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We treat the particle motion in Stokes’ linear edge wave along a uniformly sloping beach. By a rotation of the

coordinate frame, we show that there is no particle motion in the direction orthogonal to the sloping beach, and

conclude that particles have a longshore drift in the direction of wave propagation which decreases with depth

and distance from the shoreline. We discuss the application of this rotated coordinate frame to higher mode

(Ursell) and weakly nonlinear (Whitham) edge waves, and show that the weakly nonlinear case is identical to

that for two-dimensional deep-water Stokes waves.
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1. Introduction

The matter of particle motion beneath water waves is one of the most natural of questions; it is

immediately clear from observations that water particles do not generally travel with the speed of

the waveform, but the exact character of their motion in different types of waves has been the matter

of much investigation. In particular, considerable progress has been made in the past decade, with

the elucidation of the particle paths beneath irrotational, periodic (Stokes) waves by Constantin [1]

and those beneath irrotational, solitary waves by Constantin and Escher [2]. These theoretical results

have been recently confirmed both numerically [3, 4] as well as experimentally [5].

Mathematical investigations of particle trajectories in linear, irrotational water waves go back

to G. Green and G. B. Airy in the mid 18th century (see [6]). These authors proceeded from a

linearization of the governing equations to an investigation of plane, periodic waves on water of

infinite and finite depth, respectively. Treating the differential equations describing the particle paths

by a further linearization about the initial position, they found the now familiar result that particle

paths in deep water are closed circles with a radius exponentially decreasing with depth, while in

finite depth particle paths are ellipses which flatten out as they approach the bottom. This contrasts

with the results of the exact, irrotational theory in water of infinite [7] or finite depth [1], where no

closed particle paths exist. Note, however, that the presence of even a uniform underlying current

might lead to the formation of closed particle paths at a certain depth [8].

Rather than circumvent the difficulties of the linear problem in finite depth by introducing a

second linearization – as Airy had done in 1841 – Constantin and Villari [9] undertook to study the

particle trajectories directly, via a phase-plane analysis of the two nonlinear ordinary differential

equations. Soon thereafter, Constantin, Ehrnström and Villari [10] revisited the problem for infinite
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depth – initially treated by Green in 1839 – again without employing a second linearization. In both

cases, the results were striking: there are no closed orbits for water particles in the framework of

the linear, irrotational theory. Indeed, in stark contrast to Airy and Green’s classical results, which

may be found in nearly any textbook on water waves, the particle paths of the linear theory exhibit

a forward drift in the direction of propagation.

While particle trajectories in planar water waves have been studied extensively, making use of

the powerful tools from complex analysis and the phase plane available there, the absence of these

techniques for the full three dimensional problem means that there has been a dearth of progress in

this case. We take up the question raised by Okamoto and Shoji [11] on the particle paths of a fairly

accessible, but truly three dimensional, wave – the edge wave on a sloping beach.

First discovered by Stokes in 1846, this trapped wave, which moves along the beach (the long-
shore direction) and has an amplitude decaying with distance from the shoreline was long regarded

as a mathematical curiosity. Only in the mid 20th century was the edge wave implicated in the for-

mation of numerous coastal features, from beach cusps to crescentic bars, and were measurements

of edge wave activity in the nearshore undertaken (see Johnson [12] and references therein).

In what is to follow, we shall first outline the governing equations and present the key features

of Stokes’ edge wave, a linear, irrotational wave on a sloping bed. In light of the intractability of

the equations for the particle paths in this case, and taking a cue from the remarkable commonali-

ties between Gerstner’s exact, rotational wave and the classical linear, irrotational theory, we derive

Stokes’ edge wave in a rotated coordinate frame and show that the velocity field therein is wholly

two-dimensional. It is then a simple matter to apply the theorem of Constantin, Ehrnström and Vil-

lari to show that the particle paths are non-closed and exhibit a forward drift in the direction of wave

propagation. In a subsequent discussion, we use this rotated coordinate frame to investigate other

edge waves. In particular, while Ursell’s higher mode edge wavesa exhibit an essential cross-shore

variation, the weakly-nonlinear theory is shown to reduce to a two-dimensional problem identical

to that of higher-order deep-water Stokes theory.

2. Mathematical Preliminaries

As our point of departure, the governing equations in a coordinate frame with z pointing vertically

upwards are written in dimensional variables as follows:

Du
Dt

=−Px (2.1a)

Dv
Dt

=−Py (2.1b)

Dw
Dt

=−Pz −g (2.1c)

ux + vy +wz = 0 (2.1d)

P = Patm on the water surface z = η(x,y, t) (2.1e)

w =
Dη
Dt

on the water surface z = η(x,y, t) (2.1f)

w =
Db
Dt

on the stationary bed z = b(x,y) (2.1g)

aThere is some mystery concerning the derivation of this solution, see the remarks by Whitham [13, Sec. 7.5]. A system-

atic derivation thereof and illuminating discussion may be found in Ehrenmark [14].
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Here (u,v,w) is the fluid velocity field, g the acceleration of gravity, P the pressure, Patm a constant

denoting atmospheric pressure, η the free water surface and b the rigid, impermeable bed. In order

to proceed with a linearization, we choose to measure the pressure relative to hydrostatic pressure

via the introduction of a new pressure variable p such that

P = Patm +gz+gp.

Therewith, the dynamic boundary condition (2.1e) takes the more amenable form

P = η on the water surface z = η(x,y, t). (2.2)

Scaling via a small parameter such that (u, p,η)→ ε(u, p,η), one arrives at the linear system

ut =−px (2.3a)

vt =−py (2.3b)

wt =−pz (2.3c)

ux + vy +wz = 0 (2.3d)

p = η on the water surface z = 0 (2.3e)

w = ηt on the water surface z = 0 (2.3f)

w = ubx + vby on the bed z = b(x,y) (2.3g)

for which we assume a uniformly sloping bed specified by

b(x,y) =−x tanα,

yielding Stokes’ edge wave when we make an ansatz for harmonic waves traveling in the longshore

(y) direction

ϕ(x,y,z, t) = Aexp(i(ky−ωt)+ lz−mx).

The resulting algebraic equations then yield a dispersion relation ω =
√

k sinα and the potential

ϕ(x,y,z, t) = Aexp
(

i(ky−
√

k sinαt)+ zk sinα − xk cosα
)
. (2.4)

From this, we can see that the wave motion decays both as one moves away from the shoreline (in

the x direction) and as one descends into the fluid (in the z direction). (More details of this deriva-

tion may be found in Johnson [12].) Unfortunately, the system of nonlinear ordinary differential

equations which describe the particle paths

ẋ =−k cosαϕ(x,y,z, t) (2.5a)

ẏ = ikϕ(x,y,z, t) (2.5b)

ż = k sinαϕ(x,y,z, t) (2.5c)

is essentially intractable. We are confronted with a truly three dimensional wave, and despite the

considerable simplifications attendant to our linearization, it seems a knowledge of the particle

motions beneath Stokes’ edge wave is out of reach.
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3. Analogies and coordinates

Our further progress will be illuminated by making brief note of the analogies between linear,

deep-water theory and the exact, rotational wave developed by Franz Josef Gerstner in 1804. This

wave is the only known exact solution to the governing equations in water of infinite depth; it

features circular particle paths whose radius decreases with depth, and consequently a trochoidal

wave profile which propagates with a celerity c =
√

g/k, precisely the linear deep-water wave

speed. Gerstner’s wave was modified by Constantin in 2001 [15] to describe an explicit, exact edge

wave solution, albeit in Lagrangian coordinates – a solution which surprisingly shares the dispersion

relation of the Stokesian edge wave.

For our purposes, the main feature of interest in Constantin’s trochoidal edge wave is the decom-

position of the particle trajectories. The solution is given in terms of the Lagrangian labels a,b and

c – and it is presented in a coordinate frame rotated so that the x direction is along the sloping bed,

and the z coordinate is orthogonal to it – i.e. a coordinate frame rotated with respect to the usual one

by an angle α (see Fig. 1).

x

y

α

z

y

x

z

α

Fig. 1. Rotation of coordinate axes.

In this Gerstner edge wave, it is immediately seen that the component of the velocity orthogonal

to the sloping bed (w in the new coordinates) is zero. Indeed, the structure of the solution is such

that in each plane of constant z, the motion is described by a planar Gerstner wave. This invites the

possibility – in light of the many other commonalities between Gerstner and linear theory – that the

same choice of coordinates might allow us to progress on the particle paths in Stokes’ edge wave.

To this end, let us reconsider the dimensional system (2.1a)–(2.1g). In a coordinate frame rotated

clockwise by an angle α, such that x points downward along the sloping bed and z is orthogonal

thereto, the force of gravity

(0,0,−g) becomes (gsinα,0,−gcosα).

The kinematic variables are independent of orientation, and the impermeability condition on the

bed simplifies considerably, yielding
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Du
Dt

=−Px +gsinα (3.1a)

Dv
Dt

=−Py (3.1b)

Dw
Dt

=−Pz −gcosα (3.1c)

ux + vy +wz = 0 (3.1d)

P = Patm on the water surface z = η(x,y, t) (3.1e)

w =
Dη
Dt

on the water surface z = η(x,y, t) (3.1f)

w = 0 on the bed z = 0 (3.1g)

To find the correct linearization, we again introduce a new pressure variable p measuring devi-

ations from hydrostatic pressure, such that

P(x,y,z, t) = Patm +gxsinα −gzcosα +gp(x,y,z, t). (3.2)

We also write the free surface as a perturbation of the flat surface, that is

η(x,y, t) is replaced with x tanα +η(x,y, t). (3.3)

Assuming that our variables are suitably nondimensionalized (a feat which can be easily accom-

plished through a more careful introduction of various parameters, such as typical wavelength λ ,
water depth h0, amplitude a, and would result in the appearance of the usual amplitude parameter

ε = a/h0 and the shallowness parameter δ = h0/λ ) the equations take the form

Du
Dt

=−px (3.4a)

Dv
Dt

=−py (3.4b)

Dw
Dt

=−pz (3.4c)

ux + vy +wz = 0 (3.4d)

p = η cosα on z = x tanα +η (3.4e)

w = u tanα +ηt +uηx + vηy on z = x tanα +η (3.4f)

w = 0 on the bed z = 0 (3.4g)
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The corresponding linear system is then simply

ut =−px (3.5a)

vt =−py (3.5b)

wt =−pz (3.5c)

ux + vy +wz = 0 (3.5d)

p = η cosα on the water surface z = x tanα (3.5e)

w = u tanα +ηt on the water surface z = x tanα (3.5f)

w = 0 on the bed z = 0 (3.5g)

As we assume the flow field to be irrotational, we make again the harmonic wave ansatz for

longshore propagating waves:

ϕ(x,y,z, t) = Aexp(i(ky−ωt)+ lz−mx)

The kinematic boundary condition on the bed (3.5g) immediately implies that the fluid velocity

component normal to the bed vanishes. The Stokes’ edge wave in these coordinates is described by

ϕ(x,y,z, t) = Aexp
(

i(ky−
√

k sinαt)− kx
)
, (3.6)

η(x,y, t) = iω secαAexp
(

i(ky−
√

k sinαt)− kx
)
. (3.7)

This is seen to describe a wave propagating in the longshore direction with ω =
√

k sinα, whose

motion dies out exponentially as one moves away from the shoreline and as one descends into the

fluid, cf. (2.4). In fact, while (3.6) can be found by solely rotating (2.4) (see Yeh [16]), this does

not present the whole story. In particular, it does not enable a subsequent investigation of nonlinear

edge waves (see Discussion below).

Consequently, we see that particle trajectories are the solutions to

ẋ =−kAe−kx cos(ky−
√

k sinαt), (3.8a)

ẏ =−kAe−kx sin(ky−
√

k sinαt), (3.8b)

ż = 0. (3.8c)

Theorem 1. The motion of the fluid particles is entirely confined to planes parallel to the sloping
bed, and each particle moves in a non-closed trajectory, exhibiting a forward drift in the direction
of wave motion. This forward drift decreases with x → ∞.

Proof. See the proofs of Theorem 3.2 and Corollary 3.4 of [10].

4. Discussion

The foregoing analysis has been remarkably simple, and raises the natural question whether a rota-

tion of coordinates might be useful in elucidating interesting properties of other edge waves. Within

the confines of purely linear theory, described by (3.5a)–(3.5g), the ansatz adopted by Ursell [17]
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and Roseau [18] (once again, see the review by Johnson [12])

φ(x,y,z, t) = A(x,z)ei(ky−ωt),

p(x,y,z, t) = iωA(x,z)ei(ky−ωt),

η(x,y, t) = iω secαA(x,z)ei(ky−ωt),

leads us to the system for A(x,z) :

Axx +Azz − k2A = 0

Az = tanαAx +ω2 secαA on z = x tanα
Az = 0 on z = 0

While we might be initially optimistic at recovering the zero-mode solution of Ursell

A(x,z) = A0e−kx,

it quickly becomes apparent that the higher modes cannot reduce to superpositions of planar waves.

Assuming z–independence in the surface boundary condition and integrating shows that the zero-

mode with k = ω2 cscα is the only such solution. Indeed, Ursell’s next higher mode (for beach

angles α ≤ π/6) may be written

A(x,z) = A0e−xk −A0
tanα
tan2α

e−kxcos2α
(

e−kzsin2α + ekzsin2α
)
,

demonstrating a cross-shore variation. (Ursell’s general solution in rotated coordinates may be

found in Mok and Yeh [19], who employ the same without commenting on the matter of parti-

cle paths.)

The next natural question is whether nonlinear edge waves might reduce to a two-dimensional

motion in our (x,y)–plane. This might be asked of both the weakly-nonlinear edge waves due to

Whitham [20], or – in light of successes in studying particle paths in the fully nonlinear Stokes’

wave in deep water by Henry [7] – for the full, nonlinear theory. Note that Henry’s result, like that

of Constantin [1] which preceded it, depends crucially on two-dimensionality. It thus seems likely

that a result on particle motion in nonlinear edge waves will be possible if and only if the motion

can be shown to be two-dimensional.

We shall address only the problem of weakly-nonlinear edge waves, and leave the fully nonlin-

ear case as a topic for future study. Once again, our analysis will bear out the fact that a rotation

of the coordinate frame seems to be the proper lens through which to view the edge wave prob-

lem. To facilitate our expansion, we recast equations (3.4a)–(3.4g) in the more convenient potential

form under the assumption of irrotationality, and make an ansatz for longshore traveling waves

φ(x,y,z, t) = φ(x,y− ct,z), leading to the system:

Δφ = 0, (4.1a)

cφy − 1

2
(∇φ)2 −η cosα = 0 on z = x tanα +η , (4.1b)

φz = φx tanα − cηy +φxηx +φyηy on z = x tanα +η , (4.1c)

φz = 0 on z = 0. (4.1d)

Expanding φ ∼ εφ1 + ε2φ2 + ε2φ3, η ∼ εη1 + ε2η2 + ε2η3, and c ∼ c0 + εc1 + ε2c2, we find that

the solutions to our suitably rotated equations are at each order independent of z and identical to
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the deep-water Stokes theory, save for dependence on the angle α. Defining an offshore coordinate

x′ := xsecα on the water surface z = x tanα , and A := e−kx′ cosα , we find correct to third order:

φ ∼ ε
c0

k
sin(ky)e−kx (4.2a)

η ∼ εA tanα
k

(
cos(ky)+

1

2
εAcos(2ky)+

1

8
ε2A2 cos(ky)+

3

8
ε2A2 cos(3ky)

)
(4.2b)

ω ∼
√

k sinα
(

1+
1

2
ε2A2

)
(4.2c)

The details of the calculation are essentially analogous to those found in Wehausen and Laitone [21,

Sect. 27], reproducing the amplitude-dependent dispersion relation also found by Whitham [20].

This identity between the dispersion relation of Whitham and deep-water Stokes theory was also

noted by Yeh [16, 22], albeit without providing further calculations.

5. Conclusions

We have shown that the flow field of a truly three-dimensional wave – Stokes’ edge wave – reduces

with proper choice of coordinates to the motion of linear plane waves. The fact that such a transfor-

mation might bear fruit was indicated by the theory of Gerstner’s waves, where the same coordinate

frame allowed for the construction of exact edge waves.

This particle motion, as described by the system (3.8a)–(3.8c), may either be treated by a further

linearization about the initial position, leading to the classical result that the particles move in closed

circles whose radius decreases with depth and distance from shore, or may be analyzed directly via

phase plane methods. This latter analysis, an application of recent results of Constantin, Ehrnström

and Villari [10], yields that the fluid particles have a drift in the direction of wave propagation, along

the shoreline, though this drift decreases as one descends into the fluid and as one moves away from

the beach.

While Ehrnström et al [23] have made note of the resemblance between the edge waves found

in the small amplitude limit for a small, slowly–varying beach slope (see Johnson [24] for the

derivation) and linear theory, the results above go a step further in demonstrating, without restriction

on the beach slope, that edge waves and deep-water waves are in fact connected by a simple rotation

of the coordinate system. Using this same rotated coordinate frame, the higher-mode theory of

edge waves is found to reduce exactly to deep-water Stokes’ waves, a considerable simplification

compared to Whitham’s derivations [20].

Our systematic derivation of the equations, and subsequent demonstration for both linear and

weakly-nonlinear theory that the edge waves found therein are two-dimensional, with motion con-

fined to planes of constant z in the new coordinates, partially answers the question posed by

Okamoto and Shoji [11] on the nature of particle paths in edge waves. The related matter of particle

trajectories for fully nonlinear edge waves remains an interesting open problem.
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