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ABSTRACT

This paper reports the results of an ESA funded project 
on the use of abstract interpretation to validate critical 
real-time  embedded  space  software.  Abstract 
interpretation is  industrially used since several  years, 
especially for the validation of the Ariane 5 launcher. 
However,  the  limitations  of  the  tools  used  so  far 
prevented  a  wider  deployment.  Astrium  Space 
Transportation,  CEA,  and  ENS  have  analyzed  the 
performances  of  two  recent  tools  on  a  case  study 
extracted from the safety software of the ATV:

- ASTRÉE, developed by ENS and CNRS, to check 
for run-time errors,

- FLUCTUAT,  developed  by CEA,  to  analyse  the 
accuracy of numerical computations.

The conclusion of the study is that the performance of 
this new generation of tools has dramatically increased 
(no  false  alarms  and  fine  analysis  of  numerical 
precision).

1. INTRODUCTION

As recent NASA mission failures illustrate, any single 
error  in  critical  software  can  have  catastrophic 
consequences.  More than half  of  all  satellite  failures 
from  2000  to  2003  involved  software.  Even  though 
failures are usually not advertised, some software bugs 
have become famous, such as the error in the MIM-104 
Patriot. 
One  use  of  abstract  interpretation  techniques  is  to 
improve the confidence and reduce the cost of software 
validation. Software validation is a difficult and costly 
activity  representing  more  than  half  of  the  total 
development  cost.  Software  validation  is  the  last 
development step, but, unfortunately, testing and code 
review, the most widely deployed verification methods, 
suffer  from  severe  shortcomings.  Both  methods  are 
very  time consuming and labour intensive processes. 
For  most  critical  systems,  50%  of  the  overall 
development costs are allocated to testing. In fact, it is 
not practically feasible to hunt down to the last bug. In 
short, as E. W. Dijkstra puts it: Program testing can be 

a very effective way to show the presence of bugs, but 
is hopelessly inadequate for showing their absence. 
One  of  the  most  promising  technical  axes  practised 
since several  years by ASTRIUM is the use of static 
analysis [3]. INRIA has developed around 1993 a tool, 
IABC,  based on academic studies to detect run-time 
errors (e.g., arrays out of bound, overflow, zero divide, 
etc.); this tool has then been scaled for Ariane 5 ADA 
products, and industrialized by Polyspace Technologies 
during  the  following  years  (now  The  MathWorks). 
This tool has provided some good help at that time and 
is  still  in  use  for  all  critical  software  developed  by 
ASTRIUM-ST. 
But with this first generation of abstract interpretation-
based static analysis tools, it remains difficult (indeed 
impossible)  to  avoid  false  alarms  with  floating-point 
operations and iterative algorithms. So, the use of these 
techniques which was planned for the development of 
the  ATV  safety  software  (MSU software),  has  been 
finally  abandoned  due  to  the  high  number  of  false 
alarms raised by the tool on floating-point operations. 
 "Space  Software  Validation  using  Abstract 
Interpretation" (SSVAI) is an ESA project which had 
the  objective  to  investigate  the  use  of  abstract 
interpretation-based  static  analysis  techniques  to 
improve  the  validation  of  space  critical  embedded 
software  applied  to  numerical  algorithms  for  which 
other tools have not provided satisfactory results. 
Two tools have been studied:
- ASTRÉE:  Analyse  Statique  de  logiciels  Temps-

RÉel  Embarqués  (Static  Analysis  of  Real-Time 
Embedded Software) [1,4]. This tool, developed by 
the École Normale Supérieure and the CNRS, aims 
at  automatically  proving the absence  of  run-time 
errors, such as division by zero, out of range array 
indexes, arithmetic overflows, etc.

- FLUCTUAT:  This  tool,  developed  by  the  CEA, 
aims  at  analysing  the  numerical  precision  and 
stability of complex algorithms [5].



2. WHAT IS ABSTRACT INTERPRETATION? 

The  formal  verification  of  a  program  (and  more 
generally a computer system) consists in proving that 
its semantics (describing "what the program executions 
actually  do")  satisfies  its  specification  (describing 
"what the program executions are supposed to do"). 
Abstract Interpretation [3] formalizes the idea that this 
formal proof can be done at some level of abstraction 
where  irrelevant  details  about  the  semantics  and  the 
specification are ignored. This amounts to proving that 
an abstract semantics satisfies an abstract specification. 
Abstractions  shall  be  sound  (no  conclusion  derived 
from the  abstract  semantics  is  wrong  relative  to  the 
program  concrete  semantics  and  specification). 
Abstractions  should  also  preferably  be  complete  (no 
aspect of the semantics relevant to the specification is 
left out). In the considered applications, which tackle 
undecidable  program  properties,  completeness  is 
impossible.  Hence,  the objective is  to minimize false 
alarms on a specific family of programs while keeping 
a reasonable analysis cost.
Abstract interpretation can be applied to the systematic 
construction  of  methods  and  effective  algorithms  to 
approximate undecidable or very complex problems in 
computer  science  such  that  the  semantics,  the  proof, 
the static analysis, the verification, the safety and the 
security of software or hardware computer systems. In 
particular,  static  analysis  by  abstract  interpretation, 
which  automatically  infers  dynamic  properties  of 
computer systems, has been very successful these last 
years  to  automatically  verify  complex  properties  of 
real-time, safety-critical embedded systems. 
Verifying  the  software  specification  of  numerical 
algorithms  including  iterative  loops  is  considered  a 
difficult problem. Formal specifications usually do not 
exist  but  implicit  specifications  can be used, such as 
the absence of run-time errors (overflows, etc.) or the 
stability  of  numerical  computations.  Due  to 
undecidability  issues,  complete  tools  are  generally 
impossible to design and tools may fail to prove (part 
of) the specification. Soundness dictates that the tools 
raise  alarms  to  signal  all potential  violations  of  the 
specification.  A  spurious  alarm  reported  by  the  tool 
when the specification is not actually violated is called 
a false alarm.
However,  static analysis tools producing very few or 
no  false  alarms  have  been  designed  and  used  in 
industrial  contexts  for  specific  families  of  properties 
and  programs.  In  all  cases,  abstract  interpretation 
provides a systematic construction method based on the 
effective  approximation  of  the  concrete  semantics, 
which  can  be  (partly)  automated  and/or  formally 
verified. 
When dealing with undecidable questions on program 
execution, the verification problem must reconcile: 

- correctness  (which  excludes  non  exhaustive 
methods such as simulation, test, bounded model 
checking, or syntactic pattern-matching), 

- automation (which excludes model checking with 
manual  production  of  a  program  model  and 
deductive  methods  where  provers  must  be 
manually assisted), 

- precision (which excludes general analysers which 
would  produce  too  many  false  alarms,  i.e., 
spurious warnings about potential errors), 

- scalability (for software of a few hundred thousand 
lines), 

- efficiency  (with  minimal  space  and  time 
requirements allowing for rapid verification during 
the software production process which excludes a 
costly iterative refinement process).

3. RESULTS OF THE PROJECT 

3.1. Scope 

The  programs  studied  in  this  project  have  been 
automatically generated using proprietary tools familiar 
to control engineers (such as MATLAB/SIMULINK or 
SCADE)  from  high-level  specifications  (such  as 
systems  of  differential  equations  or  synchronous 
operator building blocks, which is equivalent to the use 
of synchronous languages like Lustre). 
Such  synchronous  data  flow  specifications  are  quite 
common  in  real-time  safety-critical  control  systems 
developed  for  on-board  flight  software.  Periodic 
synchronous programming perfectly matches the need 
for the real-time integration of differential equations by 
forward fixed step numerical methods. The verification 
tools shall cope with this family of programs and the 
current status is the following:
- The Polyspace Verifier  tool  (The MathWorks)  is 

currently  used  at  Astrium  SAS  BU  Space 
Transportation  and  other  space  industry  but  has 
shown some strong limitations. In fact, in order to 
limit  the  number  of  false  alarms  raised,  the 
analysis of floating-point number overflows had to 
be disabled, which makes the approach much less 
interesting. 

- The ASTRÉE tool [1,4] (studied in this project) is 
a  static  program  analyzer  aiming  at  proving  the 
absence  of  run-time  errors  (RTE)  in  programs 
written in the C programming language. ASTRÉE 
uses  generalist  abstractions  (intervals,  octagons, 
etc.)  and  specific  abstractions  which  have  been 
designed  for  the  application  domain  (to  handle 
filters,  integrators,  etc.).  The  proof  that  the 
software  satisfies  the  implicit  specification 
(absence of RTE) is mathematically valid since it 
is  made  for  a  superset  of  all  possible  program 
behaviours  and  all  possible  execution 
environments.  However  some  executions  in  the 
over-approximations can lead to false alarms that 



do not correspond to an actual concrete execution. 
The whole difficulty of the undecidable problem of 
software  verification  is  to  choose  sound  over-
approximations  without  false  alarms  (by 
soundness,  no  true  error  can  be  forgotten). 
ASTRÉE has been used successfully on the flight 
control software of the AIRBUS A340 and A380 
[2]  where  it  raised  no  false  alarms,  even  for 
complex  computations  involving  floating-point 
numbers. In the case of ASTRÉE, the programs to 
be  analysed  are  real-time  synchronous  control-
command applications. 

- The  FLUCTUAT  tool  [5]  (also  studied  in  this 
project)  is  an  abstract  interpretation  tool  for 
studying numerical  programs coded  in C, and in 
particular  the  propagation  of  uncertainties  in 
floating-point  computations.  Its  aim  is  to  detect 
automatically  a  possible  catastrophic  loss  of 
precision and its source, or else prove its absence. 
It relies on abstract domains for the estimation of 
values  and  errors,  based  on  interval  and  affine 
arithmetic (with zonotopic concretization).
o A  language  of  assertions  helps 

specifying  the  range  of  inputs  and  initial 
uncertainties. The tool delivers, for each scalar 
variable of the analyzed program, ranges for 
the  value  that  variables  would  take  if 
computed with an idealized semantics in real 
numbers,  ranges  for  the  machine  values 
(floating-point or integer), and ranges for the 
error  between the idealized and the machine 
semantics,  decomposed by contribution from 
each  line  of  code.  The  tool  produces  a 
graphical representation of the source of each 
numerical precision loss. It allows the user to 
know quickly the lines in the C source code 
causing  the  biggest  losses  of  numerical 
precision.

o For  loops,  the  tool  also  allows  to 
produce graphics representing the evolution of 
bounds for the values and errors of variables 
during the computation. This is an important 
feature  for  real-time  systems,  as  it  allows 
understanding the evolution of the numerical 
precision during the duration of the software 
execution. 

o Finally,  it  can  also  deliver 
information about the sensitivity of a code to 
initial errors.

A  problem  of  numerical  instability  of  the  same 
kind as those that can be detected by FLUCTUAT 
had been discovered in the navigation algorithm of 
the  MSU  Software.  But,  due  to  a  difference  of 
precision between the host  machine used for  the 
algorithm validation and the target  machine,  this 
bug  was  detected  very  late,  in  the  last  stage  of 
target validation.

3.2. Case study

A  representative  piece  of  space  software  has  been 
provided by ASTRIUM ST in order to be used for the 
assessment  of  the  ASTRÉE  and  FLUCTUAT  tools. 
This case study is based on the on-board software of 
the  Monitoring  and  Safing  Unit  (MSU)  of  the  ATV 
space vehicle. The following criteria have been used to 
select the case study:
- The case study is representative of the complexity 

of  software  developed  by  ASTRIUM  ST.  The 
MSU  SW  comprises  a  simple  GNC  (Guidance, 
Navigation,  Control),  but  fully  representative  of 
the numerical algorithms developed at ASTRIUM 
ST. The mission management part of the MSU SW 
is  less  representative  of  ASTRIUM ST Software 
development,  but  the study focuses  on numerical 
algorithms. 

- The case study is small enough to be manageable 
during a R&T study. 

- The case study is available in C (even though the 
operational  version has been developed in  ADA, 
several C versions of the MSU SW exist). 

The MSU SW contains mainly: 
- Navigation  and  Control  algorithms  (i.e.,  GNC 

without Guidance), 
- a  simplified  mission  management  (composed  of 

one state automaton and of a plan sequence).
The Technical Specification of the MSU SW is based 
on a SCADE model. This model covers the high level 
software architecture, the mission management, and the 
architecture of the control and of the navigation. The 
flight version of the MSU SW has then been designed 
and developed in ADA. For the needs of several R&T 
projects, two versions of the MSU Software have been 
developed,  respectively  in  SCADE  V5  and  in 
SIMULINK, which can generate C code. The code of 
this case study has  been developed not with the usual 
level of quality of operational projects of ASTRIUM-
ST. 
The analysis of the SIMULINK models has failed due 
to the machine-dependant optimizations of the C code 
generated by RTW-EC. Thus, this version of the case 
study was abandoned and the work has focused on the 
SCADE  models.  These  SCADE  models  have  been 
updated to SCADE V6 (last version of the editor and 
code generator available since October 2007). Several 
C  code  generation  options  of  SCADE  6  have  been 
tested  (not  expanded  or  expanded  with  several 
optimization  levels)  in  order  to  complete  the 
assessment of ASTRÉE and FLUCTUAT.



3.3. Usability  of  abstract  interpretation-based 
static analysis tools in space domain 

3.3.1. Exhaustive detection of  run-time errors  with 
ASTRÉE 

Software  verification  consists  in  proving  that  all 
executions of a program satisfy a specification. In the 
case of ASTRÉE [1,4], the specification is implicit: no 
execution should lead to a run-time error or undesirable 
behaviour  (out  of  range  index,  division  by  zero, 
dangling  pointer,  numeric  overflow,  etc.).   ASTRÉE 
can also check some user-defined assertions (such as 
variables staying within user-specified ranges).
This study has shown that ASTRÉE is well adapted to 
the C code generated from SCADE V6 and to manual 
C code, but it is less efficient on C code generated from 
SIMULINK. It cannot analyse C++ nor ADA code. 
On the proposed case  study,  the tool  has  allowed to 
detect and correct several bugs: incorrect accesses to an 
array,  incorrect  numerical  protections,  and  incorrect 
uses  of  memory  copies  (due  to  bugs  in  the 
experimental SCADE KCG tool when generating non 
optimized code). 
To  obtain  the  first  analysis  results,  the  following 
activities were performed:
- Definition  of  a  specific  library  which  can  be 

parameterized for either run-time error analysis or 
embedded  code  generation.  This  library  defines 
trigonometric,  vector,  matrix,  and  quaternion 
computations,  as  well  as  the  square  root  and 
memory  copy  operations.  This  library  has  been 
developed in the scope of this project and can be 
reused in any analysis of similar space software. It 
may  however  have  to  be  extended  for   more 
specific needs. 

- Experimentation  with  the  various  SCADE  KCG 
code  generator  options  to  discover  which  ones 
provide optimal analysis speed and precision (e.g., 
the  analysis  precision  depends  on  how  Boolean 
operations  are  compiled;  it  is  faster  when 
optimized code is generated,  etc.).  These settings 
are generic and can be reused on any analysis of 
similar space software. 

- Definition and formalization of properties  on the 
execution environment (e.g.,  acceptable values of 
input  or  maximum  run  time)  to  ensure  the 
exhaustive  data  coverage  of  the  analysis.  This 
activity has to be performed for each project.

Then,  in  order  to  ensure  the  absence  of  alarms,  the 
following actions were performed:
- Addition  of  a  minimal  number  of  numerical 

protections. The soundness of the tool ensures that 
no protection has been forgotten.  In  many cases, 
the tool can prove that no protection is necessary, 
thus  greatly  reducing  the  number  of  useless 
protections to insert (useless protections  should be 

avoided  as  they  have  a  negative  impact  on  the 
efficiency of the code).

- Addition  of  known  facts,  that  is,  user-defined 
predicates  that  the  tool  assumes  correct.  The 
correctness  of  these  known  facts  comes  from  a 
manual analysis or an analysis by the FLUCTUAT 
tool. The use of known facts could be avoided by 
extending  ASTRÉE  with  domain-specific 
abstractions  (such  work  was  performed  for 
avionics  software,  hence  ASTRÉE's  ability  to 
reach zero false alarms on AIRBUS code without 
the need for any known fact; moreover,  after the 
end  of  the  SSVAI  project,  ASTRÉE  has  been 
extended  with  abstractions  specific  to  quaternion 
computations, which reduces the need for known 
facts on the case study considered here).

After these additions, ASTRÉE outputs 0 false alarms. 
Moreover,  the  analysis  is  extremely  efficient:  the  8 
KLoC (lines before pre-processing of C code generated 
by  SCADE  KCG  V6  in  non-expanded  and  O3 
optimized  mode)  control   part  of  the  case  study  is 
analyzed in 2mn30s on a 64-bit laptop PC while the 6 
KLoC navigation part is analyzed in 1mn40s.
Even  if  additional  work would be  useful  in  order  to 
improve  the  precision  of  ASTRÉE on some specific 
features such as the handling of Kalman filters (e.g., to 
reduce  the  need  for  known facts),  the ASTRÉE tool 
can clearly be used on this and any similar critical real-
time embedded space software.

3.3.2. Analysis of numerical  stability of algorithms 
with FLUCTUAT

This  study  has  shown  that  FLUCTUAT  [5]  is 
compatible  with  C code  generated  from SCADE V5 
(V6 has not been tested) and with manual C code but it 
is less efficient on C code generated from SIMULINK 
and is not compatible with C++ and ADA. 
The tool has shown the following on the MSU code:

- The  full  code  (38246  LoC,  expanded  inlined 
SCADE V5 generated C code) has been analyzed, 
under  some restrictive hypotheses,  and proved to 
behave well numerically.

- The ranges of the output of some critical functions 
of  the  MSU  which  were  studied  in  internal 
specification  documents  of  Astrium  have  been 
confirmed  automatically  by  FLUCTUAT. 
FLUCTUAT also gave bounds on the imprecision 
errors  for  those  functions  that  could  not  be 
computed  by  hand,  hence  were  not  detailed  in 
these internal documents.

- The stability  of  a  8-th order  filter  (used to filter 
accelerations in the main control mechanism of the 
MSU  software)  has  been  proved  automatically. 
The ranges of the output ([−14.07, 14.07]), both on 



real numbers and floating point numbers, found by 
the tool, with full loop unfolding, correspond to the 
expected theoretical ranges, as specified in internal 
Astrium documents (inputs within [-10,10] and a 
gain equal to 1.4). Imprecision errors were shown 
to  be  negligible  (the  global  error  lies  in  [−5.45 
10−5, 5.45 10−5] for simple precision floating point 
numbers).
The 8th order filter is made with 4 connected cells 
of  order  2,  Fluctuat  shows that  the  biggest  error 
comes from the third cell of order 2 (Fig. 1).

Figure 1. Biggest contribution to the global error  
comes from the transfer function of the third cell

Test cases were automatically produced by the tool 
to  derive  "worst-case"  scenarios  for  values  and 
errors.  The  two  sequences  are  different  (the 
maximal error is not related to the maximal value) 
and hard to derive manually (Fig. 2).

Figure 2. Sequences that derive the maximal value 
(gray line) and the maximal global error (black line)

For  simple  precision  floating  point  numbers,  the 
output  of  the  filter  was  proved  to  be  within 
[−14.0754471,  14.0754471],  and  the global  error 
within  [−5.454328  10-5,  5.454328  10-5].  The 
maximal value reached was 14.0754108; its related 

global  error  was  bounded  by  1.15896  10−6. 
However,  the maximal error  reached, in absolute 
value, was  7.22078  10−6 (Fig.  3)  and  its  related 
value was −1.17364860.

Figure  3.  Evolution  of  the  error  function  of  the  
sequence leading to the maximal error

The  current  version  of  Fluctuat  embeds 
improvements  of  the  abstract  domain  [6]  made 
after the ATV case study. The tool is able to derive 
a  tight  invariant  of  the  former  filter  ([-15.97, 
15.97]).

- The prediction part of the Kalman filter,  heart  of 
the  control  mechanism,  relies  on  two 4-th  order 
Runge-Kutta (RK4) integrations. .
Here, two different kinds of errors are of interest: 
the  imprecision  error  due  to  the  use  of  finite 
precision numbers and “functional” errors related 
to  the  integration scheme used  to  solve ordinary 
differential equations (ODE).
For  the  first  kind,  that  is,  the  imprecision  error, 
Fluctuat  shows that  the  main  contribution to  the 
global  error  on  the  acceleration  command  ac[] 
comes  from  the  representation  in  floating  point 
numbers of integration steps (0.075 and 0.925 in 
real numbers). For example, in Fig. 4, one can see 
that the representation of 0.925 introduces an error 
of 1.06 10-10 on variable ac[1] which value is 2.60 
10-6  . This corresponds to a non negligible relative 
error of 4 10-5.
For the functional error, we have used an external 
guaranteed integrator, GRKLib [7], to estimate the 
difference  between  the  values  given  by  a 
guaranteed  integration  of  ODEs  modelling  the 
physical  environment  and  the  values  given  by 
Fluctuat  on the implementation of  the  prediction 
part of the MSU Software. We have found that the 
relative discrepancy is around 18%, which means 
that  the  integration  scheme  used  is  rather 
imprecise. However, comparative analyses showed 
that  the  choice  of  an  RK4 integration  algorithm 
(with these large integration steps) was better than 



simpler  Euler-like  integration  algorithms  (with 
smaller  integration  steps  –  for  instance  0.1  and 
0.01). 

Figure 4. Contribution of the integration step to the 
global error

After the end of the SSVAI project, the whole Kalman 
filter  (and  not  only  its  prediction  part)  has  been 
analysed  with  HybridFluctuat  [8]  (Fluctuat  tool 
enhanced with a guaranteed integrator), to analyse the 
difference between the real position of the ATV, given 
by  sensors  (over  approximated  by  the  guaranteed 
integrator), and the estimation of this position given by 
the software (implementation of the Kalman filter): the 
discrepancy was found to be around 5% [8].
All these features made the tool very practical and very 
efficient to better understand the numerical behaviour 
of the system under analysis. 
This study has also shown that space software is much 
more difficult to analyze than aeronautic software due 
to  the important  number of  non linear  computations, 
especially  with  quaternions  (most  software  from  the 
aeronautics  industry  that  have  been  analyzed  by 
FLUCTUAT  were  using  linear  computations,  except 
for some specific and isolated functions).

4. CONCLUSION 

The  ASTRÉE  [1,4]  and  FLUCTUAT  [5]  tools  are 
applicable to any embedded space software developed 
manually in C. They can also analyze C code generated 
from SCADE models but they are less efficient on C 
code  generated  from SIMULINK models  and  cannot 
analyze  other  programming  languages  such  as  C++, 
ADA,  or  Java,  which  is  an  important  restriction 
(although  these could be analyzed by after translation 
into  C  by  available  automatic  tools;  moreover 
FLUCTUAT  is  currently  being  extended  to  handle 
ADA  83  as  well  as  specific  architecture-dependent 
features allowing the analysis of software running on 
non IEEE-754 compilant hardware, such as MIL 1750). 
This study has shown that embedded space software is 
difficult  to  analyze  due  to  non  linearity  (mainly  in 
quaternion  computations)  and  complex  control 

command  algorithms  involved  (e.g.,  Kalman  filter). 
ASTRÉE can be extended to handle this by designing 
new specific  abstract  domains.  Definite progress  was 
made after the end of the project through the addition 
of  a  new  domain  specialized  in  the  analysis  of 
quaternion computations. The architecture (concerning 
the activation conditions) of the software has also an 
important impact on the efficiency of the analyses. But 
it  should  be  noticed  that  the  software  architecture 
which  suits  static  analysis  by  abstract  interpretation 
best  is  also  the  more  readable  one and  maintainable 
one.  This  technique  can  thus  be  a  metrics  of  good 
architectures. 
In  spite  of  these  difficulties,  abstract  interpretation 
techniques  can  greatly  improve  the  quality  of  space 
embedded software:

- ASTRÉE has allowed correcting bugs in the case 
study, 

- the number of remaining false alarms is equal to 
zero  (compared  to  several  hundred  of  remaining 
false  alarms  for  an  analysis  with  Polyspace 
Verifier) 

- FLUCTUAT has confirmed some manual analyses 
performed on the MSU software, 

- FLUCTUAT has delivered results on global errors 
which were not manually achievable, 

- the tools are complementary: they prove different 
properties  and  may  be  used  together  (e.g.,  the 
ranges found by a global analysison error-free code 
by ASTRÉE can be used as input by FLUCTUAT 
to study the relative precision of a given numeric 
computation; on the other hand, properties proved 
on  error-free  code  parts  with  the  help  of 
FLUCTUAT  can  be  inserted  as  known  facts  in 
code  analyzed  by  ASTRÉE),  n.  Note  that  it  is 
necessary to prove the absence of run-time errors 
of  some  code,  which  is  the  focus  of  ASTRÉE, 
before analysing its numeric precision, which is the 
focus of FLUCTUAT,.

- a process of use has been defined for both tools.

Thanks to a case study representative of the software 
developed at ASTRIUM ST, the results of this study 
will  be  applicable  to  any  type  of  embedded  critical 
real-time  space  software  (launchers,  satellites, 
spacecrafts,  and space  probes)  developed  in C. They 
will  improve  the  quality  of  software  (fewer  residual 
bugs) and will at the same time dramatically decrease 
the costs of robustness testing. 

The study has also hinted towards some directions of 
improvement for the tools.
As  a  conclusion,  the  Technology  Readiness  Level 
(TRL)  for  ASTRÉE  and  FLUCTUAT  on  space 
software  is  evaluated  between  4  (component  and/or 



breadboard validation in laboratory environment) and 5 
(component  and/or  breadboard  validation  in  relevant 
environment).
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