, § is
assumed known and the magnitude of Q is adjusted
until filtering leads to a normalized innovation («) se-
quence with a mean of one. Both Q and § are consid-
ered constant in time. Additional calibration details for
real-data cases presented in section 5 are discussed in
section 4b.

While the execution of the filter via (1)—(5) can ap-
pear somewhat involved, its role in this analysis is very
straightforward. The Kalman filter simply presents an
optimal methodology whereby water can be added or
subtracted from API predictions in response to the
availability of surface soil moisture observations. By
considering relative errors in both model forecasts (7°)
and the remotely sensed observations (S), the filter
makes these updates in such a way that the error in API
forecasts is minimized.

b. Definition of R

value

Kalman filter analysis increments, defined via (2) as
K{(bgs, — a — bAPI;"), describe the depth of water
added or subtracted from the API model in the course
of assimilating 6gg. If Oxg retrievals are minimally
accurate and the filter properly constructed, these in-
crements should correlate in some manner with ante-
cedent rainfall forcing errors. Specifically, positive
(negative) rainfall errors should lead to the removal
(addition) of water in the near future. The availability
of high-quality rain gauge observations for precipita-
tion data-rich areas like the contiguous United States
provides a means by which the quality of updates made
to an API model (driven by poor-quality GPCP-1DD
daily rainfall) via the assimilation of remotely sensed
observations can be evaluated. This, in turn, opens up
the possibility of using precipitation data-rich areas as
a large-scale test beds for remotely sensed surface soil
moisture products.

Figure 2 demonstrates basic aspects of the approach
using the TMI; g\ipn S0il moisture product. For a pe-
riod of time in spring 2003, Fig. 2a displays total daily
GPCP-1DD and CPC rainfall estimates (see section 2)
for the 1° latitude-longitude box centered at 35.5°N,
—102.5°W (box 1 in Fig. 1). Note how, relative to the
more accurate CPC product, the satellite-based GPCP-
1DD rainfall retrieval underestimates the magnitude of
a rainfall event on 19-20 March and subsequently over-
estimates rainfall for a 27-29 March event. Forcing an
API model with GPCP-1DD precipitation (Fig. 2b)
produces an API prediction (Fig. 2b) at odds with the
TMI; spmem Ors retrieval (Fig. 2c), which echoes the
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Fi1G. 2. Times series of daily (a) rainfall, (b) GPCP-1DD API,
(c) remotely sensed soil moisture (TMI; gppn), and (d) Kalman
filter increments during 2003 for box 1 in Fig. 1.

CPC rainfall data in suggesting that the 19-20 March
storm was the larger of the two events. Consequently,
the assimilation of 6grg into the API model (Fig. 2b)
leads to the Kalman filter analysis increments plotted in
Fig. 2d. Note the inverse relationship between 5-day
rainfall errors (during periods A and B in Fig. 2) and
subsequent 5-day sums of analysis increments (during
periods A and Bin Fig. 2d, which lag A and B in Fig. 2a
by a single day). Underestimation (overestimation) of
precipitation accumulations during period A (B) is fol-
lowed by the addition (subtraction) of water by the
filter during period A (]§) This inverse relationship
between precipitation accumulation errors and subse-
quent increment depths suggests that the assimilation
of Ogg is adequately compensating API predictions for
deficiencies in the GPCP-1DD precipitation product.
Over longer periods of time, this relationship manifests
itself as a negative correlation between 5-day sums of
rainfall errors and filter innovations. For box 1 in Fig. 1,
Fig. 3 shows a scatterplot of 5-day (pentad) sums of
rainfall errors and filter increments (lagged by 1 day)
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F1G. 3. For box 1 in Fig. 1 between 1998 and 2004, scatterplot of
rainfall errors (5-day sums) vs Kalman filter analysis incre-
ments (5-day sums lagged by 1 day) associated with assimilating
TMI; gppm s0il moisture retrievals into an API model; R, . is
defined to be the opposite (i.c., negative) of the Pearson correla-
tion coefficient for the plot 2.

for the TMI; ey dataset during the calendar years
from 1998 to 2004. Here and throughout the analysis,
only pentads in which either CPC or GPCP-1DD rain-
fall products estimate nonzero rainfall accumulations
are considered. The negative of the standard Pearson
correlation coefficient (R) calculated for the relation-
ship in Fig. 3 will subsequently be referred to as the
R 1. coefficient for a particular remotely sensed soil
moisture product:

R ~R. )

value

Simply stated, this R, ., metric reflects the degree to
which temporal API adjustments, made by the Kalman
filter in response to uncertain 6xg observations, are cor-
related with antecedent errors in precipitation products
used to calculate API.

4. Synthetic twin experiment analysis

The magnitude of the negative correlation seen in
Fig. 3 reflects the ability of a remotely sensed soil mois-
ture product (and the Kalman filter) to detect (and
correct) soil moisture modeling errors arising from the
use of noisy precipitation inputs. Our central hypoth-
esis is that the strength of this correlation can be used as
a robust proxy for the overall information content of
remotely sensed surface soil moisture in global land
surface modeling applications. To test this assumption,
we utilize a synthetic twin methodology where a bench-
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mark “truth” simulation of surface soil moisture values
is synthetically generated using an API modeling ap-
proach. These benchmark soil moisture values are then
artificially perturbed with random noise to simulate re-
mote sensing observations and reassimilated back into
the API model following section 3. Such experiments
are referred to “synthetic twin experiments” in the data
assimilation literature where they are commonly used
to test assumptions underlying the application of data
assimilation procedures (e.g., Reichle et al. 2002). Un-
like real-data cases, the availability of “truth” soil mois-
ture in a synthetic twin experiment allows for the ex-
plicit calculation of the Pearson correlation coefficient
between the benchmark soil moisture and the remotely
sensed soil moisture retrieval (R ym)-

Seven years of CPC and GPCP-1DD rainfall data
from the TX/OK transect are used to force a series of
synthetic experiments. Using the Kalman filter ap-
proach outlined in section 3 and the synthetically de-
rived soil moisture observations, R,,;,. magnitudes are
calculated following Fig. 3 and (7) for a large number of
cases in which the magnitude of artificial noise added
onto “truth” soil moisture to obtain synthetic observa-
tions is systematically varied. In addition, various levels
of rainfall accuracy are obtained by subtracting the
GPCP-1DD (satellite based) precipitation time series
for a particular 1° latitude-longitude box from the
equivalent CPC (gauge based) time series, multiplying
the difference by a constant ranging between 0.5 and
2.0 (see legend in Fig. 4), and then adding the scaled
difference time series back to the CPC daily rainfall
time series.

Figure 4 summarizes results from these synthetic ex-
periments; R, values plotted on the x axis of Fig. 4
reflect the Pearson correlation coefficient calculated
between “truth” soil moisture (synthetically generated
using API modeling) and soil moisture observations
(generated by adding artificial Gaussian noise to
“truth” soil moisture). While such correlations provide
an effective means of summarizing the overall value of
soil moisture remote sensing observations for land sur-
face modeling applications (Crow et al. 2005b), a lack
of ground-based soil moisture observations and the
coarse-spatial resolution of spaceborne retrievals ham-
pers their accurate calculation in most real-world cases.
In contrast, R, magnitudes on the y axis can be es-
timated anywhere relatively accurate gauge-based pre-
cipitation observations are available. Except for very
high retrieval accuracies, a monotonic relationship
trending through the plot origin exists between R,
and R, for all assumed rainfall accuracies. This sug-
gests that R, provides a robust and readily observ-
able proxy for less readily available R, magnitudes.
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In addition, the size of R, provides a meaningful
representation of added value contributed by remote
sensing retrievals, that is, improvements in soil mois-
ture accuracy above and beyond that obtainable from a
water balance approach driven by observed precipita-
tion. For the same Ry, Riae decreases (increases)
with increasing (decreasing) GPCP-1DD rainfall accu-
racy. Reflecting that as the accuracy of satellite-based
global rainfall products increases, it becomes increas-
ingly difficult to contribute added value to model-
predicted soil moisture. In this way R, provides a
metric of added value that is sensitive to both retrieval
uncertainty as well as the accuracy of competing model-
based soil moisture estimates derived without soil mois-
ture remote sensing or data assimilation.

a. Sensitivity to nonidealized conditions

Admittedly, Fig. 4 captures only idealized conditions
within a synthetic experiment. In reality, a number of
additional factors complicate the interpretation of
R, .we- First, while typically considered the highest-
quality rainfall observations available in the contiguous
United States (McPhee and Margulis 2005), CPC rain-
fall products are not, of course, truly error free. Figure
Sa demonstrates the impact on R, ., for the 1.0 X
GPCP-1DD rainfall error case in Fig. 1, of errors in the
CPC rainfall dataset used as a benchmark for the cal-
culation of rainfall errors. Here rainfall uncertainty is
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FIG. 5. Sensitivity of the 1.0 X GPCP-IDD error line in Fig. 4 to
(a) error in the CPC rainfall data assumed as a benchmark, (b)
temporal subsampling of synthetically generated soil moisture re-
trievals, and (c) errors in the specification of the API loss coeffi-
cient y in (1).

represented by the application of mean-zero, lognormal
multiplicative noise (with a standard deviation of o) to
CPC rainfall. The inclusion of CPC error leads to a
modest reduction in R, values and the sensitivity of
R, ue to variations in R,.. These reductions make
it marginally more difficult to establish the statistical
significance of a given R,,,. coefficient and/or the
difference in coefficients for two competing 6xg prod-
ucts. However, the error does not impact the mono-
tonic nature of its relationship with R, . In addition,
since R, is a correlation-based metric, CPC bias
errors arising from well-known undercatch problems
with ground-based rain gauges (e.g., Groisman and
Legates 1994) will have no effect on its estimation.
Relatively minor effects are also noted when synthetic
Ogs retrievals are subsampled to time to match the tem-
poral sampling limitations of proposed spaceborne mis-
sions (Fig. 5b).

From a modeling standpoint, another key simplifica-
tion lies in the assumption that land surface modeling
errors are due solely to the impact of poor precipitation
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input data. In reality a broad range of model param-
eterization, structural, and input errors lead to uncer-
tainty in land surface model soil moisture predictions.
For the sensitivity experiment presented in Fig. 5Sc, the
API model used to generate synthetic observations em-
ployed a different loss coefficient than the API model
used in the data assimilation procedure (see legend for
differences). Consequently, results reflect the added
impact of poor model parameterization on the calcula-
tion of R,,..- While incorrect model parameterization
leads of a reduction of R,,,. sensitivity for large R, e,
the impact below R,,,. = 0.6 is relatively modest.
Overall, while the nonidealized conditions examined in
Fig. 5 can potentially reduce the sensitivity of R, to
R um, none of them undermine the fundamental inter-
pretation of R as a robust proxy for R .

value

b. Filter calibration

In a synthetic experiment, measurement noise S is
known a priori. This allows the forecasting noise Q to
be calibrated based on the sampled mean of «. In re-
ality, S must also be estimated and there exists a range
of possible S values, and corresponding Q values, for
which the temporal mean of « is one. Figure 6 examines
this issue from the context of our synthetic twin analysis
by plotting R, (for the R, ., = 0.75 and 1.0 X
GPCP-1DD error case in Fig. 4) for a range of assumed
S. Since this is a synthetic experiment, the correct ob-
servation error (S;..) is known and can be used to
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normalize assumed S values (S,sumeq)- FOT €ach choice
of S,cumed» forecast error Q is individually calibrated so
that the « time series is mean one. Synthetic results
plotted in Fig. 6 demonstrate that while R, ;. exhibits
some sensitivity to S, umed, the largest R, .. 1S associ-
ated with S,qumed = Suue- Consequently, when consid-
ering a range of potential S and Q combinations, each
producing a mean-unity o« time series, the correct
choice will be the § value that also maximizes R, .
This additional constraint allows S and Q to be
uniquely defined and is used to calibrate the approach
for real-data cases examined in section 5.

5. Real-data analysis

The relationship plotted in Fig. 4 suggests two pri-
mary applications for R, estimates. First, if R, . iS
statistically greater than zero within a test bed location,
it demonstrates that remotely sensed soil moisture re-
trievals are adding value to soil moisture estimates de-
rived from water balance modeling and global rainfall
products. The use of precipitation data-rich areas as
test bed sites can improve our ability to predict the
global extent of land cover types over which remotely
sensed soil moisture contributes value to land surface
modeling. Second, for a given test bed site, statistically
significant differences in R,,;,. magnitudes for two (or
more) competing soil moisture products demonstrates
that a particular retrieval algorithm is providing a more
valuable representation of soil moisture dynamics.
Based on Fig. 4, larger R,,;,. coefficients can be inter-
preted as reflecting higher accuracy in soil moisture
retrievals and greater value for land surface modeling
applications. This feedback can, in turn, can be ex-
ploited to optimize soil moisture retrieval algorithms.

Figure 7 shows R, results for AMSR-E soil mois-
ture datasets described in section 2 over the eight 1°
latitude-longitude boxes shown in Fig. 1. Since
AMSR-E observations are available once every 2-3
days, only 5-day periods containing at least three
AMSR-E observations are used to calculate R,,,e-
Plotted results are based on pooling AMSR-E soil
moisture estimates during the calendar years 2003 and
2004. Over the TX/OK portion of the transect (boxes
1 to 4 in Fig. 1), all R,,,. coefficients are signifi-
cantly greater than zero (at a 95% uncertainty thresh-
old) for both products in every transect box. How-
ever, AMSR-E, g\ipm retrievals demonstrate consis-
tently larger R,,,. coefficients than comparable
AMSR-Egasa retrievals. This difference implies that
AMSR-E; g\ipm retrievals correlate better with actual
soil moisture conditions and are of relatively greater
value for land surface modeling applications within
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FIG. 7. (a) Ry, coefficients and (b) the statistical significance
of coefficient differences for both AMSR-E-based soil moisture
products along the two transects defined in Fig. 1. The numbers in
(a) represent the number of independent pentads used to calcu-
late R
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these sites (Fig. 4). Because of the relatively short his-
torical record of AMSR-E observations, R,,;,. differ-
ences between AMSR-E products are statistically sig-
nificant for only one of the four boxes (Fig. 7b). Better
statistical power is obtained by assuming spatially inde-
pendent errors and lumping correlation results from all
four TX/OK transect boxes. After such spatial lumping,
R .1 differences between the two AMSR-E products
are statistically significant at a 95% threshold level
(Table 1).

Because of heavier vegetation amounts and more
pronounced topography, spaceborne soil moisture re-
trieval is relatively more difficult for the AL/GA
transect (boxes 5 to 8 in Fig. 1). This difficulty is re-
flected in smaller R,,,. coefficients for the AL/GA
transect relative to the TX/OK transect (Fig. 7a). Nev-
ertheless, R, .. magnitudes (for both products) are sig-
nificantly greater than zero for three of the four AL/
GA transect boxes (Fig. 7a). In addition, the relative
superiority of the products is reversed relative to the
TX/OK transect. Along the AL/GA transect, the
AMSR-Eyasa product generally produces larger R

value
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TABLE 1. Lumped R,,;,. estimates, number of pentads used to
calculate lumped R, estimates (N), and the two-tailed statisti-
cal significance of R, differences (i.e., LSMEM vs NASA or
USDA vs NASA) for the case of pooling all four transect boxes.

Product Transect R, aue N Significance
AMSR-E\asa TX/OK 0.37 532 95%
AMSR-E| spmeMm TX/OK 0.51
AMSR-E\ssa AL/GA 0.27 548 <50%
AMSR-E| spmem AL/GA 0.22
TMIyspa TX/OK 0.30 1889 99.5%
TMI,| spmem TX/OK 0.42
TMIyspa AL/GA 0.32 1922 93%
TMI, spmEm AL/GA 0.24

coefficients than the AMSR-E, q\pm retrievals. How-
ever, the statistical significance of these differences is
low (Fig. 7b)—even when AL/GA transect boxes are
lumped (Table 1).

Figure 8 is identical to Fig. 7, except that it displays
results for soil moisture products derived from the TMI
sensor (rather than AMSR-E). These results have the
benefit of a longer historical period (7 yr versus only 2
for AMSR-E) and slightly better temporal frequency.
Over the TX/OK transect, assimilation of TMI; g\em
soil moisture retrievals results in a stronger correlation
of filter increments with antecedent rainfall errors (i.e.,
higher R,,,. coefficients) than the assimilation of
TMIgpa retrievals (Fig. 8a). The R, . coefficient dif-
ferences are significant at a 95% threshold level for two
boxes and an 80% threshold level for the other two
(Fig. 8b). When transect boxes are spatially lumped, the
significance of the pooled differences rises to the 99.5%
confidence level (Table 1).

As with the AMSR-E soil moisture products, the
relative ranking of the TMI soil moisture products re-
verses when moving from the TX/OK to the AL/GA
transect. Larger R, coefficients are associated with
TMIygpa soil moisture retrievals than comparable
TMI, gmewm retrievals over the length of the AL/GA
transect. When transect boxes are spatially lumped,
pooled differences are significant at a 93% confidence
level (Table 1). In addition, the longer TMI heritage
makes it possible to identify statistically significant
value (i.e., R, significantly larger than zero at the
95% confidence level) in both products for all four AL/
GA transect boxes.

6. Discussion

Results in Figs. 7 and 8 can be partially explained by
methodological differences among the various retrieval
approaches. For instance, the largest difference be-
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tween the AMSR-E; gvpm and AMSR-Egasa ap-
proaches examined in Fig. 7 is that the LSMEM ap-
proach utilizes only horizontally polarized brightness
temperatures (75 ;;) while the Njoku/NASA algorithm
is based on multipolarization Ty, and Tp, observa-
tions. The use of T measurements allows the Njoku/
NASA approach to simultaneously solve for both veg-
etation water content (W) and soil moisture. In con-
trast, the single-polarization LSMEM approach relies
on ancillary visible remote sensing products to indepen-
dently estimate W magnitudes required for soil mois-
ture retrieval. Consequently, the ancillary data needs of
the AMSR-Eyasa product are less than those of the
AMSR-E| gvem product. Nevertheless, Fig. 7 demon-
strates that, at least over the more lightly vegetated
TX/OK transect, it is preferable to rely on these ancil-
lary W estimates rather than incorporate Ty, observa-
tions and attempt to solve for W (and soil moisture)
using a multipolarization approach. The relative ad-
vantage of the single-polarization approach, however,
disappears over the more heavily vegetated AL/GA
transect. One potential explanation for this reversal is
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that the constitutive relationships used to estimate W
from ancillary visible-based observations are more ac-
curate for crop and grassland environments (e.g., the
TX/OK transect) and tend to break down over areas
with more complex canopy structures and/or dense
woody vegetation.

The largest difference between the TMI; g\ien and
TMIyspa approaches examined in Fig. 8 lies in the
source of land surface temperature (7) fields used to
retrieve surface soil moisture. The Gao/LSMEM ap-
proach is based on incorporating independent land sur-
face T'g estimates from a land surface model running as
part of the NLDAS project while the Bindlish/U.S. De-
partment of Agriculture (USDA) approach attempts to
retrieve T using Ty observations. Both approaches
estimate W using visible remote sensing products. Over
the TX/OK transect, the use of the NLDAS T model
product appears to provide the TMI; g\pm product
with a significant edge over the TMIygps product.
However, this tendency reverses itself over the AL/GA
transect. Particularly striking is the lack of a reduction
in R, between transects for the TMIsp approach
(Table 1). Unlike the other three products, TMIgpa
R, 1w coefficients do not reflect relatively more difficult
conditions for soil moisture remote sensing within the
AL/GA transect.

Despite the general unsuitability of conditions along
the AL/GA transect for soil moisture remote sensing,
added value (i.e., statistically significant R, ,,.) is found
along its length for all four products. It should be noted
that this added skill is calculated relative to the use of
lower-quality GPCP-1DD rainfall data (higher-quality
CPC rainfall data are intentionally withheld to serve as
an independent source of evaluation data). The use of
GPCP-1DD rainfall makes results indicative of added
value obtainable in precipitation data—poor areas out-
side the United States. Consequently, absolute value
results presented in Figs. 7 and 8 are best interpreted as
test bed results that exploit the data-rich environment
of the contiguous United States to reflect the added
value of remote sensing observations for precipitation
data—poor regions of the globe.

7. Summary and conclusions

Validation of global remote sensing products is typi-
cally based on the use of test bed sites in data-rich areas
to characterize retrieval accuracy and value in higher-
order application. Unfortunately, our ability to directly
validate spaceborne soil moisture products against
ground-based observations is currently limited by diffi-
culties in maintaining soil moisture instrumentation
networks and upscaling sparse point-scale observations
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of highly variable soil moisture fields to spaceborne
footprint scales (10-30 km). In this study we propose
and apply a Kalman filter-based evaluation strategy
that does not require the availability of ground-based
soil moisture measurements and can be applied any-
where relatively high quality rain gauge observations
are available (e.g., the contiguous United States). As a
result, the approach greatly expands the geographic
and temporal extent of potential ground test bed sites
within which the value of remotely sensed soil moisture
estimates can be assessed. In addition, the approach
provides a quantitative measure of added value that is
relative to the datum established by the accuracy of
currently available global rainfall products and simple
water balance modeling. This datum represents a criti-
cal benchmark that remotely sensed soil moisture prod-
ucts must improve upon in order to contribute value to
global land surface modeling applications (Crow et al.
2005a).

A synthetic twin experiment establishes that the ap-
proach yields a metric (R,4,.), Which is a well-defined
function of both the underlying accuracy of the soil
moisture retrievals, as well as the quality of rainfall
observations used to calculate competing model-based
soil moisture estimates (Fig. 4). This interpretation is
not undermined by benchmark rainfall errors, temporal
gaps in soil moisture retrievals, or the misspecification
of model parameters (Fig. 5). Application to real
datasets (Figs. 7 and 8) allows for hypothesis testing
concerning the added value of various remote sensing
soil moisture products for land surface modeling appli-
cations. Results indicate that even retrievals from non-
optimal, X-band frequency sensors over heavily veg-
etated areas (i.e., the AL/GA transect) significantly en-
hance the quality of soil moisture predictions derived
from a simple water balance model and the spaceborne
GPCC-1DD precipitation dataset. Over a large fraction
of the earth’s surface, such satellite-based precipitation
datasets provide the only available source of rainfall
data. Consequently, this result offers strong support for
the added utility of spaceborne soil moisture observa-
tions for soil moisture monitoring in precipitation data—
poor regions of the world. In particular, the presence of
detectable skill at X band along the AL/GA transect
bodes well for future spaceborne missions based on
lower-frequency L-band measurements [e.g., the Euro-
pean Space Agency Soil Moisture and Ocean Salinity
(SMOS) mission (Kerr et al. 2001)]. Any skill present at
X band within the AL/GA transect should be enhanced
by longer-wavelength observations better suited for the
penetration of dense vegetation canopies.

Results also provide valuable feedback for the design
of spaceborne soil moisture retrieval strategies. Figures
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7 and 8 suggest that single-polarization approaches that
utilize ancillary W and T¢ data from outside sources are
superior over the lightly vegetated TX/OK transect.
However, a multipolarization approach that incorpo-
rates both T, and T, measurements in an effort to
reduce dependence on ancillary W or T observations is
generally advantageous for the more heavily vegetated
GA/AL transect. This lack of geographic consistency
suggests that considerable merit exists in future satellite
missions carrying multiple types of soil moisture re-
trieval algorithms forward in their data stream. More
careful analysis will be required to confirm these re-
sults. Nevertheless, they provide an example of the type
of retrieval algorithm design feedback afforded by the
approach. For this preliminary analysis, our test bed is
limited to two transects in the southern United States.
However, no practical barriers exist for expanding the
approach over broader precipitation data-rich areas of
North America, Europe, and Asia.

In closing, two caveats are worth noting. First, R, ;..
results presented here are based on a very simple API
land surface model. The approach could potentially be
modified such that (1) is replaced by a more physically
realistic land surface model. Such a modification would
allow for consideration of a wider range of land surface
modeling error and not simply the impact of precipita-
tion uncertainty. However, with increased modeling
complexity also comes greater ambiguity concerning
the interpretation of data assimilation results, a need
for a more complex data assimilation approach, and,
ultimately, more technical and practical barriers for the
adoption of the methodology by remote sensing dataset
developers and users. Future work will address the im-
pact of more complex land surface modeling method-
ologies and potential trade-offs between model com-
plexity and the tractability of the approach.

Finally, it is important to note that this approach is
intended to complement, not replace, traditional vali-
dation techniques for remotely sensed soil moisture.
The approach is somewhat application dependent in its
emphasis on land surface modeling and, consequently,
would not likely fully satisfy current NASA or Euro-
pean Space Agency programmatic requirements for re-
mote sensing product validation. However, by using
more easily acquired ground-based rainfall measure-
ments as an effective proxy for less widely available soil
moisture measurements, it expands our ability to ob-
jectively assess—and ultimately improve—the quality
of spaceborne soil moisture products.
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