
SPACE SOFTWARE VALIDATION USING ABSTRACT INTERPRETATION

Olivier Bouissou(1), Eric Conquet(2), Patrick Cousot(3), Radhia Cousot(3)(6), Jérôme Feret(3)(7), Khalil Ghorbal(1), Eric
Goubault(1), David Lesens(4), Laurent Mauborgne(3), Antoine Miné(3)(6), Sylvie Putot(1), Xavier Rival(3)(7), Michel

Turin(5)

(1) CEA LIST, MeASI, Point Courrier 94, Gif-sur-Yvette, F-91191 France, Email: FirstName.LastName@cea.fr
 (2) ESA - ESTEC, Noordwijk - The Netherlands, Email: eric.conquet@esa.int

(3) ENS, DI, ENS, 45, rue d'Ulm, 75230 Paris Cedex 5, France, Email: FirstName.LastName @ens.fr
 (4) Astrium ST, 66, route de Verneuil, 78133 Les Mureaux, France, Email: david.lesens@astrium.eads.net

(5) GTI6, 33, avenue Kennedy, 91300 Massy, France, Email: michelturin@GTI6.com
(6) CNRS, France

(7)INRIA Paris-Rocquencourt, Domaine de Voluceau, 78153 Le Chesnay, France

ABSTRACT

This paper reports the results of an ESA funded project
on the use of abstract interpretation to validate critical
real-time embedded space software. Abstract
interpretation is industrially used since several years,
especially for the validation of the Ariane 5 launcher.
However, the limitations of the tools used so far
prevented a wider deployment. Astrium Space
Transportation, CEA, and ENS have analyzed the
performances of two recent tools on a case study
extracted from the safety software of the ATV:

- ASTRÉE, developed by ENS and CNRS, to check
for run-time errors,

- FLUCTUAT, developed by CEA, to analyse the
accuracy of numerical computations.

The conclusion of the study is that the performance of
this new generation of tools has dramatically increased
(no false alarms and fine analysis of numerical
precision).

1. INTRODUCTION

As recent NASA mission failures illustrate, any single
error in critical software can have catastrophic
consequences. More than half of all satellite failures
from 2000 to 2003 involved software. Even though
failures are usually not advertised, some software bugs
have become famous, such as the error in the MIM-104
Patriot.
One use of abstract interpretation techniques is to
improve the confidence and reduce the cost of software
validation. Software validation is a difficult and costly
activity representing more than half of the total
development cost. Software validation is the last
development step, but, unfortunately, testing and code
review, the most widely deployed verification methods,
suffer from severe shortcomings. Both methods are
very time consuming and labour intensive processes.
For most critical systems, 50% of the overall
development costs are allocated to testing. In fact, it is
not practically feasible to hunt down to the last bug. In
short, as E. W. Dijkstra puts it: Program testing can be

a very effective way to show the presence of bugs, but
is hopelessly inadequate for showing their absence.
One of the most promising technical axes practised
since several years by ASTRIUM is the use of static
analysis [3]. INRIA has developed around 1993 a tool,
IABC, based on academic studies to detect run-time
errors (e.g., arrays out of bound, overflow, zero divide,
etc.); this tool has then been scaled for Ariane 5 ADA
products, and industrialized by Polyspace Technologies
during the following years (now The MathWorks).
This tool has provided some good help at that time and
is still in use for all critical software developed by
ASTRIUM-ST.
But with this first generation of abstract interpretation-
based static analysis tools, it remains difficult (indeed
impossible) to avoid false alarms with floating-point
operations and iterative algorithms. So, the use of these
techniques which was planned for the development of
the ATV safety software (MSU software), has been
finally abandoned due to the high number of false
alarms raised by the tool on floating-point operations.
 "Space Software Validation using Abstract
Interpretation" (SSVAI) is an ESA project which had
the objective to investigate the use of abstract
interpretation-based static analysis techniques to
improve the validation of space critical embedded
software applied to numerical algorithms for which
other tools have not provided satisfactory results.
Two tools have been studied:
- ASTRÉE: Analyse Statique de logiciels Temps-

RÉel Embarqués (Static Analysis of Real-Time
Embedded Software) [1,4]. This tool, developed by
the École Normale Supérieure and the CNRS, aims
at automatically proving the absence of run-time
errors, such as division by zero, out of range array
indexes, arithmetic overflows, etc.

- FLUCTUAT: This tool, developed by the CEA,
aims at analysing the numerical precision and
stability of complex algorithms [5].

2. WHAT IS ABSTRACT INTERPRETATION?

The formal verification of a program (and more
generally a computer system) consists in proving that
its semantics (describing "what the program executions
actually do") satisfies its specification (describing
"what the program executions are supposed to do").
Abstract Interpretation [3] formalizes the idea that this
formal proof can be done at some level of abstraction
where irrelevant details about the semantics and the
specification are ignored. This amounts to proving that
an abstract semantics satisfies an abstract specification.
Abstractions shall be sound (no conclusion derived
from the abstract semantics is wrong relative to the
program concrete semantics and specification).
Abstractions should also preferably be complete (no
aspect of the semantics relevant to the specification is
left out). In the considered applications, which tackle
undecidable program properties, completeness is
impossible. Hence, the objective is to minimize false
alarms on a specific family of programs while keeping
a reasonable analysis cost.
Abstract interpretation can be applied to the systematic
construction of methods and effective algorithms to
approximate undecidable or very complex problems in
computer science such that the semantics, the proof,
the static analysis, the verification, the safety and the
security of software or hardware computer systems. In
particular, static analysis by abstract interpretation,
which automatically infers dynamic properties of
computer systems, has been very successful these last
years to automatically verify complex properties of
real-time, safety-critical embedded systems.
Verifying the software specification of numerical
algorithms including iterative loops is considered a
difficult problem. Formal specifications usually do not
exist but implicit specifications can be used, such as
the absence of run-time errors (overflows, etc.) or the
stability of numerical computations. Due to
undecidability issues, complete tools are generally
impossible to design and tools may fail to prove (part
of) the specification. Soundness dictates that the tools
raise alarms to signal all potential violations of the
specification. A spurious alarm reported by the tool
when the specification is not actually violated is called
a false alarm.
However, static analysis tools producing very few or
no false alarms have been designed and used in
industrial contexts for specific families of properties
and programs. In all cases, abstract interpretation
provides a systematic construction method based on the
effective approximation of the concrete semantics,
which can be (partly) automated and/or formally
verified.
When dealing with undecidable questions on program
execution, the verification problem must reconcile:

- correctness (which excludes non exhaustive
methods such as simulation, test, bounded model
checking, or syntactic pattern-matching),

- automation (which excludes model checking with
manual production of a program model and
deductive methods where provers must be
manually assisted),

- precision (which excludes general analysers which
would produce too many false alarms, i.e.,
spurious warnings about potential errors),

- scalability (for software of a few hundred thousand
lines),

- efficiency (with minimal space and time
requirements allowing for rapid verification during
the software production process which excludes a
costly iterative refinement process).

3. RESULTS OF THE PROJECT

3.1. Scope

The programs studied in this project have been
automatically generated using proprietary tools familiar
to control engineers (such as MATLAB/SIMULINK or
SCADE) from high-level specifications (such as
systems of differential equations or synchronous
operator building blocks, which is equivalent to the use
of synchronous languages like Lustre).
Such synchronous data flow specifications are quite
common in real-time safety-critical control systems
developed for on-board flight software. Periodic
synchronous programming perfectly matches the need
for the real-time integration of differential equations by
forward fixed step numerical methods. The verification
tools shall cope with this family of programs and the
current status is the following:
- The Polyspace Verifier tool (The MathWorks) is

currently used at Astrium SAS BU Space
Transportation and other space industry but has
shown some strong limitations. In fact, in order to
limit the number of false alarms raised, the
analysis of floating-point number overflows had to
be disabled, which makes the approach much less
interesting.

- The ASTRÉE tool [1,4] (studied in this project) is
a static program analyzer aiming at proving the
absence of run-time errors (RTE) in programs
written in the C programming language. ASTRÉE
uses generalist abstractions (intervals, octagons,
etc.) and specific abstractions which have been
designed for the application domain (to handle
filters, integrators, etc.). The proof that the
software satisfies the implicit specification
(absence of RTE) is mathematically valid since it
is made for a superset of all possible program
behaviours and all possible execution
environments. However some executions in the
over-approximations can lead to false alarms that

do not correspond to an actual concrete execution.
The whole difficulty of the undecidable problem of
software verification is to choose sound over-
approximations without false alarms (by
soundness, no true error can be forgotten).
ASTRÉE has been used successfully on the flight
control software of the AIRBUS A340 and A380
[2] where it raised no false alarms, even for
complex computations involving floating-point
numbers. In the case of ASTRÉE, the programs to
be analysed are real-time synchronous control-
command applications.

- The FLUCTUAT tool [5] (also studied in this
project) is an abstract interpretation tool for
studying numerical programs coded in C, and in
particular the propagation of uncertainties in
floating-point computations. Its aim is to detect
automatically a possible catastrophic loss of
precision and its source, or else prove its absence.
It relies on abstract domains for the estimation of
values and errors, based on interval and affine
arithmetic (with zonotopic concretization).
o A language of assertions helps

specifying the range of inputs and initial
uncertainties. The tool delivers, for each scalar
variable of the analyzed program, ranges for
the value that variables would take if
computed with an idealized semantics in real
numbers, ranges for the machine values
(floating-point or integer), and ranges for the
error between the idealized and the machine
semantics, decomposed by contribution from
each line of code. The tool produces a
graphical representation of the source of each
numerical precision loss. It allows the user to
know quickly the lines in the C source code
causing the biggest losses of numerical
precision.

o For loops, the tool also allows to
produce graphics representing the evolution of
bounds for the values and errors of variables
during the computation. This is an important
feature for real-time systems, as it allows
understanding the evolution of the numerical
precision during the duration of the software
execution.

o Finally, it can also deliver
information about the sensitivity of a code to
initial errors.

A problem of numerical instability of the same
kind as those that can be detected by FLUCTUAT
had been discovered in the navigation algorithm of
the MSU Software. But, due to a difference of
precision between the host machine used for the
algorithm validation and the target machine, this
bug was detected very late, in the last stage of
target validation.

3.2. Case study

A representative piece of space software has been
provided by ASTRIUM ST in order to be used for the
assessment of the ASTRÉE and FLUCTUAT tools.
This case study is based on the on-board software of
the Monitoring and Safing Unit (MSU) of the ATV
space vehicle. The following criteria have been used to
select the case study:
- The case study is representative of the complexity

of software developed by ASTRIUM ST. The
MSU SW comprises a simple GNC (Guidance,
Navigation, Control), but fully representative of
the numerical algorithms developed at ASTRIUM
ST. The mission management part of the MSU SW
is less representative of ASTRIUM ST Software
development, but the study focuses on numerical
algorithms.

- The case study is small enough to be manageable
during a R&T study.

- The case study is available in C (even though the
operational version has been developed in ADA,
several C versions of the MSU SW exist).

The MSU SW contains mainly:
- Navigation and Control algorithms (i.e., GNC

without Guidance),
- a simplified mission management (composed of

one state automaton and of a plan sequence).
The Technical Specification of the MSU SW is based
on a SCADE model. This model covers the high level
software architecture, the mission management, and the
architecture of the control and of the navigation. The
flight version of the MSU SW has then been designed
and developed in ADA. For the needs of several R&T
projects, two versions of the MSU Software have been
developed, respectively in SCADE V5 and in
SIMULINK, which can generate C code. The code of
this case study has been developed not with the usual
level of quality of operational projects of ASTRIUM-
ST.
The analysis of the SIMULINK models has failed due
to the machine-dependant optimizations of the C code
generated by RTW-EC. Thus, this version of the case
study was abandoned and the work has focused on the
SCADE models. These SCADE models have been
updated to SCADE V6 (last version of the editor and
code generator available since October 2007). Several
C code generation options of SCADE 6 have been
tested (not expanded or expanded with several
optimization levels) in order to complete the
assessment of ASTRÉE and FLUCTUAT.

3.3. Usability of abstract interpretation-based
static analysis tools in space domain

3.3.1. Exhaustive detection of run-time errors with
ASTRÉE

Software verification consists in proving that all
executions of a program satisfy a specification. In the
case of ASTRÉE [1,4], the specification is implicit: no
execution should lead to a run-time error or undesirable
behaviour (out of range index, division by zero,
dangling pointer, numeric overflow, etc.). ASTRÉE
can also check some user-defined assertions (such as
variables staying within user-specified ranges).
This study has shown that ASTRÉE is well adapted to
the C code generated from SCADE V6 and to manual
C code, but it is less efficient on C code generated from
SIMULINK. It cannot analyse C++ nor ADA code.
On the proposed case study, the tool has allowed to
detect and correct several bugs: incorrect accesses to an
array, incorrect numerical protections, and incorrect
uses of memory copies (due to bugs in the
experimental SCADE KCG tool when generating non
optimized code).
To obtain the first analysis results, the following
activities were performed:
- Definition of a specific library which can be

parameterized for either run-time error analysis or
embedded code generation. This library defines
trigonometric, vector, matrix, and quaternion
computations, as well as the square root and
memory copy operations. This library has been
developed in the scope of this project and can be
reused in any analysis of similar space software. It
may however have to be extended for more
specific needs.

- Experimentation with the various SCADE KCG
code generator options to discover which ones
provide optimal analysis speed and precision (e.g.,
the analysis precision depends on how Boolean
operations are compiled; it is faster when
optimized code is generated, etc.). These settings
are generic and can be reused on any analysis of
similar space software.

- Definition and formalization of properties on the
execution environment (e.g., acceptable values of
input or maximum run time) to ensure the
exhaustive data coverage of the analysis. This
activity has to be performed for each project.

Then, in order to ensure the absence of alarms, the
following actions were performed:
- Addition of a minimal number of numerical

protections. The soundness of the tool ensures that
no protection has been forgotten. In many cases,
the tool can prove that no protection is necessary,
thus greatly reducing the number of useless
protections to insert (useless protections should be

avoided as they have a negative impact on the
efficiency of the code).

- Addition of known facts, that is, user-defined
predicates that the tool assumes correct. The
correctness of these known facts comes from a
manual analysis or an analysis by the FLUCTUAT
tool. The use of known facts could be avoided by
extending ASTRÉE with domain-specific
abstractions (such work was performed for
avionics software, hence ASTRÉE's ability to
reach zero false alarms on AIRBUS code without
the need for any known fact; moreover, after the
end of the SSVAI project, ASTRÉE has been
extended with abstractions specific to quaternion
computations, which reduces the need for known
facts on the case study considered here).

After these additions, ASTRÉE outputs 0 false alarms.
Moreover, the analysis is extremely efficient: the 8
KLoC (lines before pre-processing of C code generated
by SCADE KCG V6 in non-expanded and O3
optimized mode) control part of the case study is
analyzed in 2mn30s on a 64-bit laptop PC while the 6
KLoC navigation part is analyzed in 1mn40s.
Even if additional work would be useful in order to
improve the precision of ASTRÉE on some specific
features such as the handling of Kalman filters (e.g., to
reduce the need for known facts), the ASTRÉE tool
can clearly be used on this and any similar critical real-
time embedded space software.

3.3.2. Analysis of numerical stability of algorithms
with FLUCTUAT

This study has shown that FLUCTUAT [5] is
compatible with C code generated from SCADE V5
(V6 has not been tested) and with manual C code but it
is less efficient on C code generated from SIMULINK
and is not compatible with C++ and ADA.
The tool has shown the following on the MSU code:

- The full code (38246 LoC, expanded inlined
SCADE V5 generated C code) has been analyzed,
under some restrictive hypotheses, and proved to
behave well numerically.

- The ranges of the output of some critical functions
of the MSU which were studied in internal
specification documents of Astrium have been
confirmed automatically by FLUCTUAT.
FLUCTUAT also gave bounds on the imprecision
errors for those functions that could not be
computed by hand, hence were not detailed in
these internal documents.

- The stability of a 8-th order filter (used to filter
accelerations in the main control mechanism of the
MSU software) has been proved automatically.
The ranges of the output ([−14.07, 14.07]), both on

real numbers and floating point numbers, found by
the tool, with full loop unfolding, correspond to the
expected theoretical ranges, as specified in internal
Astrium documents (inputs within [-10,10] and a
gain equal to 1.4). Imprecision errors were shown
to be negligible (the global error lies in [−5.45
10−5, 5.45 10−5] for simple precision floating point
numbers).
The 8th order filter is made with 4 connected cells
of order 2, Fluctuat shows that the biggest error
comes from the third cell of order 2 (Fig. 1).

Figure 1. Biggest contribution to the global error
comes from the transfer function of the third cell

Test cases were automatically produced by the tool
to derive "worst-case" scenarios for values and
errors. The two sequences are different (the
maximal error is not related to the maximal value)
and hard to derive manually (Fig. 2).

Figure 2. Sequences that derive the maximal value
(gray line) and the maximal global error (black line)

For simple precision floating point numbers, the
output of the filter was proved to be within
[−14.0754471, 14.0754471], and the global error
within [−5.454328 10-5, 5.454328 10-5]. The
maximal value reached was 14.0754108; its related

global error was bounded by 1.15896 10−6.
However, the maximal error reached, in absolute
value, was 7.22078 10−6 (Fig. 3) and its related
value was −1.17364860.

Figure 3. Evolution of the error function of the
sequence leading to the maximal error

The current version of Fluctuat embeds
improvements of the abstract domain [6] made
after the ATV case study. The tool is able to derive
a tight invariant of the former filter ([-15.97,
15.97]).

- The prediction part of the Kalman filter, heart of
the control mechanism, relies on two 4-th order
Runge-Kutta (RK4) integrations. .
Here, two different kinds of errors are of interest:
the imprecision error due to the use of finite
precision numbers and “functional” errors related
to the integration scheme used to solve ordinary
differential equations (ODE).
For the first kind, that is, the imprecision error,
Fluctuat shows that the main contribution to the
global error on the acceleration command ac[]
comes from the representation in floating point
numbers of integration steps (0.075 and 0.925 in
real numbers). For example, in Fig. 4, one can see
that the representation of 0.925 introduces an error
of 1.06 10-10 on variable ac[1] which value is 2.60
10-6 . This corresponds to a non negligible relative
error of 4 10-5.
For the functional error, we have used an external
guaranteed integrator, GRKLib [7], to estimate the
difference between the values given by a
guaranteed integration of ODEs modelling the
physical environment and the values given by
Fluctuat on the implementation of the prediction
part of the MSU Software. We have found that the
relative discrepancy is around 18%, which means
that the integration scheme used is rather
imprecise. However, comparative analyses showed
that the choice of an RK4 integration algorithm
(with these large integration steps) was better than

simpler Euler-like integration algorithms (with
smaller integration steps – for instance 0.1 and
0.01).

Figure 4. Contribution of the integration step to the
global error

After the end of the SSVAI project, the whole Kalman
filter (and not only its prediction part) has been
analysed with HybridFluctuat [8] (Fluctuat tool
enhanced with a guaranteed integrator), to analyse the
difference between the real position of the ATV, given
by sensors (over approximated by the guaranteed
integrator), and the estimation of this position given by
the software (implementation of the Kalman filter): the
discrepancy was found to be around 5% [8].
All these features made the tool very practical and very
efficient to better understand the numerical behaviour
of the system under analysis.
This study has also shown that space software is much
more difficult to analyze than aeronautic software due
to the important number of non linear computations,
especially with quaternions (most software from the
aeronautics industry that have been analyzed by
FLUCTUAT were using linear computations, except
for some specific and isolated functions).

4. CONCLUSION

The ASTRÉE [1,4] and FLUCTUAT [5] tools are
applicable to any embedded space software developed
manually in C. They can also analyze C code generated
from SCADE models but they are less efficient on C
code generated from SIMULINK models and cannot
analyze other programming languages such as C++,
ADA, or Java, which is an important restriction
(although these could be analyzed by after translation
into C by available automatic tools; moreover
FLUCTUAT is currently being extended to handle
ADA 83 as well as specific architecture-dependent
features allowing the analysis of software running on
non IEEE-754 compilant hardware, such as MIL 1750).
This study has shown that embedded space software is
difficult to analyze due to non linearity (mainly in
quaternion computations) and complex control

command algorithms involved (e.g., Kalman filter).
ASTRÉE can be extended to handle this by designing
new specific abstract domains. Definite progress was
made after the end of the project through the addition
of a new domain specialized in the analysis of
quaternion computations. The architecture (concerning
the activation conditions) of the software has also an
important impact on the efficiency of the analyses. But
it should be noticed that the software architecture
which suits static analysis by abstract interpretation
best is also the more readable one and maintainable
one. This technique can thus be a metrics of good
architectures.
In spite of these difficulties, abstract interpretation
techniques can greatly improve the quality of space
embedded software:

- ASTRÉE has allowed correcting bugs in the case
study,

- the number of remaining false alarms is equal to
zero (compared to several hundred of remaining
false alarms for an analysis with Polyspace
Verifier)

- FLUCTUAT has confirmed some manual analyses
performed on the MSU software,

- FLUCTUAT has delivered results on global errors
which were not manually achievable,

- the tools are complementary: they prove different
properties and may be used together (e.g., the
ranges found by a global analysison error-free code
by ASTRÉE can be used as input by FLUCTUAT
to study the relative precision of a given numeric
computation; on the other hand, properties proved
on error-free code parts with the help of
FLUCTUAT can be inserted as known facts in
code analyzed by ASTRÉE), n. Note that it is
necessary to prove the absence of run-time errors
of some code, which is the focus of ASTRÉE,
before analysing its numeric precision, which is the
focus of FLUCTUAT,.

- a process of use has been defined for both tools.

Thanks to a case study representative of the software
developed at ASTRIUM ST, the results of this study
will be applicable to any type of embedded critical
real-time space software (launchers, satellites,
spacecrafts, and space probes) developed in C. They
will improve the quality of software (fewer residual
bugs) and will at the same time dramatically decrease
the costs of robustness testing.

The study has also hinted towards some directions of
improvement for the tools.
As a conclusion, the Technology Readiness Level
(TRL) for ASTRÉE and FLUCTUAT on space
software is evaluated between 4 (component and/or

breadboard validation in laboratory environment) and 5
(component and/or breadboard validation in relevant
environment).

Acknowledgement.
This study was partially funded by ESA contract
ITI19783.

5. BIBLIOGRAPHY

1. The ASTRÉE static analyzer, available from
AbsInt Angewandte Informatik,
http://www.absint.com/

2. D. Delmas, J. Souyris. ASTRÉE: from
research to industry. In Proc. of the 14th Int.
Static Analysis Symposium (SAS'07),
Kongens Lyngby, Denmark, pages 437-451 of
LNCS volume 4634. Springer, 2007.

3. P. Cousot, R. Cousot. Abstract interpretation:
a unified lattice model for static analysis of
programs by construction or approximation of
fixpoints. In Proc. of the 4th ACM Symposium
on Principles of Programming Languages
(POPL'77), Los Angeles, pages 238-252.
ACM Press, 1977.

4. P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. The
ASTRÉE analyzer. In Proc. of the 14th

European Symposium on Programming
(ESOP'05), Edinburgh, Scotland, pages 21-30
of LNCS volume 3444. Springer, 2005.

5. E. Goubault, M. Martel, and S. Putot.
Asserting the precision of floating-point
computations: a simple abstract interpreter. In
Proc. of the 11th European Symposium on
Programming (ESOP'02), Grenoble, France,
pages 287-306 of LNCS volume 2305.
Springer, 2002.

6. K. Ghorbal, E. Goubault, and S. Putot. The
Zonotope Abstract Domain Taylor1+. In Proc.
of the 21st Computer Aided Verification
(CAV'09), Grenoble, France, pages 627-633
of LNCS volume 5643. Springer 2009.

7. O. Bouissou, and M. Martel. Abstract
Interpretation of The Physical Inputs of
Embedded Programs. In Proc. of the 9th
Verification, Model Checking, and Abstract
Interpretation (VMCAI'08), LNCS volume
4905. Springer, 2008.

8. O. Bouissou, E. Goubault, S. Putot, K. Tekkal,
and F. Vedrine. HybridFluctuat: a static
analyzer of numerical programs within a
continious environment. In Proc. of the 21st
Computer Aided Verification (CAV'09),
Grenoble, France, pages 620-626 of LNCS
volume 5643. Springer 2009.

http://www.absint.com/

