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ABSTRACT

Fuzzy graph models are present everywhere from natural to artificial structures, embodying the dynamic processes in physical,
biological, and social systems. As real-life problems are often uncertain on account of inconsistent and indeterminate informa-
tion, it seems very demanding for an expert to model those problems using a fuzzy graph. To deal with the uncertainty associated
with the inconsistent and indeterminate information of any real-world problems, a neutrosophic graph can be applied, where
fuzzy graphs may not bear any fruitful results. The past definitions limitations in fuzzy graphs have directed us to present new
definitions in single-valued neutrosophic graph (SVNG). A SVNG has several applications in the fields of physics, bio and con-
nectivity of socialism. It has been an advantageous scope in the recent times for providing such information which is incomplete
or uncertain accounting in real problems that gives the direction to describe the relationship between nodes. Operations are
conveniently used in many combinatorial applications. In various situations, they present a suitable construction means; there-
fore, the current study, seeks to present and explore the key features of new operations, including: rejection, maximal product,
symmetric difference, and residue product of SVNG. We have discuss the concept of maximal product on two strong-(SVNGS)
and maximal product of connected-SVNG with examples. This research article presents the notions of degree of a vertex and
total degree of a vertex in SVNG. Moreover, this study summarizes the specific conditions needed for obtaining vertices degrees
in SVNG under the operations of maximal product, symmetric difference, residue product, and rejection. In addition, an appli-
cation was illustrated in the food and agriculture organization with an algorithm to emphasize the contributions of this research
article in practical applications.

© 2021 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Graph theory is an exceptionally advantageous device in tack-
ling combinatorial issues in different regions including calculation,
variable-based math, number hypothesis, geography, and social
frameworks. A graph is chiefly a model of relations, and it is applied
to speak to the genuine issues including connections between
objects. The vertices and edges of the graph are utilized to con-
note the articles and the relations between objects, individually. In
numerous improvement issues, the current data is vague or loose for
different reasons, for example, the loss of data, the absence of proof,
flawed measurable information, and inadequate data. By and large,
the vulnerability, in actuality, issues may show up in the data that
characterizes the issue. Fuzzy chart models are important numerical
apparatuses for treating the combinatorial issues of different areas

*Corresponding author. Email: shahbaz.ali@kfueit.edu.pk

enveloping exploration, streamlining, variable-based math, figur-
ing, ecological science, and geography. Fuzzy graphical models are
observably more helpful than graphical models due to the com-
mon presence of unclearness and equivocalness. Initially, fuzzy set
hypothesis is needed to manage numerous perplexing issues includ-
ing inadequate data. Zadeh [32], firstly exemplified the idea of the
set known as the fuzzy set. He described the fuzzy set characterized
by true membership function value ranging from closed interval
[0, 1]. Fuzzy set theory serves as a very powerful mathematical tool
for solving approximate reasoning related problems. These notions
effectively illustrate complex phenomena, which are not precisely
described by classical mathematics.

The fuzzy graphs idea and concept are discussed by Smarandache
and Rosenfeld [27]. The fuzzy graphs application has been extended
in few years and it has a scope from 19th century [4,5,10,11,15,16].
It is not necessarily true membership degree of 1, also, the
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nonmembership degree and indeterminacy occur. Nonmember-
ship degree is presented by Atanassove [3] in an intuitionistic fuzzy
set. Shao et al. [31] labeled new concepts of bondage number in
intuitionistic fuzzy graph. Rashmanlou et al. [20-26] introduced
new concepts in bipolar fuzzy graph and interval-valued fuzzy
graphs. Krishna ef al. [13,14] analyzed the concept of vague set
and vague graph. Devi et al. [8] investigated new ways in intu-
itionistic fuzzy labeling graph. Pythagorean fuzzy set also known
as IF-set of type-2 [1] is the extension of intuitionistic fuzzy set
(IE-set). Parvathi and Karunambigai [19] studied about Intuitionis-
tic fuzzy graphs. After while, Smarandache [31] included the inde-
terminacy concept in a neutrosophic set. Neutrosophy is the kind
of philosophy which analyzes the nature and scope of neutralities.
Neutrosophic set is the speculation of fuzzy set and furthermore
neutrosophic rationale is the expansion of fuzzy rationale. Smaran-
dache gives the possibility of a neutrosophic set due to introduc-
ing the vulnerability in the issues of different fields like clinical
science and financial aspects and so forth. He portrayed signifi-
cant classifications [29] of neutrosophic diagrams from which two
classifications are relied upon the strict indeterminacy and other
two classes depended [7] on its (¢, i, f) parts. Malik and Hassan
[12] presented the classification of bipolar single-valued neutro-
sophic graph (SVNG) classification. Later Malik and Naz et al. [17]
described new operations on SVNG. Naz et al. [17] discussed opera-
tions on single-valued neutrosophic graphs with application. Malik
et al. [18] also investigated some properties of bipolar SVNG. Prod-
uct operations have applications in different branches, such as cod-
ing theory, network designs, chemical graph theory, and others.
Many scholars discussed product operations on various generalized
FGs. Mordeson and Peng [16] defined some of these product oper-
ations on FGs and some new fuzzy models are discussed in [33-38].

In this research, some new properties, including maximal product,
symmetric difference, residue product, and rejection of SVNG are
presented. Also, the examples of these operations are discussed. We
found the degree and the total degree of SVNG. Finally, an appli-
cation was illustrated in the food and agriculture organization with
an algorithm to highlight the contributions of this research article
in practical applications.

2. PRELIMINARIES

In this section, the key preliminary notions and definitions that are
used in this current research study will be introduced.

Definition 1. [9] A graph G = (V, E) is an ordered pair of set of
vertices and set of edges.

Definition 2. [30] Suppose that X is a space of points with generic
element in X denoted by x. Then, the neutrosophic set M (NS-M)
is defined as M = < x : T)(x), I},(x), F),(x) >, x € X which obey 0
ATy () + L (x) + F(x)} 3. Ty, : V> [0, 1], I,: V> [0, 1], and
Fyr: V> [0, 1] represents the degree of true membership function,
degree of indeterminacy membership function, and degree of false
membership function of the element x € X, respectively.

Definition 3. [27] A SVNG G = (M, N) with underlying set of V
is defined to be a pair of G = (V, E) which is defined as (i) T),: V
> [0, 1], Fy; : V [0, 1] and I); : V > [0, 1] represents the degree of
true membership function, degree of false membership function,

and degree of indeterminacy membership function of the element
m € V, respectively, where 0 < Ty, (m) +I,(m)+F,,(m) <3,Vme V.

(ii) The function Ty : E> [0, 1], Iy : E> [0, 1] and Fyy : E > [0, 1]
are defined by

in { Ty, (m), Tyy(n)}

ax {IM(m), IM(n)}

ax {FM(m), FM(n)} .

=

3

S
AR VARV
B B B

It is free of any restriction so 0 < Ty(mn)+Iy(mn)+Fy(mn) < 3.

Example 1. Consider the Figure 1 such that V = {a, b, ¢}, E = {ab,
be, cal, M =< <i L i),<i L L>,<i L L) >, and

037027 04 0.6> 0.4 0.5 0.2 0.27 0.1
N =< (u_b, be z) , (a_b, e <_) , (a_b, be E) >
01’0102 0.7’ 0.6° \ 0.8 03202703
By routine computations, it is easy to show that G is a SVNG.

Definition 4. A SVNG G is said to be strong if Ty(mn)
min(Ty,(m), Ty (1)), Iy(mn) = max(I,,(m), I,,(n)) and Fy(mn)
max(F,(m), Fy(n)), for all mnin V.

Definition 5. A SVNG G is said to be complete if Ty(mn) =
min(T,,(m), Ty (n)), Iy(mn) = max(I,,(m), I,,(n)) and Fy(mn) =
max(F,,(m), F,,(n)), for all m, n in E.

Definition 6. A SVNG G is said to be connected if T3 (mimj) >
0, Iy (m,-mj) <LFy (mimj) < 1, for all m;, m; € V. Also, we have
T3 (mn) = sup {TN (mnl) ATy (nlnz) ATy (n2n3) A

W ATy (nk_ln) | m,n,n,y, -, m_,n € V},

IR (mn) = inf{IN (mnl) vy (nlnz) vy (n2n3) VeV

IN (nk—ln) I M, Ny, Ny, oo Mg, N E V}

and
FTY (mn) = inf{FN (mnl) V Fy (nlnz) V Fy (n2n3) VeV

FN (nk—ln) | M, Ny, Ny, oo, M _, N E V}

3. OPERATIONS ON SVNGs

In this section, we define four new kinds of operations on (SVNGs)
including maximal product, residue product, rejection, and sym-
metric difference. We show that maximal product, residue product,
and rejection of two (SVNGs) are a SVNG.

Definition 7. The maximal product G, * G, = (M, * M,, N;* N,)
of two (SVNGs) G, = (M;, N,) and G, = (M,, N,) is defined as

(0.3,0.6,0.2)

b(0.20.402)  (0.1,0.60.2) ¢(0.4,0.5,0.1)

Figurel SVNG(G).
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(1) (TM, * TMz) ((my,m,)) = max {TM, (m,), Ty, (mz)} for e € V| and ab € E,. Now, for edge (e, a)(f, a) we have:
(I, * Iny,) ((my.my)) = min {Lyy, (m,) Ly, (m,) } (T, * Tay,) (e, @)(f, b)) = max { Ty, (¢ef), Ty, (@)}

(Fy, * Fr,) ((my,my)) = min {Fy (m,),Fy, (m,)} =max {0.3,0.1} = 0.3,

¥ (my, my) € (V, x V), (T, * Iuy,) ((e; )(f, b)) = min { I, (ef), Ty, (@)}

) = min {0.5,0.3} = 0.3,
W (TMI ’ TMZ) o) (7)) = maX{TMl(m)’ TNZ (o)) (Fy, # Fy, ) ((e;a)(f, b)) = min {Fy (ef), Fy (@)}

(IM1 * IMz) ((m, mz) (m, ”2)) = min {IMl(m)7IN2 (mZ”Z)} TR = min {0.?,0.4’} i/[20.4,

(Fy, * Fa,) ((m,my) (m,ny)) = min {Fy (m), Fy (myn,)}
Vme V, and myn, €E,.
Similarly, we can find membership, indeterminacy, and nonmem-
T T — T . T Y’ P) Y’
(i) ( y ¥ Mz) ((ml ?) (nl Z)) max{ M (mlnl) MZ(Z)} bership value for all remaining vertices and edges.
(L, * Iy,) ((my.2) (my.2)) = min{Iy, (mn) .1 (2} p tion 1. Th mal prod SVNGs) G.and G
(FMI . FMZ) ((ml,z) (nl,z)) — min {FNI (m1”1) ’FMz(Z)} isr:g({)/s}:}t(l;(.)n . e maximal product of two ( s) Gyand G,,
VzeV,andmn, €E,. Proof. Let G, = (M,, N,) and G, = (M,, N,) be two (SVNGs) on
crisp graphs G, = (V, E;) and G, = (V,, E,), respectively and ((m,,

Example 2. Co.nsi(%er two (SVNGs) G} - (Ml’ Ny) and G, = (M, m,)(n,, n,)) € E; x E. Then, by Definition 7, we have two cases:
N,), as shown in Figures 2 and 3. Their maximal product G, * G,

is shown in Figure 4. Q)

forae V, and ef € E;.

Ifm,=n=m
For vertex (e, a), we find membership value, indeterminacy and

nonmembership value as follows: (T, * T, )((m, mz)(m, 1)

= max { Ty, (m), Ty, (myn,)}

(Tag, * Toy,) (e @) z 2:‘( {{OTI;‘ (()?’}Ti/lzé'a;} < max { Ty, (m), min { Ty, (m,), Ty, (n,)} }
(IM1 * IMz) ((e,a)) = min {IMl (e)’IMZ(a)} = min {max { {TMl(m)’ TMz(mz)} ,
= min {0.4,0.3) = 0.3, max {{ Ty, (m), Ty, (n,)} }
(Fy, * Ey,) ((e,@)) = min {Fyy (e), Fy, (@)} = min {(Ty, * Ty, )(m,my), Ty, % Ty )(m,my)}

=min {0.5,0.4} = 0.4,
Iy, * Iy )(m, my)(m, n,))
= min {IMl (m), INZ(mznz)}
> min {IMl(m), max {IMz(mz), IMz(nz)}}
(T, * Toy) (e e, ) = max { Ty (6). Ty (ab)} = max {min { {L, (). L (m,)}
= max {0.3,0.1} = 0.3, ,
min { {IM1 (m), IMZ(”z)}}

I 1 s ,b)) =min{I 1 b
(e 2 Bl 0 ) = max Ly, » L on e (I, » Ty o)

(Fy, * Fyr,) (e, a)(e, b)) = min {Fy, (), Fy, (ab)}

for e € V, and a € V,. For edge (e, a)(e, b), we find membership
value, indeterminacy, and nonmembership value.

= min {0.5,0.4} = 0.4, (Ey, * Fy)((m, my)(m, n,))
= min {FM1 (m),FNZ(mznz)}

. . > min {Fy; (m), max { Fy (m,), Fy, (n,) } }
¢(0.3,0.4,0.5) sy £(0.2,0.4,0.5) = max {min {{Fy; (m), Fy (m,)},
Figure2 G. min {{FMl (m), FMZ(”z)}}

= max {(FM1 * FMZ)(m, m,), (FMl * FMZ)(m, nz)} .
a(0.1,0.3,0.4) (0.1,0.4,05)  d(0.3,0.4,0.5) () Tfmy ==z
T (Ty, * Ti) ((m.2) (m.2))
(0.1,0.4,0.4) 205, Q¥ (0.2,0.5,0.5) = max {TN1 (mlnl) > TMZ(Z)}
< max {min{ Ty, (m;n,), Ty, (2)}
= min {ma.x{{TNl (ml) , TMZ(Z)} )
b(0.2,0.3,0.4) (0.2,0.4,0.4) c(0.4,0.2,0.1)

max {{TMl (”1) , TMz(z)}
Figure3 G,. =min {(Ty, * Tor,) (m1,2), (Toy, * Tor,) (m152) 5
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(0.3,0.3,0.4)

(e.a)

404
(0.3,0.3,0.4) ©3°

(e, b)

S0P 0E0

=
<
=2
o
(0.4,0.2,0.1)
0,
( .3,[}_4’0.5)
(e.d)
(0.3,0.4,0.5)

Figure4 G, *G,.

(Iy, * Iy,) ((m1,2) (n1,2))
= min {INI (””h”l) ’IMz(z)}
> min {max{INl (mlnl) ,IMZ(Z)}
= max {min{{IM1 (ml) ,IMZ(Z)} ,
min {{IM1 (”1) ’IMz(Z)}}
= ma.x{(IMl * IMZ) (ml,z) , (IM1 * IMz) (nl,z)} s

(Ey, * Ey,) ((my,2) (m.2))
= min {FN1 (m1”1) ,FMZ(Z)}
> min {max{Fy_(mn,),Fy (2)}
= max {min{{FMl (ml) ,FMZ(Z)} ,
min {{FM1 (”1) ’FMz(z)}}
= malx{(FM1 * FMz) (ml,z) , (FM1 * FMz) (nl,z)} .

Therefore, G, * G, is a SVNG. O

Theorem 2. The maximal product of two strong-(SVNGS) G,and
G,, is a strong-SVNG.

Proof. Let G, = (M,, N,) and G, = (M,, N,) be two strong-
(SVNGS) on crisp graphs G, = (V, E;) and G, = (V,, E,), respec-
tively and ((m,, m,)(n,, n,)) € E; x E,. Then by Proposition 1, G, *
G, is a SVNG. Now we have two cases:

(i) Umy=n=m
(Ty, * Ty,) ((m,my) (m,ny))
= max {TMl(m), Ty, (mznz)}
= max {TMl(m), min {TMZ (mz) s Ty, (nz)}}
= min {max{ {Tyy, (m), Ty, (mz)}
max{{TMl(m), Ty, (nz)}}
= min{(TM1 * TMz) (m, mz) , (TM1 * TMz) (m, nz)} ,

(ii)

1519

(0.4,0.2,0.1)
(f.d) (0.4,0.2,0.1)

(f.0)

(0'2'04.0‘5)

#0%070)

0.2,0.4,0.5)

(f,b)

0.2,0.3,0.4)
AO & { ]
¥
o

(f.a)
(0.2,0.3,0.4)

(Iy, * Iy,) ((m.m;) (m.n,))

= min {I; (m), Iy (m,n,)}

= min {IMl(m), max {IM2 (mz) Iy, (nz)}}

= max {min{{IMl(m),IM2 (mz)} s
min{{IMl(m),Ij\/[2 (nz)}}

= m"‘X{(IM1 # Iy,) (m. m) . (IM1 * Iy, ) (m, m)}

(FN1 * FNZ) ((m,my) (m,ny))
= min {FMl(m), Fy, (mznz)}

= min {FMl (m), max {FM2 (mz) Py, (nz)}}

max {min {{FMl(m),FM2 (mz)} ,min {{FM1 (m), Fy, (nz)}}

= max {(Fy, * Fy ) (m,my), (Fy * Fy ) (m,ny) } .

Ifmy,=n,=2
(Ty, * Ty,) ((my,2) (m,2))
= max {Ty, (mn,), Ty (2)}
= max {min{TNl ("11”1) , TMZ(Z)}
= min {max{{TNl (ml) , TMZ(Z)} ,
max {{ Ty, (n,), Ty, (@} }
=min {(Ty, * Tyy,) (m1,2), (Tyy, * Tor,) (71,2) 5

(1 * 1) (m0.2) (m.2))
= min {IN1 (mlnl) ’IMz(Z)}
= min {max{IN1 (mlnl) ,IMZ(Z)}
= max {min{{IMl (”"1) ’IMz(Z)} s
min {{IM‘ (”1) ’IMz(Z)}}
= max{(IMl * IMz) (ml,z) , (IM1 * IMz) (nl,z)} ,
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(Fy, * Fx) (m.2) (1.2))
= min {FN1 (m1”1) ,FMZ(Z)}
= min {max{FNl (mlrll) ,FMZ(Z)}
= max {min{{FM] (ml) ’FMZ(Z)} )
min {{FM1 (”1) ’FMz(z)}}
= max{(FM1 * FMz) (ml,z) s (FM1 * FMz) (nl,z)} .

Therefore, G, * G, is a strong-SVNG. d
Example 3. Consider the strong-(SVNGS) G, and G, as in Figure 5.
It is easy to see that G, * G, is a strong-SVNG, too.

Remark 1. Ifthe maximal product of two (SVNGs) G, = (M,, N,)
and G, = (M,, N,) is strong, then G, = (M,, N,) and G, = (M,, N,)
need not to be strong, in general.

Example 4. Consider the (SVNGs) G, and G, as in Figures 6 and 7.
We can see that the maximal product of two (SVNGs) G, and G,,
that is G, * G, in Figure 8.

Then G, and G, * G, are strong-(SVNGS), but
G, is not strong. Since Ty, (mz, nz) = 0.1, but
(2,)(0.2,02,0.2) (a,d)(0.2,03,0.3)
a(0.2,03,03) ¢(0.1,0.2,0.2) 02,03,03)
3 3 g g
2 - 3 :
A E
b(0.1,0.4,04)  d(0.2,0.4,0.4) (0.1,0.4,0.4)

(b,€)(0.1,0.2,0.2) (b,d)(0.2,0.4,0.4)

Gl Gz GI*GZ

Figure 5 Single-valued neutrosophic graphs.

(0.2,0.6,0.6)
® ]
a(0.2,0.6,0.6) b(0.3,0.5,0.5)
Figure6 G;.
(0.1,0.7,0.7)
® ®
¢(0.2,0.6,0.6) d(0.2,0.7,0.7)
Figure7 G,.
(a,¢)(0.2,0.6,0.6) (02060.6) (a,d)(0.2,0.6,0.6)
— S
() N
S °
S S
g S
(b, ¢)(0.3,0.5,0.5) (0.3,0.5,0.5) (b,d)(0.3,0.5,0.5)

Figure8 G, *G,.

min{ T, (rnz),TMz(n2 = min{0.2,0.2} = 0.2. Hence,

Ty, (my, 1y) # min{ Ty (m,), Ty, (n,.

Theorem 3. The maximal product of two connected-(SVNGs) is a
connected-SVNG.

Proof. Let G, = (M;, N,) and G, = (M,, N,) be two connected-
(SVNGs) on crisp graphs G; = (V4, E;) and G, = (V,, E,), respec-
tively, where V| = {m,, m,, --- m} and V, = {ny, n,, --- n}. Then
3 (m;m;) > 0, for all m;, m; € V, and T3, (min;) > 0, for all n;,
n; €V, (or II"\Z (mimj) < 1, forall m;, m; € V, and I?\’Oz (ninj) <1,
for all n;, n; € V, (or Fy (mimj) < 1, for all m;, m; € V, and
FY (n,nj) < 1,foralln;, n; € V,. The maximal product of G, = (M,
N,) and G, = (M,, N,) can be taken as G = (M, N). Now, consider
the ‘K’ subgraphs of G with the vertex set {(m;, n,),(m;, n,),-+,(m;,
ny)}, for i = 1, 2, ---, k. Each of these subgraphs of G is connected,
since the /s are the same and since G, is connected, each n;is adja-
cent to at least one of the vertices in V,. Also, since G, is connected,

each x; is adjacent to at least one of the vertices in V.

Hence, there exists at least one edge between any pair of the above

“k” subgraphs. Thus we have TS ((m;, nj) (m,.n,)) > 0 or
I ((mi, nj) (mm,nn)) <1(orFy ((mi, nj) (mm,nn)) < 1) forall
((m;, nj)(mm, n,)) € E. Hence, G is a connected-SVNG. O

Remark 2. The maximal product of two complete-(SVNGs) is not
a complete-SVNG, in general. Because we do not include the case
(my, m,) € E; and (ny, n,) € E, in the definition of the maximal
prod-uct of two (SVNGs).

Remark 3. The maximal product of two complete-(SVNGS) is a
strong-SVNG.

Example 5. Consider the complete-(SVNGs) G, and G, as in
Figure 5. A simple calculation concludes that G,*G, is a strong-
SVNG.

Definition 8. Let G, = (M,, N,) and G, = (M,, N,) be two
(SVNGs). V(my, m,) € V{xV,:

(dT)Gl*Gz (ml’ mZ) =

(TNl * TNZ) ((mly mz) (nl,l’lz)) =
(my.my)(ny.ny)EE, XE,.
Y max{Ty, (m) . Ty, (mm) ) +

my=n;,m,n,EE,

Z max{TN1 (mlnl),TM2 (my)}.

myn, €E|,m,=n,

(dl)(;l*c2 (ml’ mZ) =

(IN1 * IN;) ((”"1,”’12) (”1’”2)) =
(my.my) (1., ) €E, XE,.

Z min {IMl (my) Iy, (myny) )+

my=n;,m,n,€E,

2 min {INl (mlnl),IM2 (mz)},

myn, €E;,my=n,
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(dF)Gl*G2 (my.m,) =

(y, * Fy,) ((my,my) (ny,my)) =
(my:m,)(nym;)EE XE, .

z min {FMl (ml) ,FN2 (mznz)} +

my=n,;,m,n,EE,

Z mln{FN (m n) FM ( 2)}

myn, €EE,,my=n,

Theorem 4. LetG,=(M;, N;)and G, =(M,, N,) are two (SVNGs).
I Ty > Ty.ly, < Iy.Fy < Fy and Ty > Ty.lLy <
Iy,, Fy, < Fy, then for every (m;, my) € V; x V, we have:

(dT)cl*c2 (my.my) = (d)g, (my) Tyy, ()
+d)g, (m) T, (m2)

(dI)GI*GZ (my.my) = (d)g, (my) Ly, ()
+Hd)g, (my) Iy, (my)

(dF)Gl*Gz (my,my) = (@, (m3) Ey, (m,)
+(d)g, (m) Fy, (m,).

Proof.

(dT)Gl*GZ (my.m,) =

(TNI * TNZ) ((ml’mz) (”1’”2))
(my.my)(ny.my )EE, XE,.
= 2 max{Ty, (m). Ty, (mn,)}
my=n,,myn,EE,
+ Z max{TNl (m1”1)’TM2 (mz)}
myn, €E,,m,=n,
= Y Ty(mm)+ Y
myn,€E,,m;=n, mn, €E,,m,=n,
= (d)g, (m2) Ty, (ml) +(d)g, (ml) Ty, (mz) )

TNl (mlnl)

(dI)G,*G (my.m,) =

(IN, * INZ) ((my.my) (ny.my))
(m,,mz)(n,,nz)EElez.

— Z min {IM1 (ml) Iy, (7’”2”2)}

my=n,,m,n,EE,

P>

min {Iy, (myn,) . Ly, (m;)}
myn, €E,,m,=n,

= Z Iy, (myn,) + Z

myn,EE,,m;=n, myn, €E,,m,=n,

= (d)g, (my) Ly, (my) + @g, (my) Ly, (m,),

Iy, (ml”‘l)

(dF)GI*GZ (my.m,) =

(Fy, * Ex,) ((my.my) (ny.n,))
(my.my)(ny.n,)EE,XE,.

= 2 min {FM1 (ml) ’FNz (mznz)}

my=n,,myn,EE,

)

min {FNI (mlnl) ’FMz (mz)}
myn, EE,,m,=n,

Z Fy, (myny,) + Z

myn,EEy,my=n, myn, €E;,my=n,

(d)(;2 (mz) FM1 (m1) + (d)G1 (ml) FMZ (mz) .

Fy, (m1”1)

Example 6. Consider the (SVNGs) G,,G,, and G,*G, as in Figure 9.
Since Ty, 2 Ty, Iy, < Iy, Fy, < Fy,s Ty, 2 Ty Iy, < Iy, and
Fy;, < Fy, by Theorem 4, we have

(dr) .6, (@0 = @D, (OTy, (@) + ()5, (@) Ty, (©
=1-(0.3)+1-(0.2) = 0.5,

(d1) 6,6, (@) = @), (O], (@) + (D), (@], (c)
=1-(04)+1-(0.3)=0.7,

(dE) 6,46, @ O) = (D, (OFy, (@) + (d)g, (@)Fy, (c)
=1-(04)+1-(0.3)=0.7.

(dr)g, 16, @ D = (@D, DTy @) + (D, (@Ty, (@)
=1-(0.3)+1-(0.3)=0.6,

(d) g6, (@ D = (@D, ( DIy, (@) + (@), @Iy, (D
=1-(0.4)+1-(0.4)=0.8,

(d8) .1, (@ &) = (@ (@Fy, (@) + (@), (@Fyg, (@)
=1-(04)+1-(0.4)=0.8.

(A1) g6, b9 = (@), () Ty, (B) + (@), (W) Ty (O
=1-(02)+1-(0.2)=0.4,

()66, (b9 = (@D, (O, (B) + (@), (D)1, (©)
=1-(0.3)+1-(0.3)=0.6,

(d8) g0, (0:©) = (@), (OF 1, (B) + (@), (B)Fy, (O
=1-(0.3)+1-(0.3)=0.6.

(A1) g6, (0 d) = @A, DTy, () + (A (B)Ty, ()
=1-(0.2)+1-(0.3)=0.5,

(dr) g, o6, & D = (@D, ( DIy, (B) + (@), (D) ()

=1-(0.3)+1-(04)=0.7,
(dr) 6,0, (0 ) = (g, (Fyy, (B) + (g, (B)Fy, (@)
=1-(0.3)+1-(0.4)=0.7.
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(a,¢)(0.3,0.3,03)

(b, ¢)(0.2,0.3,0.3)

a(0.3,0.4,0.4) ¢(0.2,0.3,0.3)
[ o)
= & i
S S 2
< ) =
S = o
~ ~ S
S S o~
N — o}
e
® ®
b(0.2,0.3,0.3)  d(0.3,0.4,0.4)
Gy G,
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(a,d)(0.3,0.4,0.4)
(0.3,0.4,0.4)

#0%0%€0)

(0.2,0.3,0.3)
(b, d)(0.3,0.3,0.3)

G,1*G,

Figure 9 Single-valued neutrosophic graphs.

By direct calculations:
(dr) g uq, (@) =03+02=05,
@) @0=04403-07
(de) g g, (@) =0.4+03 =07,
(dr) g o, (@-d) =03 +03 = 0.6,
()., @D =04+04=038,
(dr) v, (@) = 0.4+ 0.4 = 0.8,
(dr) g o, () =02 +02 = 0.4,
(dr)g, ., (b:0)=03+03 =08,
(dr) .., (b:©) =03+ 0.3 =046,
(dr)g ., (b:d) =03 +02 =05,
() g, (b D =0.3+0.4=07,
(dF)GI*GZ (b,d)=03+04=0.7.

1
¥
¥
*
*

*
*

It is clear from the above calculations that the degrees of vertices cal-
culated by using the formula of the above theorem and by directed
method are the same.

Definition 9. Let G, = (M;, N,) and G, = (M,, N,) be two
(SVNGs). For any vertex (m,, m,) € V| x V, we have

(th)Gl*GZ (ml’ mZ)

(TNI * TNz) ((ml’mZ) (1’11, 1’12))
(ml’mz)(”pﬂz)EEleZ.

+ (TMl * TM2 (ml,mz)

)

m;=n,,m,n,EE,

)

myn, €E;,my=n,

+maX{TMl (ml) s T, (MZ)}’

max {TMl (ml) s TN2 (mznz)}

+ max{TNl (m1n1)’TM2 (mz)}

(tdl)cl*(;z (ml’ mZ)

(INl * INz) ((ml’m2> (”17 nz)) +
(mlvmz)(”pﬂz)EElXEr

(IM1 * IM2 (ml,mz)

)

m,=n,,m,n,€EE,

)

myn, €E,,m,=n,

+ min {IM1 (ml) 2y, (mz)} ’

min {I,, (m,),Iy, (m,n,)}

min {IN, (mlnl) Iy, (mz)}

(tdp) g, o, (m1:m2) =

(FNI * FNz) ((ml’mz) (nl,nz)) +
(my.my)(ny.ny )EE, XE,.
(FMI * FMz (ml’ mZ)

)

my=n;,m,n,EE,

>

myn; EE;,my=n,

+ min {FM1 (ml) ’FMz (mz)} .

min {Fy; (m,),Fy, (myn,)}

min {FNl(mlnp Fy, (mz)}

Theorem 5. Let G, =(M,, N,) and G, =(M,, N,) be two (SVNGs).
IfTMl > TNZ,IM‘ < Iy, Fy < Fy, and TM2 > TNI,IM2 <
Iy, Fy, < Fy,, then for every (my,m,) € V; X V, we have

(tdr) g, g, (mmy) =@, (m;) Ty, (my) + (), (my) Ty, (m5)
+max {Ty, (m,). Ty, (my)}

(td)) g g, (m1-m) = (d)g, (my) Ly, (my) + (d)g, (my) Ly, (m;)
+min {Iy (m) .1y, (m;)} .

(tdr) g g, (m1.my) = (d)g, (my) Fy, (my) + @), (my) Fy, (my)

+ min {FMl (m,) By, (mz)} )
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(th)Gl*G2 (my,m,) =

(TNl * TNz) ((ml’mz) (7’11, 1’12)) +
(ml’mz)(”pﬂz)EElez.

(T, * Ty,) (my,my)

= X

my=n,,myn,EE,

)

max {TNI (mlnl) ’ TMz (mz)}
myn, €E,,m,=n,

+max {Ty, (m,). Ty, (m,)}

= Z Ty, (mznz) + Z

myn,EE,,m=n, myn, €E,,my=n,

+max {Ty, (m,). Ty, (my) }

m,) Ty, (ml) + (g, (m

max{TM1 (ml) Ty, (m2”2)}

TN1 (mlnl)

= (), ( 1) Ta, (my) +

max { Ty, (m,), Ty, (m,) } -

(td) g, o, (m1:my) =

(Iy, * Iy,) ((my.my) (ny,my)) +
(my:my) (11, )EE XE,.

(IMI * IMz) (ml,mz)

- 2 min {IM| (my) . Iy, (mymy) }

my=n,,m,n,EE,

+ Y min{ly (mn).0y (m))

myn, €EE;,my=n,

+ min {IM1 (ml) Iy, (mz)}

= Z IN2 (mznz) + Z

myn,EE,,m;=n, myn, €E|,my=n,

+ min {IM1 (ml) Iy, (mz)}
= (d)Gz (mz) Iy, (ml) + (d)Gl (7’”1) Ly, (mZ)

)’IMz (my)}

Iy, (mlnl)

+ min {IM1 (m1

F)Gl*Gz (my,my) =

(FN1 * FNz) ((ml,mz) (nl,nz)) +

(1my.m,) (1y.ny ) €E, XE,.
(FMI * FMz) (ml’ mZ)

Z min{Fy (m1

)’FN2 (myny)

my=n,,m,n,EE,

+

Z min {FN1 (mlnl) s Fy, (mZ)}

myn, €E,,my=n,

+ min {FMl (m;) Py, (m2) }

myn,EE,,m;=n

+ min {FM1 (
= (d)g, (m,)
+ min {FM1 (m

Fy, (mlnl)

Z FNz (mznz) + Z
1 myn, €EE,,my=n,
m,) s Fy, (my) }

Fy, (m1) + (d)g, (ml) Ey, (mZ)

1)’FM2 (my)}.

Example 7. Consider the (SVNGs) G;, G;, and G;*G, as in
Figures 2-4. We find the total degree of vertices in maximal prod-
uct. Hence, we choose vertex (e,a).

(tdr) g, (@) = (d)g,(&Ty, (@) + (@A), (@) Ty, ()
+max { Ty (¢), Ty, (@)}
=1(0.1) + 3(0.3) + max(0.1,0.3)

=014+09+03=13

(1)) 6,6, (€ ® = (@A), (@)L, (@) + (d)g, (@, (©)
+min {I (e), Iy, (@)}
=1(0.3) + 3(0.4) + min(0.3, 0.4)
=03+12+4+03=1.8
(tdr) .o, (& @) = (d)g, ()Fy;, (@) + (), (@)Fy, (€)

+ min {FM1 (e), FM2 (a)}

= 1(0.4) + 3(0.5) + min(0.4, 0.5)
=04+15+04=23.

In the same way we can find the total degree for all remaining
vertices.

Definition 10. The rejection G,|G, = (M;|M,, N,|N,) of two
(SVNGs) G, = (M,, N)) and G, = (M,, N,) is defined as
= min {TMl (””1) s Ty, (mz)}

= max {IMl (ml) 2y, (mz)}

= max {FM1 (ml) ,FMz (mz)}

Ty, | Ty,) ((’” m,) (m.m))
Ty, (my) . Ty, (1) }

(Iy, 11Ix,) ((m.m,) (m.n,))
Ly, (m) Iy, (m,) }

(Fy, | Ey,) ((m.m,) (m.n,))

(
{FM2 (m,) s F, (m) }

V, and myn, ¢ E,

(iii) (T, | Ty,) ((m,my) (m,ny))

= min{ TMl(m), Vm (S
= maX{IMl(m),

= max{FMl(m),

= min{ TMl(m), Vz e

Ty, (’”2)’TMz (”2)}

= max{I, (m),

Ly, (my) . Iy, () }

= max{FMl(m),

Fy, (m,) s F, ()}

(I, 1 1,) ((m.my) (m,m,))

(FN1 | FNZ) ((m.my) (m.ny))

V, and myn; & E;
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a(0.1,0.2,0.3)
o)
S
=
S
L ]
b(0.2,0.3,0.4) (0.1,0.3,0.5) ¢(0.1,0.2,0.4)

Figure10 G,.

(iv) (TN1 | TNz) ((ml,mz) (nl,nz)) :min{TMl (ml) s Ty, (”1) ,

Ty, (m2)’TM2 (m)}

(I, 1 Iy,) ((my.my) (ny.m)) = max {Lyy, (my) .1y, (m) .

Ly, (my) . Iy, (ny) }

(FNl | FNz) ((ml,mz) (nl,nz)) = max {FMl (ml) s Fy, (nl),

Fy, (m3) , Eyy, (1) }
Vm,n, & E, and myn, ¢ E,.

Example 8. Consider the (SVNGs) G, and G, as in Figures 10
and 11. We can see that the rejection of two (SVNGs) G, and G,,
that is G, |G, in Figure 12.

For vertex (e, a), we find true membership value, indeterminacy,
and false membership value as follows:

(To, | Tar,) ((e; @) = min { Ty (e), Ty, (@)}
= min {0.3,0.1} = 0.1,
(I, | Iny,) ((e, @) = max {I; (e), Iy (@)}
=max {0.2,0.2} = 0.2,
(Fu, | Ey,) ((e, @) = max {Fy (e), Fy (a)}
=max {0.4,0.3} =04,

fora € V, and e € V,. For edge (e, ¢)(e, a), we calculate true mem-
bership value, indeterminacy, and false membership value, also.

(Ty, | Ty,) (e, 0)e, @) = min { Ty (€), Ty, (c), Ty, (@) }
= min {0.3,0.1,0.1} = 0.1,

(Iy, | Iy,) (e, (e, @) - = max {Iy; (€), I, (0), Iy, (@) }
= max{0.2,0.2,0.2} = 0.2,

(Fy, | Fy,) ((e;0)(e, @) = max {Fy; (e), Fy,(c), Fyy (@)}

= max {0.4,0.4,0.3} = 0.4,

foree V,andac ¢ E,.

Similarly, we can find both membership and non-membership

value for all remaining vertices and edges.
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Proposition 6. The rejection of two (SVNGs) Gyand G,, is a SVNG.

Proof. Let G, = (M,, N,) and G, = (M,, N,) be two (SVNGs) on
crisp graphs G; = (V, E;) and G, = (V,, E,), respectively and (m,,
m,)(n,, n,)) € E; x E,. Then by Definition 10, we have

(Iy, 1y,) ((my,my) (m,m)) =
max {IM1 (ml) Dy, (”1) Dy, (mz) Iy, (”2)}
= max {max{IM1 (ml) Dy, (mz)} ,
maX{IMl (”1) 2y, (”z)}}
= max { (Ly, [ Iyy,) (mym3) (L, 1 Dyg,) (m1,m2) } 5

(Fy, | Ex,) ((mymy) (n.m,)) =
max {FM1 (m,) By, (ny) Py, (m,) Py, (ny)}
= max {max{FMl (ml) s Fy, (mz)} )
maX{FM. (”1) s Fu, (”2)}}
=max {(Fy, | Fy,) (my,my), (Fy, | Fy,) (m1omy) } -

(i) Ifm,=n;,myn, ¢E,

(Ty, | T,) (1, mz) (m1,m5)) =
min {TMI (my) . Ty, (my) , Ty, (n,)}
= min {min{TM1 (ml) 2T, (mz)} ,
min {{Ty (). o (1)} }

=min {(Ty | Toy,) (myomy) s (Tys, | Tog,) (m1omy)}

(INl | INZ) ((my.my) (ny.my)) =
max {IMI (ml) ,IM2 (mz) ,IM2 (nz)}

= max {maX{IM1 (ml) Iy, (mz)} ,

maX{IM1 (711) Iy, (”2)}}
= rnax{(IM1 | IMz) (ml,mz) , (IM1 | IMz) (”17”2)} ’

(En, | Fy,) ((my.my) (ni,my)) =
max{Fy (m)) s Fy, (m,) s Fag, (m,)

= max{max{FM1 (”’h) s Fy, (mz) s
max{Fy ("1) s Fy, (nz)

= max{(Fy, | Fy,) (my.my), (Fyp | Fay,) (my5 1)

(i) Ifm,=n,, mn, &E,

<TN1 | TNZ) ((ml’mZ) (”1!”2)) =

min{TM1 (ml) 2 Ty, (”1) s Ty, (mz)}

= min {min{TMl (ml) Ty, (mz)} ,

min { Ty, (m;) . Ty, (m) }}

=min {(Ty, | Tar,) (m1.m,), (Tor, | Tor,) (71.1) 5
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d(0.2,0.3,0.4)

2(0.3,0.2,0.4) 1(0.2,0.3,0.4)

(0.2,0.4,0.5)
(9°0%°071°0)

£(0.4,0.3,0.2) (0.1,0.4,0.6) 9(0.1,0.4,0.5)

Figure 11 G,.

(0.1,0.3.0.4) (0.1,03,04)

(0.2,03,0.4) (0.2,0.304)
N (d.c) (0.1,0.3,0.4) (d.a)
(d.b) (h.b)
. =
(0.1,0.20.4)
. 010304 (0.1,03,0.4)
e,a) Y

(0.1,0.2.0.4)
(e.c)

(0.1.0.3,0.4)

(0.1,0.3,04)
(h.a)

(0.2,0.3.0.4)
(e.b)
. L ]
(0.1,0.3,0.3) (g.b)
(f.a) (g.c) (0.10.405)
(0.1,040.5)
(f.c)
(0‘1'0‘;0.4) (f.b) (g.a)
(0.2,0.3,04) (0.1,0.4,0.5)
Figure 12 G,|G,.

(INl |INZ) ((myomy) (ny,my)) (FNl |FN2) ((my.my) (ny.my))
= max {IMl (ml) ’IMl (nl) ’IMz (mz)} = min {FMI (ml) ’FMl (nl) ’FMz (mz)}
= max {max{IM1 (ml) Ay, (mz)} = min {min{FM1 (ml) Fy, (mz)} ,
max {{IM1 (m) oA, () }} min { Ey, (m) s Fu, (m)}}

= max{(IM1 | IMz) (ml,mz) , (IM1 | IMz) (nl,nz)} = min{(FM1 | FMz) (ml,mz) , (FM1 | FMz) (nl,nz)} ,
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(iii) Ifm,n, ¢ E,and myn, & E,
(Tn, 1 T,) ((my,m) (n1,m,))
= min {Ty; (m;). Ty, (m). Ty, (m) . T, (n2) }
= min {min{Ty, (m;), Ty, (m,)},
min { Ty, (n,), Ty, () }}

= min{(TMl | TMz) (ml,mz) , (TM1 | TMz) (nl’nZ)} ’

(IN. |IN2) ((ml’mz) (”b”z)) =
max {IM1 (m,) Ay, (n,) Dy, (m,) Iy, (ny)}
= max {max{IM1 (ml) ,IM2 (mz)} s
max { Iy, (m). 1y, (m)}}
= max {(Iy, | Iy,) (my.my) . (Iy, | Ty,) (m1m,) }

(FN1 |FN2) ((’”1””2) (”1’”2)) =
max {FM1 (ml) ,FM1 (”1) ,FM2 (mz) ,FM2 (nz)}
= max {max{Fy (m,),Fy, (m,)},
max { Fy, (m).Fy, (m) }}
= max {(Fy, | Fy,) (myoms). (Fy, | Eyg) (o))

Therefore, G, |G, = (M,|M,, N;|N,) is a SVNG. O

Remark 4. The rejection of two complete (SVNGs) G, = (M, N;)
and G, = (M,, N,) is a complete-SVNG.

Definition 11. Let G, = (M,, N,) and G, = (M,, N,) be two
(SVNGs). For any vertex (m,, m,) € V;xV, we have

(dT)(;1|G2 (ml’ mZ) =

L ) () ()
= Y min{Ty, (m). Ty, (m) . Ty, (m,)}

my=n,,m,n,&E,

+ Y min{Ty, (m). Ty, (m). Ty, (ms)}

my=ny,mn &E,

4 3 min {Ty, (m,). Ty, (ny),

mn &E, and myn,&E,

Ty, (mz)’TMz (”2)}

(dI)Gl|(;2 (ml’ mZ) =

(Iy, | Iy,) ((my my) (ny.my))
(ml’mz)(”pﬂz)EElez.

= Z max {IMl (ml) ’IMz (mz) ’IMZ (nz)}

my=n,,m,n,&E,

+ Z max {IM1 (ml) 7IM1 (”1) ’IMZ (mZ)}

my=ny,mn &E,

+ Z max {IM1 (m,) Iy, ()

myn€E, and m,n,&E,

Ly, (my) Iy, () } +

(dF)Gl|G2 (my.m,) =

Z (FN1 | FNZ) ((ml’mz) ("1’"2))

(mpmz)("],nz)eElez.
= X max{y, (m) Fy, (m) B, ()

my=n,,m,n,&E,

+ Z max {FMl (my) s Fag, (1) > (m2) }

my=ny,m n, EE,

+ 2 ma)({F;\/[1 (ml)’FMl (m),

myn,&E, and myn,&E,

FMZ (mz) ,FM2 (nz)} .

Definition 12. Let G; = (M;, N;) and G, = (M,, Y,) be two

(SVNGs). V(m,, m,) € V,xV,
(tdr) g 6, (m1m;) =

Z (Ty, | T,) ((my.my) (ny.my)) +

(my:m,)(nym,)EE XE,.
(TMI | TMz) (ml’mz)

= Z min{TMl (ml),TM2 (mz)aTMz (”2)}

my=n,,m,n,&E,

+ Z min{TM1 (ml)’TMl (”1)’TM2 (mZ)}

my=ny,mn &E,

+ 2 min {Ty; (m,), Ty, (m,) »

m;n,.€E, and myn,€E,

Ty, (m) » T, ("2)} ’

(td)) g, g, (m1my) =

(IN1 | IN;) ((ml’mz) (nl’nz)) +
(ml’mz)(nlsnz)EElez.

(IM1 | IMZ) (””1’””2)

= Z max {IMl (ml) ’IMz (mz) ,IMZ ("2)}

my=n,,m,n,&E,

+ Z max {IM1 (ml) 7IM1 (”1) ’IMZ (mZ)}

my=ny,mn &E,

+ Z max {IM1 (ml) Iy, ("1) >

myn,€E, and myn,¢E,

Ly, (my) Iy, () } +

(tdr) g, g, (m1omy) =

Z (Fy, | Ex,) ((my.my) (ny.my)) +

(my.my)(ny.n,)EE, XE,.
(FM1 | FMZ) (ml’ mz)

= Y max{Ey (m).Fy, (m).Ey, (n)}

my=ny,myn,&E,

+ Z max {FM1 (ml) - Fy, (”1) s Fn, (mZ)}

my=n,,mn &E,
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+ Z max {FM1 (ml) »Fy, (”1) )

m,n, €E, and m,n,&E,

Fy, (mz) s Fy, (nz)} .

Example 9. In this example we find the degree and the total degree
of vertex (d, a) in Example 8.

(d1),,(d. @) = min { Ty, (), Ty, (@), Ty, ()} +
min { Ty, (d), Ty, (@), Tor, () Ty, (©)}

+min { Ty (d), Ty, (@), Ty, (9) Ty, (©)}

=min {0.2,0.1,0.1} + min {0.2,0.1,0.4,0.1} +

min {0.2,0.1,0.1,0.1} = 0.1+ 0.1+ 0.1 =0.3,

(d1) g1, (d.a) = max{ly, (d). Iy, (@), Ly, (O+
max { Iy (), I (@), Iy, (N, Iy, (©) }

+max {I, (), Iy, (@), I (©). I, (©)}

= max {0.3,0.2,0.3} + max {0.3,0.2,0.3,0.2} +

max {0.3,0.2,0.4,0.2} =0.34+0.3+04 = 1.0,

(dr) g1, (@ @) = max {Fy, (d), Fy; (@), Fy (O} +
max {Fy; (d), Fy; (@), Fyr, (f), Fy (0}

+max {Fy (), Fy, (a), Fy,, (9). Fyy (0)}

= max {0.4,0.3,0.4} + max {0.4,0.3,0.2,0.4} +

max {0.4,0.3,0.5,0.4} =04+ 0.4+ 0.5=1.3.

Hence, dG1|Gz(a, ¢) =(0.3,1.0,1.3).

In addition, by definition of total vertex degree in rejection,

(tdr)g g, (d-@) = min { Ty, (d), Ty, (@), Ty, (O} +
min { Ty, (d), Ty, (@), Tor, (), Ty, (©)}

+min { Ty, (d), Ty, (@), Ty, (), Ty, (O} +

min{ Ty, (d), Ty, (a)

= min {0.2,0.1,0.1} + min {0.2,0.1,0.4,0.1} +
min {0.2,0.1,0.1,0.1} +

min {0.2,0.1} = 0.1 + 0.1 + 0.1 + 0.1 = 0.4,

(td)) g, 16, (- @) = max {Ly (d). Iy (a). Iy, () } +
max { I (d), Iy (@), Iy, (), Iy, (©) }

+max {1 (d), Iy (@), Iy, (9) Iy, (©) } +

max {IMz(d), Iy, (a)}

= max {0.3,0.2,0.3} + max {0.3,0.2,0.3,0.3} +
max {0.3,0.2,0.4,0.3} + max {0.3,0.2}
=034034+04+03=13,

(tdp) g, 16, (d- @) = max {Ey; (d). Fy (@), Fy (o)} +
max { Fy; (d), Fy; (@), Fyp, (), Fp (0}

+max {Fy (d), Fyy (), Fyg (8), Fyr (0} +

max {FMZ(d), Fy, (a)}

= max {0.4,0.3,0.4} + max {0.4,0.3,0.2,0.4} +
max {0.4,0.3,0.5,0.4} + max {0.4,0.3}
=044+04+05+04=17.

So, thlle(a, ¢) =(04,1.3,1.7).

Similarly, we can find the degree and the total degree of all vertices
in G|G,.

Definition 13. The symmetric difference G, ® G, = (M; & M,,
N, & N,) of two (SVNGs) G, = (M, N,) and G, = (M,, N,) is
defined as

@

(ii)

(iii)

(iv)

(Tas, ® Ty,) ((my,my)) = min {Tyy, (my) ., Ty, (my) }
(IM1 €BIMZ) ((my.m,)) = max {IM1 (m,) oA, (my) }

(Ex, ® Fuy,) ((my,m,)) = max {Fy (m,),Fy, (m,)}
Y(m,, m,) € (V,xV,),

(TNI ® TNz) ((m, mz) (m, nz)) = min {TMl(m), Ty, (mznz)}
(INl €DINZ) ((m, mz) (m, nz)) = max {IM‘(m), Iy, (mznz)}

(FN1 EBFNZ) ((m, mz) (m, nz)) = max {FMl(m), Fy, (mznz)}
Vme V,and myn,€ E,,

(TNl ® TNZ) ((my.2) (ny,2)) = min {TN1 (mymy) TMZ(Z)}
(IN1 €DINZ) ((ml’z) (nl’z)) = max {IN1 (mlnl) 7IM2(Z)}

(FN1 ®FN2) ((ml,z) (nl,z)) = max {FN1 (”’H"l) ,FMZ(Z)}
VzeV, and mn, € E,,

(TNl (&) TNz)((mp mz)(”p nz)) = min{TM1(m1): TM1(H1)>
Ty, (myn,)} forall mn, & E and m,n, € E,

or

=min{ T, (m,), Ty (1y), Ty (myny)}

forall m n, € E,and myn, & E,,

(INl &® INz)((mla mz)(”p ”2)) = maX{IM1(m1)) IM1(7’H),
Iy, (myn,)} forall m n, & E,and m,n,€ E,

or

= max{ly;,(m,), Iy, (1,), Iy, (myny)}
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[ 4 ®
a(0.2,0.3,0.4) (0.2,0.4,04) b(0.3,0.4,0.4)
Figure 13 G,.

¢(0.1,0.2,0.3) (0.1,0.3,0.3)  d(0.2,0.3,0.1)
s
L]
=
o)
=
&
£(0.4,0.2,0.1) (0.3,0.2,0.1) e(0.3,0.2,0.1)

Figure 14 G,.

forall m,n, € E,and myn,& E,,

(Fy, @ Fy,) ((my.m,) (ny.n)) = max {Fy, (m,).Fy, (m).

Fy, (mznz)}forall myn, & E, and myn, € E,
or

= max {Fy, (m,), Fy, (m,), Fy, (mym) }
forallm n, € E, and myn, ¢ E,.

Example 10. Consider the (SVNGs) G, and G, as in Figures 13 and
14. We can see the symmetric difference of two (SVNGs) G, and
G,, that is G; @ G, in Figure 15.

For vertex (a, f), we find the true membership value, indeterminacy;,
and the false membership value as follows:

(T, ® Tyy,) (@, ) = min { Ty, (@), Ty, (N}
= min {0.2,0.4} = 0.2,

(IM1 &) IMz) ((a,f)) = max {IMl(a), IMZ(f)}
= max {0.3,0.2} = 0.3,

(FM1 @ FMz) ((a,)) = max {FM1 (a), FMZ(j)}
=max {0.4,0.1} = 0.4,

foraeV,andf eV,.

For edge (a, d) (a, e), we calculate the true membership value, inde-
terminacy, and the false membership value.

(T, @ Ty,) ((a, d)(a, e)) = min { Ty, (a), Ty, (de) }
=min {0.2,0.2} = 0.2,
(Iy, ®Iy,) (@, d)(a, ) = max {1y (@), Iy, (de) }
— max {0.3,0.3} = 0.3,
(Fy, ® Fy,) ((a, d)(a, €)) = max { Fy; (a), Fy, (de)}
= max {0.4,0.1} = 0.4.

fora € V, and de € E,.

Now, for edge (a, d)(b, d) we have

(T, @ Ty,) (a, d)(b, d)) = min { Ty (ab), Ty, (d)}
= min {0.2,0.2} = 0.2,

(Iy, ® Iy,) ((a, d)(b, d)) = max {Iy, (ab), I (d) }
= max {0.4,0.3} = 0.4,

(Fy, @ Fy,) (a. d)(b, d)) = max { Fy (ab), Fy, (d)}

=max {0.4,0.1} = 0.4,

forabe E, andd e V,.

Finally, for edge (a, ¢)(b, f) we can find the true membership value,
indeterminacy, and the false membership value as follows:

(Ty, ® Ty,) (@ )b, 1) = min{ Ty (c), Ty, (.
Ty, (ab)} = min {0.1,0.4,0.2} = 0.1,

(Iy, ® Iy,) ((@, )b, /) = max{Iy, (©), Fyy, (),
Iy (ab)} = max {0.2,0.2,0.4} = 0.4,

(Fy, ® Fy,) (@, 0)(b. ) = max{Fy (c), Fy (),
{Fy,(ab)} = max {0.3,0.4,0.4} = 0.4,

forab € E, and ¢f & E,. In the same way, we can find the true mem-
bership value, indeterminacy, and the false membership value for
all remaining vertices and edges.

Proposition 7. The symmetric difference of two (SVNGs) G,and
G,,is a SVNG.

Proof. Let G, =(M,, N,) and G, = (M,, N,) be two (SVNGs) on
crisp graphs G, = (V, E;) and G, = (V,, E,), respectively and ((m,,
m,)(n,, n,)) € E; xE,. Then by Definition 3.21 we have

i) Ifmy=n=m
(Ty, ® Ty, ) ((m.m; ) (m.m, )

= min {TM1 (m), Ty, (""2”2)}

< min {TM1 (m), min {TM2 (mz) s Ty, (nz)}}

= min {min {{TMl(m), Ty, (mz)} ,min {{TM1 (m), Ty, (nz)} }

= min {(TM1 87 TM;) (m, mz) , (TM1 @ TMZ) (”"7 "2)} ’
(IN1 EBINZ) ((m, mz) (m, "2))
= max {IMl(m),II\,2 (mznz)}

> max {IMI (m), max {IM2 (mz) Iy, (nz)}}

= max{max{{IM](m),IM2 (mz) },max{{IM](m),IM2 (nz)}}

= max{(IMl @IMZ) (m’ mz) > (IMl EBIMZ) (m, ”2)} )
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(0.1,0.3.0.4) (0.1,03,04)

(0.2,0.3,04) (0.2,0.3.0.4)
- (d.c) (0.1,0.3,0.4) (d.a)
(d.b) (h.b)
L ] L]
(0.1,0.2,0.4) (0.10.3,0.4) (0.1,03.04)

(e.a)

(0.10.2.0.4) (0.1.0.3.0.4)
— (0.1,0.3,0.4)
(e.c)
4 (h,a)
(0.2.03.0.4)
(e.b)
° L ]
(0.1,0.3,0.3) (g.b)
f.@) (g.c) (010405
(0.1,0.4,0.5)
(f.0) :
(0.1,0.3.0.4) (f.b) (g.a)
) (0.2.0.3.0.4) (0.1,0.4,0.5)
Figure15 G, @ G,.
iii) If myn, € E;and m,n, ¢ E
(FN‘GBFNZ)((m,mZ) (m,nz)) (i) If myn, 1 My EE;
= max {FMl(m),FN2 (mznz)} (TN1 D TNz) ((ml,mZ) (ﬂlyﬂz))

S max ). max " ) = min {TM1 (ml) s Ty, ("1) » Ty, (mznz)}

> maxc{Fy, (), max {Fy, (ma) Fy, (m)}} <min{Ty (m,). Ty, (m).min {Ty, (m) Ty, (m)}}
= max {max { {Fy, (m), Fy,, (m,) }, max {{Fy, (m), Fy,, (n,) }} = min {min{ Ty, (m,), Ty, (m,) },min{ Ty (m,), Ty, (1)
= max{(FM1 @FMZ) (m, mz) s (FM1 GBFMZ) (m, nz)} . = min {(TMl (43} TMz) (ml,mz) s (TMl (43) TMz) (nl,nz)},

(Iy, @ Iy,) (1, m3) (m1,m,))

= max {IMl (ml) Iy, (nl) Iy, (mznz)}

> max {IMI (ml) Iy, (”1) smax {1, (mz) Iy, (nz)}

= max {maX{IM1 (ml) Iy, (mz)} »max{I (ml) Iy, (nz)
= max{(IM1 ®IM2) (ml,mz) , (IM1 GBIMZ) (nl,nz)} ,

(Fy, ® Fy,) ((my,my) (n1,m,))

=max {Fy (m,),Fy, (n),Fy, (myn,)}

2> max {FM, (ml) »Fy, (”1) , max {FMZ (mz) Fy, (nz)}}

= max{max {FM1 (ml) 2 F, (mz) } , max {FMl (ml) s F, (nz)}
= max{(FM1 GBFMZ) (ml,mz) , (FM1 GBFMZ) (nl,nz)} .

(i) Umy,=n,=2
(Ty, ®Ty,) ((m.2) (n,.2))
= min {TNl (m1”1) , TMz(z)}
< min {min {TN1 (mlnl) , TMz(Z)}
= min {min {{TM1 (ml) s Ty, (2) },min {{TM1 ("1) , TMz(Z)}}
= min {(TMl @ TMz) (ml,z) , (TMl ® TMz) (nl,z)} ,

(Iy, @ Iy,) ((my.2) (n1.2))
= max {IN1 (”"1”1) ’IMz(Z)}
> max {max{Iy (mn,) Iy (2)}
= max {max {{I,;, (m,) . Ly, @)} - max {{I;, () .1,(2) } (iv) Ifmyn, € E;and myn, ¢ E,
= max { (I, ® Iy,) (m1.2) , (Ly, ® L) (n 1’2)}’
Ty ®Ty my, My ) (N, 1y
(%@%m%@m@) i@u@W» kﬁ»( ”
= max {FN i FM (z)} min{TM2 (mz) (n2 mm{T m1 Ty, ( )}}
> max{max{FN (m m)> T (z)} min {min {TMl ml) , TM2 m, },mln{TM1 (nl) Ty, (n ( 2)}
= max {max { {F, (ml) Py, @} max {{Fy (n)),Fy, @} } = min {(Ty, @ Ty,) (my.my), (T, @ Toy,) (miomy) ),
= max { (Fy, ® Fy,) (m1.2), (Fy, @ Fy) (n1,2) } .

VA
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(Iy, ® Iy,) ((my.my) (ny.ny))
_maX{IM mz) IM2 ("z) ( )}
>max{IM (my) .1 M, (ny), maX{IM )IM1 (”1)}}
_max{max{IM mz) Iy, ( )},

ma {1y, (m) Iy, (m)}}

= max{(IM1 ®IM2) (my,my) (IMl @IMZ) (”1’"2)} ’

(Fy, ® Ey,) ((my.my) (ny.m,))
= max {FM2 (mz) Fy, (nz) .Fy, (mlnl)}
> max {Fy, (m,),Fy, (ny),max {Fy (m,)Fy (n,)}}
= max {max {Fy;, (), Fy, () },
max {FM2 (m,) . Fy, (n)}}
= max {(Fy, @ Fy,) (my,m;), (Fy, ® Fyp,) (n1.1,) } -

Hence, G; @ G, is a SVNG. 0

Remark 5. The symmetric difference of two connected-(SVNGs)
G, =(M,,N,) and G, = (M,, N,) is connected. Because we include
the case (m,, m,) € E; and (n,, n,) € E, in the definition of the
symmetric difference of two (SVNGs).

Definition 14. Let G, = (M,, N,) and G, = (M,, N,) be two
(SVNGs). For any vertex (m,, m,) € V;xV, we have

(dT)G1®G2 (mls 7’}’12) =

(Ty, ® Ty,) ((my.my) (my.my))
(ml’mz)(nlvnz)EElez.

= Z min {TMl (

my=n;,m,n,EE,

>

myn; EE;,my=n,

D

myn,&E, and m,n,€E,

D

mn;&E, and myn,€E,

m), Ty, (myny) }
min {TNl(mlnp TM2 (mz)}

min {Ty, (my), Ty, (m,), Ty, (myny) }

”“Z)aTM2 (”2)}’

min {TN1 (mlnl) , TMl (

(dl)cle;cz (my.m,) =

(IN] @INZ) ((my.my) (ny.m,))

(m, ,mz)(n, ,nz)EE1 XE,.

= Z min {I); (m,), Iy, (m,n,)}

my=n,,myn,EE,

>

myn; €E;,my=n,
o
mn;€E, and myn,€E,

+ Z min {IN1 (m1”1) Iy, (

myn,€E, and m,n,&E,

min {INl(mlnl’IMz (mz)}
min {IM‘ (ml) ’IMI (”1) ’INz (mzl’lz)}

’"2)’IM2 ()},
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(dF)(;lea(;Z (ml’ mZ) =

(Fy, @ Fy,) ((my.my,) (ny.n,))
(my.my ) (ny.ny)€E, XE,
= Z maX{FM1 (ml)’FN2 (’"2”2)}
my=n,,myn,€E,
+ 2 max {FI\,l(mlnl,FA,I2 (mz)}

myn, EE,,m,=n,

+ Z max {FMl (my) By, (ny) By, (mznz)}
myn;€E, and m,n,€EE,

+ Z max {FN1 (myn,) s Fy, (m,) s Eu, (m)}-

myn, €E, and myn, &, E,

Theorem 8. Let G, =(M,, N,;)and G, =(M,, Y,) be two (SVNGs).
If Ty, > Ty.Ly < Iy.Fy < Fy and Ty, > Ty.I, <
Iy, Fyp, < Fy,, then for every (m;, m,) € V; x V, we have

(d)GIGBGz (ml,mz) = q(d)G1 (ml) + s(d)G2 (mz) wheres = |V,| —
(d)Gl (ml) and g = |V,| - (d)G2 (mz)

Proof.

(dT)GIGBGZ (””1, mz) =
Z (TN1 @TNZ) ((ml’mz) (”pnz))
(ml’mz)(”17"2)651XEz
= Z n’lln{T‘M1 (ml) 5 TNZ (mznz)
my=n;,m,n,EE,

)

myn €E,,m,=n,

min{Ty, (m1”1) s Ty, (mz)

+ Z min{ Ty (ml) s Ty, ("1) T, (mznz)
m,n,€E,and myn,€E,
+ > min {Ty, (mym) . Ty, (my) . Ty, (my) }

mn, €E and myn,¢E,

Z TNz (mznz) +

m,n,EE,

o

myn,&E and myn,€E,

2 TNl (”11”1)

myn,€E, and m,n,&E,
G, (mZ) ’

=q (dT)G1 (ml) +s (dT)

Z TN1 (m1”1)

myn;€EE;

TN2 (mznz)} +

(dI)Glean (ml’mz) =
(IN! ® INz) ((mlv mz) (7”1, l’lz))
(mlvmz)(ﬂ],nz)EEleZ
- Z max {Iy, (m,), Iy, (myn,)}
m,=n,,m,n,€E,
>
myn €E my=n,

+ 2 max {IMl (m1

max {IN1 (mlnl) Iy, (mZ)}
) Ay, (m) Iy, (mZ”Z)}

)L, (m2) }

myn€E and myn,€E,

+ Z max {IN1 (”11”1) Iy, (m2

mn, €E,and myn,¢E,
Z IN2 (m2n2)+ Z INl (mlnl)
mn, €E,

m,n,€EE,
+ Z INZ (m2 nz) +
m,n,€E,and myn,€E,

Z IN1 (m1”1)

myn,€E, and myn,¢E,

=q(d)g, (m) +s(di)g, (m),
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(a,¢)(0.2,0.4,0.4)

(b, ¢)(0.2,0.3,0.3)

a(0.3,0.4,0.4) ¢(0.2,0.3,0.3)
o o
= ™ 2=,
= = =
| o =
~ N S
S = o
L] )
b(0.2,0.3,03)  d(0.3,0.4,0.4)
Gy G,

Figure 16 Symmetric difference.

(dF)Glean (my.m,)

(ml,mz)(nl,nz)eElez

Z max {FMl (ml) ,FN2 (mznz)}

my=n,,m,n,EE,
m,) }

mlnleEzl,m2=n2

+ max {FM1 (ml) ,FMI (111) ’FNz (mznz)}
mn,&E, and m,n,€E,

+ max {Ey, (myn,) . Fy, (m,) . Fy, (n,) }

mn, €E,and m,n,¢E,
2 By (mm)

Z Fy, (myn,) +

(Fy, ® Fy,) ((my,my) (ny,ny))

+ max {FNl (mlnl) ,FM2 (

m,n,EE, mn, €E,
+ FNZ (m2 nz)
myn;&E, and myn,€E,
Fy, (m1”1)

mn, €E,| and myn,&E,

=q (dF)Gl (ml) +s (dF)

o, (m).

We conclude that (d)g g, (ml, mz) =qd)g, (my) + s(d)g, (m,)
Vil = (g, (my) andq = |V,| = (d)g, (m;).

where s
|

Example 11. In Figure 16, Ty > Ty,, Fy, < Fy,, Ty, 2 Ty, and
Fy, < Fy,. So, the total degree of vertex in symmetric difference is
calculated by using the following formula:

(1) 6,06, (Mismz) = q(dr) g (mi) +s(dr) g (m2),
(dl)cleacz (my,m;) = q(dp) (ml) +s (dI)G2 (m2)
(dF)Glean (ml m,) = q (dp ) G, (my) +5 (dF)G2 (m,) .-
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(a,d)(0.3,0.4,0.4)
(0.2,0.5,0.5)

0 0770)

(0.2,0.5,0.5)
(b,d)(0.2,0.4,0.4)

G, D G

dr)g pe, (GO =102 +1-(01) =03,
dI)Glean (a,0)=1-(04)+1-(0.3)=0.7,
oG, (@0 =1-(04)+1-(0.3)=07,

z(a,d)=1.(0.2)+1-(0.1+0.2)=

Hence, (6DG1€BG2(u, ¢) = (0.3,0.7,0.7) and (d)Gl@Gz(a, d)
(0.5,1.0,0.8). In the same way, we can show that (d)G,GBGz(b’ )

(d)Glean(b’ d) = (0.4,0.9,0.9). By direct calculations:

(dT)G1€9G2 (a,¢)=0.3
(dI)G,EBGZ (a,c) =0.7
(de) 00, 0.0 = 07
(dT)Gl@G (a,d) = 0.5
(dl)cleac (a,d) = 1.0,
(dF)GIGBG (a,d)=0.8
(dT)GlesG (6,0 =03
(dl)c;leac;2 (b,0)=0.7
(dF)GléBGZ (b,0)=07,
(dT)G DG, (b,d) = 0.5,
(d1) 6 g, (b-d) = 1.0,
(dr) g, 0, (b-d) = 0.8.

It is obvious from the above calculations that the degrees of vertices
calculated by using the formula of the above theorem and by direct
method are the same.
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Definition 15. Let G; = (M;, N;) and G, = (M,, N,) be two
(SVNGs). For any vertex (m,, m,) € V; x V, we have

(i) IfTy =Ty and Ty > Ty, thenV(m;, my) € V; x Vy:

(th)G1®G2 (mls mz)

(ml ,mz)(nl ,nZ)GE1 XE,.

(TMI @ TM2 (mI’ mz)

= Z min {TMl (l’l’ll) Ty, (mZ”Z)}

my=n,,m,n,EE,

(Ty, ® T, ) ((m1.my) (ny,my)) +

+ Z min {TNl(mlfll, Ty, (my) }

myn, €E,,my=n,

+ Z min {Ty, (m,), Ty, (m,), Ty, (myny) }
mn,&E,and myn,€E,
+ Z min{TN‘ (mlnl):TMz (mz)’TMz (”2)}

myn, €E and myn,¢E,

+min {Ty (m,), Ty, (my)},

(tdI)G1€BG2 (ml, mz)

(ml,mz)(nl,nz)EEleZ_
Iy, @ 1y, (ml,mz)

-3

m,=n,,m,n,€EE,

)

myn, €E|,my=n,

>

myn€E and myn,€E,

>

myn, €E and myn,¢E,

+ max {IMl (ml) Iy, (mz)} >

(Iy, ® In,) (1. my) (my,my)) +

max {IMl (ml) Iy, (7”2”2)}
max {INl("’h”l’IMz (mZ)}
max {Ly, (m,) Ly, (m), Iy, (myn;) }

max {IN1 (m1”1> Ay, (mz) 2y, (”2)}

(tdF)Gle)Gz (my,m;)
(ml,mz)(nl,nz)eElez_
(FM1 @ FMz (ml’ mz)

-3

my=n;,m,n,EE,

>

myn, €E,,m,=n,

+ Z max {FM1 (ml) s Ey, ("1) L Ey, (mznz)}

mn, &E, and myn, €E,

>

myn,€E and myn,&E,

+max {Fy (m,),Fy, (m;)}.

(Fy, ® Fy,) ((my.my) (n1,my)) +

max {FMl (ml) ,FN2 (mznz)}

max {FN1 (myny, Fy (’”2)}

max {FNl (myny) Py, (m,) s Fy, (7’12)}

Theorem 9. Let G, =(M;, N;) and G, =(M,, Y,) be two (SVNGs).

(th)GIEBGZ (ml,mz) =q (l‘dT)G1 (ml) +s (l‘dT)Gz (m,)
—(q-DTg, (m,) — max {TG1 (m,), Tg, (my)}.

(ii) Ifly <Iy and Ly <y, then¥ (m;,my) € V, XV, :

(tdl)c.eacz (my.my) =¢q (td,)Gl (my) "‘S(fdl)cz (m,)
—(q- l)IG1 (ml) — min {IG1 (ml) ,IG1 (ml)} .

(iii) IfFy < Fy, and Fy > Fy , then V(ml,mz) EV XV,

(tdF)GleaGZ (my,my) =q (lde)G1 (my) +s (l‘dF)Gz (m,)
—(q - DFg, (ml) — min {FGl (ml) . Fg, (ml)} .

V(ml,mz) € VixXV,s = |V|| - (d)Gl (ml) andq = |V,| —
(d)Gz (mz)

Proof. V(m,, m,) € V,xV, we have

(th)Gle;GZ (my.m;)

= Z (TN1 ®TN2) ((ml’mz) (nl’nz))+
(ml,mz)(nl,nz)eEl><E2
(TM1 @ TMZ) (ml’mz)

= Z min {TM1 (ml) Ty, (’”2”2)}

my=n,m,n,EE,
min {Ty, (myn,) ., Ty, (my) }

)
myn, €EE;,my=n,

+ Z min {TM1 (ml) s Ty, (”1) Ty, (mznz)}
m,n, &E,and myn,€E,

>

mn,€E,and myn,¢E,

+max {Ty, (m,). Ty, (m,)}

= Z TNZ (m2n2)+ Z TN1 ("H”l)

m,n,EE, myn|€EE;

+ Z Ty, (mznz)} +

m,n, €E, and m,n,&E,

Z TN1 (m1”1) + max {TM1 (ml) R TM2 (mz)}

m,n, €E,and m,n,&E,

= Z Ty, (myn,) + Z Ty, (myny) +

m,n,€E, myn, EE,

Z TN2 (mznz)}

mn,&E and myn,€E,

Z Ty, (myny) + Ty, (m,) + Ty, (my) -

mn, €E and myn,¢E,

max { Ty, (m;), Ty, (m,) }
=q (th)Gl (ml) +s (l‘dT)G2 (mz)
—-(q- 1)TGl (ml) — max {TGl (ml) s TGl (ml)} R

min { Ty, (mn,), Ty, (my) . Ty, (n) }
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(td)) g oc, (m1.m;) = q(tdg)g, (my) +5(tdy) ()
= Z (Iy, ® Iy,) ((my,my) (ny,m,)) —(q = DFg, (m) —min{Fg (m,),Fg (m)},

(my,my) (111, EE, XE,.
+ (L, @ L) (my.m,)

= Z max {Iy, (m,) Iy, (myn,) }

my=n,,m,n,EE,

+ Z max { Iy, ( m1"1) Iy, (mz)} E)C(:;;EIEXI;I.I Igletlhés example, we calculate the total degree of ver-

where s = [V = (d)g, (my) andq=|V,| - (d)g, (m,). O

myn, EE,,my=n,

+ max <, (m,),I, (n),Iy (mn
myn &E, %mznzelfz { " ( 1) M ( l) e ( ’ 2)} (dT)GIGBGZ (a’ 6) =4 (dT)Gl (a) +s (dT)G2 (6),
+ 2 ma.X{INl (mlnl),IM2 (mz),IMZ (nz)}
mn,€E, and myn,&E,
+ min {Iyy, (m,) Ly, (m)} where's =| V, | ~(d)g, (@) and q = |V, = (d)g, ().
= Z IN2 (mznz) + Z IN1 (’”1”1)
myn,EE, myn, EE,
+ > Iy, (mymy) + s= Vil - @g@=2-1=1.

myn,€E, and m,n,€E,

INl (mlnl) + min {IM1 (ml) ,IM2 (mz)}

myn, €E, and m,n,¢E, Similarly,
= 1 + I
ngegz N, (mznz) ml;EEl N, (mlnl) g= |V2| _ (d)GZ(e) —4_2=2
+ Z Iy, (myn,)} (th)G1€BGZ (a,e)=q (talT)Gl (@ +s (th)Gz (e
m,n,&E, and m,n,€E,
—(s=DTg (e) = (g — )Tg (a) — Te. (a), T
+ z Iy, (mym) + Iy, (m1) + Ly, () = 2(0(52 +10)2)G2-|Ee;(0 §q+ 01; +G10(;; e T @) T )
myn,€E, and m,n,&E, . : . : .
— min {IMl (m,) oy, (mz)} _ 2;0(411)—+1())(g.i)0_2(2—:) ;)9-12)1— max {0.2,0.3}
= q(tdr)g, (my) +s(tdr) g (m2) (td)) g o, (@€ = q (tdy) g (@) +s (1)) (©)
—(q - Dlg, (ml) — min {IG1 (ml) g, (ml)} ) —(s= Dg,(e) - (q — D¢, (a) — min {IGI (a), IGz(e)}
=2(0.3+0.4) + 1(0.2 + 0.2 + 0.3)
—(1=1)(0.2) — (2 = 1)(0.3) — min {0.3,0.2}
(tdF)GIGBGZ (my,m,) =2(0.7)+0.7—0.3—-0.2 = 1.6,
= > (Fy, ® Fy,) ((my.my) (ny.m,))
(ml,mz)(nl,nz)EElez. _
¥ (B, @ By () (ose 00 =aliblo@ssle®
_ — (s = DFg (e) = (q — )Fg (@) — min { Fg (a), Fg (e
e _n;n o max {Fy, (m,) , Fy, (myn;) } =2(0.4 + 0.4) + 1(0.1 + 0.1 +0.1)
A NN — (1 =1)(0.1) — (2 — 1)(0.4) — min {0.4,0.1}
+ max i Fy (mn,),F m
mlnleEZl;mz:nz (B, (mum) . Fug, ()} =2(0.8)+ 0.3 - 0.4—0.1=0.6,
+ Z max {FM1 (ml) ,FM1 (”1) ,FN2 (mznz)}
m,n;€E, and m,n,€E, and
+ F ,F ,F
Z max{ N, (mlnl) M, (mZ) M, (HZ)} (td)Gle;Gz([l,e)=(1.1,1.6,0.6).

mn, €E, and m,n,&E,
+ min {FMl (ml) s Fy, (mz)}
- Z Fy, (myny) + Z Fy, (myn,) It is clear from the above calculations that total degrees of vertices

mymek, m,n,€E, calculated by using the formula of the above theorem and by direct

+ Z Fy, (myny) ) method are same.
mim Ey ad mon€Fy i Definition 16. The residue product G+ G, = (M, « M,,N, * N;)
+ Z Ey, (mlnl) + min {FMI (1) P, (mz)} of two (SVNGs) G, = (MI,NI) and G, = (MZ,NZ) is defined as
mn, €E, and m,n,¢E,
= Fy. (myn,) + Fy (mn
mz;@gz N, ( 2 2) mlg‘éfil N, ( 1 1) (i) (TM1 . TMz) ((ml,mz)) = ma_x{TM1 (ml) ’TMz (mz)}
+ D Ey, (myn,) } (L, * Ing,) ((m1,m;)) = min {Iy (my) Ly, (m2) }
myn &€E, and m,n,€E, o
+ Z Ey, (myny) + {Fy, (m) + Ey, (m,) (F + P ) ((myomz) ) = min {Fy, () Fy, (m2) }
m,n, €E, and m,n,&E, v (ml’mz) c (Vl x Vz) ,

— min {FMl (m1) vFMz (mz)}
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a(0.1,0.4,0.3)
[ ]

0°5°0'1°0)

[ ]
b(0.2,0.4,0.4)

Figure 17
G,.

£(02,03,03) €(0.1,0.2,0.4)

d(0.3,0.2,0.3)

Figure 18 G,.

(ii) (TN1 . TNz) ((ml,mz) (nl,nz)) =Ty, (mlnl)
(IN1 'INZ) ((my,my) (ny.my)) = Iy, (myny)
(FNl 'FNZ) ((my,my) (nymy)) = Fy, (myny)

Vmn, € E|,m, # n,.

Example 13. Consider the (SVNGs) G, and G, as in Figures 17 and
18. We can see the residue product of two (SVNGs) G, and G,, that

is G, * G, in Figure 19.

For vertex (b, e), we find the true membership value, indeterminacy,

and the false membership value as follows:
(Ty, * Tys,) (b, @) = max { Ty (b). Ty, (&)}
=max {0.2,0.1} = 0.2,

(Ing, * I,) (b, €)) = min {I; (b), I, () }
=min {0.4,0.2} = 0.2,

(Fu, * Far,) (b, €)) = min {Fy; (b), Fy, (e) }
=min {0.4,0.4} = 0.4,

forbeV,andee V,.

For edge (g, ¢) (b, d), we calculate the true membership value, inde-

terminacy, and the false membership value as follows:

(Ty, * Ty, ) ((a,0)(b, d)) = Ty (ab) = 0.1,
(Iy, * Iy,) ((a, 0)(b,d)) = Fy (ab) = 0.5,
(Fy, * Fy,) ((a,0(b,d)) = Fy (ab) = 0.4,

forab € E, and c = d.

Similarly, we can find the true membership value, indeterminacy,
and the false membership value for all remaining vertices and edges.

Proposition 10. The residue product of two (SVNGs) Gyand G,, is
a SVNG.

Proof. Let G, =(M,, N,) and G, = (M,, N,) be two (SVNGs) on
crisp graphs G, = (V, E,) and G, = (V,, E,), respectively and ((m,,
m,)(n,, n,)) € E; x E,. It m;n, € E;and m, # n, then we have

(Ty, * T,) ((myomy) (ny.ny)) = Ty, (myny)
< min {TM1 (ml) s Ty, (nl)}
< max {min{ Ty, (ml) » Ty, (”1)} ,
min {Tyy, (m;), T, (1)} }
= min {max { Ty, (m,), Ty, (n) },
rnax{TM2 (m,), Ty, (ny)}}

= min{(TMl . TMz) (ml,mz) s (TM1 i TMz) (”1’”2)} >

(IN. 'INZ) ((ml’mZ) (”1’”2)) =1y, (mlnl)
> max {Ly, (m;) Iy, (m)}
> min {max{ly; (m,),Ly (n)},
max {Iy; (m,), 1y, (n,)}}
= max {min{ly (m,).Iy (n)},
mm{IM (my) I, (nz)}}
- max{(IMl 'IMZ) (ml’mZ) ’ (IM1 'IMZ) ("1’"2)} s

(Fy, * Fx,) ((my,m;) (n1,m5)) = Ey, (mym)
2> max {FMl (””1) s F, (”1)}
Zmln{max{FM (ml) Fy ( )},

max {Fy, (m,), Fy, (1) }}

= max {Inin{FM1 (ml) ’FMl (nl)} ’
min {FMZ (mz) s Fy, (”2)}}
= maX{(FM, 'FMZ) (ml,mz) > (FMl 'FMZ) (”1’”2)}'

Definition 17. Let G, = (M,, N,) and G, = (M,, N,) be two
(SVNGs). For any vertex (m,, m,) € V; x V, we have

= Z Ty, (myny)
myn| €E,,my#n,

(dr)g, (m1)

(dI)G]-GZ (my,my) =
(INI .INz) ((ml’mZ) (1’!1, 712))
(my:m;)(ny,n,)EE, XE,.

= Iy, (mlnl)
mn, EE;,my#n,

= (‘711)61 (my) .
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(a,c) (a,e)
(0.2,0.3,0.3) 7 (0.1,0.2,0.3)

4

-Q

.‘5\ Q.
‘0.7) (0.3,0.2,0.3) @5‘
(0.1,0.5,0.4) (a,d) (0.1,0.5,0.4)
(b,e) (b, )
°0.2,0.2,0.4) (020303)
(b, d)
(0.3,0.2,0.3)

Figure19 G, ®G,.

(dF)Gl.G2 (ml,mz) =
(Fy, * Ey,) ((my.m3) (n,m5))
(my.m,)(ny.n,)EE, XE,.

= X Ey(mm)
mn, EE;,my#n,

= (dF)Gl (my) .-

Definition 18. Let G, = (M;, N;) and G, = (M,, N,) be two
(SVNGs). For any vertex(m,, m,) € V; x V, we have

(th)G1°Gz (ml’mZ) =
(TNl * TNZ) ((my.my) (ny.my))

(my.my)(ny.ny )€E XE,.
+ Ty, » To,) (my,my)

Ty, (myny) +min {Tyy (m;) . Ty, (my) }

-3

myn, €E,,m,#n,

-3

myn, €E,,m,#n,

—max { Ty, (m,), Ty, (m,)}

TN1 (m1”1) + TM1 (ml) + TMz (mz)

= (th)G1 (my) + Ty, (mz) - max{TM1 (ml) s T, (mz)},

(tdl)(;l.(;2 (ml’ m2) =

(INI .INz) ((ml’mz) (”1’7’12))
(1my.m,) (111, ) €E, XE,.

+ (IM1 oIM2 (ml,mz))

-3

myn, EE,,m,#n,

-3

mn, EE;,my#n,

Iy, (myn;) + max {IM1 (m,) oA, (m,) }
Iy, (m1”1) + 1y, (m1) + Iy, (mz)

— min {IM1 (ml) Iy, (mz)}
= (l‘dI)G1 (ml) + 1y, (mz) — min {IM1 (ml) Ay, (mz)} ,

(tdr) g, ., (m1-ms) =

(Ex, * Ey,) ((my.m,) (nyomy))
(my.my)(ny.n, )EE, XE,.
+ (Fy, » Fyy, (my.my))

= Z Fy (mn,) + max {Fy (m,),Fy (m,)}

mn, EE;,my#n,

-3

mn, EE|,my#n,

— min{F,; (ml) »Fy, (mz)

FNI (m1”1) +FM1 (ml) +FM2 (mz)

= (tdF)G1 (ml) + Fy, (mz) — min {FM1 (ml) s Fy, (mz)}

Example 14. In this example we find the degree and the total degree
of vertex (b, e) in Example 13.

(dr)g,.q, (b:0) = (dr)g (b)=0.1,
(d)g,.q, (0-0) = (df) g (b) =0.5,

(dr)g..q, (b:©) = (dr), (b) = 0.4,

Therefore,

(d)(;l.(;2 (bv e) = (07 17 09 57 07 7’ 4) .

Also, total degree of vertex (a, e) is given by

(th)G‘.G2 (a,e)
= (tdr) g, (@) + Ty, () — max {Ty (a). Ty, ()}
=(0.2+0.1) + 0.1 — max(0.2,0.1) = 0.2,

(td;) G, « G,(a, €)

= (td)) ¢, (@ + Iy, (e) — min {In, (@), Iy, (o)}
= (0.4 4 0.5) + 0.2 — min(0.4, 0.2) = 0.9,

(tdF)GI.G2 (a,e)
= (tdF)G1 (a) + Fy () — min {FM1 (a),FMZ(e)}
= (0.4+0.4) + 0.4 — min(0.4,0.4) = 0.8.
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Table1 SVNPR of the exporter from Pakistan.

R, b, b, b, b, b,

b, <0.5,0.5,05> <0.2,08,0.1> <0.1,06,0.2> <0.2,0.3,0.6> <0.1,0.2,0.4>

b, <0.1,0.2,0.2> <0.5,05,0.5> <02,04,0.7> <0.1,04,02> <0.9,0.3,0.4>

b; <0.1,04,02> <0.7,0.6,02> <0.5,0.5,0.5> <0.6,0.3,0.2> <0.4,0.2,0.6>

b, <06,0.7,0.1> <0.2,0.6,0.1> <0.2,0.7,0.6> <0.5;0.50.5> <0.3;0.2;0.7>

b; <04,0.8,0.1> <04,0.7,09> <06,08,04> <0.7,0.8,0.3> <0.5;0.50.5>

Table2 SVNPR of the exporter from India.

R, b, b, b, b, b,

b, <0.5,0.505> <04,06,03> <0.9,04,03> <0.2,0.1,0.6> <0.8,0.3,0.4>

b, <0.3,04,04> <0.5,05,05> <04,08,0.2> <0.2,0.1,0.8> <0.6,0.3,0.4>

b; <0.3,0.6,09> <0.202,04> <05,0.5,0.5> <04,0.2,06> <0.3,02,0.7>

b, <0.6,0.9,02> <0.8,09,02> <06,08,04> <0.5,0.505> <0.2,0.1,0.6>

b; <04,0.7,0.8> <04,0.7,0.6> <0.7,08,03> <06,0.9,02> <0.5,0.5,0.5>

Table 3 SVNPR of the exporter from America.

R, b, b, b b, bs

b, <0.5,0.505> <0.6,04,03> <05,03,0.2> <04,0.3,0.9> <0.2,0.1,0.6>

b, <0.3,0.6,0.6> <0.5,05,0.5> <04,0.3,0.2> <0.5,0.1,0.6> <0.2,0.3,0.1>

b; <02,0.7,0.5> <02,0.7,04> <0.5,0.5,0.5> <04,0.3,0.9> <0.2,0.6,0.1>

b, <09,0.7,04> <06,0.9,0.5> <09,0.7,04> <0.5,0.5,0.5> <0.4,0.3,0.6>

bs <06,0.9,02> <0.1,0.7,02> <0.1,04,0.2> <0.6,0.7,0.4> <0.5,0.5,0.5>
Table4 Collective SVNPR of all above individuals SVNPRs.
R b, b, b, b, b,
b, <0.500, 0.5000, 0.5000> <0.4231, 0.5769, 0.2080>  <0.6443, 0.4160, 0.2289>  <0.2732, 0.2080, 0.6868>  <0.4759, 0.1817, 0.4579>
b, <0.2388,0.3634,0.3634>  <0.5000, 0.5000, 0.5000>  <0.3396, 0.4579, 0.3037>  <0.2886, 0.1587, 0.4579>  <0.6825, 0.3000, 0.2520>
by <0.2042,0.5518,0.4481>  <0.4231, 0.4380,0.3175>  <0.5000, 0.5000, 0.5000>  <0.4759, 0.2621, 0.4762>  <0.3048, 0.2885, 0.3476>
b, <0.7480,0.7612,0.2000>  <0.6000, 0.7862, 0.2154>  <0.6825, 0.7319, 0.4579>  <0.5000, 0.5000, 0.5000>  <0.3048, 0.1817, 0.6316>
by <0.4759,0.7958,0.2520>  <0.3132,0.7000, 0.4762>  <0.5238, 0.6350, 0.2885>  <0.6366, 0.7958, 0.2885>  <0.5000, 0.5000, 0.5000>

Hence, accomplished when this association chooses the most reasonable

(td)g, ., (a.€) = (0.2,0.9,0.8).

Similarly, the degree and the total degree of all vertices can be
defined in G, « G,.

4. APPLICATION OF SVNG IN GROUP
DECISION-MAKING

Definition 19. Let [2] Q = {q;,4,,--.,q, be the set on which
single-valued neutrosophic preference relation (SVNPR) is defined.
It can be denoted by a matrix of R = (), where m, = < q.4,,
T(q.9,), 1(9,9,), F(q,q,) > for all s and t varies from 1 to n.

4.1. Food and Agriculture Organization of
United Nation Select a Most Suitable
Company

FAO is attempting to help in the disposal of yearning, food insta-
bility, and creation strength the executives. Objectives can be

organization for formers and works together with it which can assist
Former with developing more food, offer types of assistance, and
suitable item. There are five organizations of Syngenta b,, Bay-
ers b,, Investment organization Institute (ICI) b5, Agria Corpora-
tion Company (ACC) b, and Fazal Mahmood Company (FMC)
bs. Three exporters from various nations are welcome to partake in
the choice examination. One exporter is from Pakistan, the second
is from India, and the third is from America. These exporters use

SVNPRs R, = (q;';) SVNDGs D, comparing to SVNPRs R (i =
5.

X5
1, 2, 3) are given in Table 1-3.
By using the aggregation operator to find all SVNPRs R; =

(q;y) , where i=1,2,3 into total SVNPR R = (g,);,5 which

55

is shown in Table 4. For SVNPR, we use operator SVNWA
1

k =
[6]. SVNWA (qii),qif),---,qﬁtk)) =< 1- H(l‘j{s?>k’<

(1) 1)’

k I s 1
i=1
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Data is converted in digraphs which shown in Figures 20-22. We ~ We will find out the degrees which are denoted by out - dout - d (b,)
can draw directed network corresponding to a collective SVNPR with x = 1,2,3,4,5 of the whole criteria in a partial directed network
above, which is already shown in Figure 23. Under some conditions,  as follows:

T,, > 0.5, where x and y ranges from 1 to 5. Likewise, we have a

partial diagram of all fused SVNPR which shown in Figure 24. out - d(by) = (0.0000, 0.0000, 0.0000)
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Figure 23  Directed network of all fused SVNPR.

out - d(b,) = (0.6825, 0.3000, 0.2520)
out - d(b;) = (0.0000, 0.0000, 0.0000)
out - d(b,) = (2.0305, 2.2793, 0.6733)

out — d(bg) = (1.1604, 1.4308, 0.5770) according to the membership
degree rule of out - d(b,), x = 1, 2, 3, 4, 5, a ranking factors which
is given below is obtained

b, > bs > b, > by ~ b,. So the ranking of b; is higher and serves
as the best choice ACC b,. To discuss the application, we give an
algorithm as follows:

5. CONCLUSION

The adaptability and equivalence of neutrosophic models are higher
than fluffy models and intuitionistic fluffy models. A SVNG is
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Figure 24  Partial directed network of all fused SVNPR.

broadly utilized in clinical sciences, financial matters, and logical
designing. At the point when faltering happens in a genuine issue
then the SVNG has a fundamental part to investigate the vulner-
ability since chart and the fluffy diagram don’t think about the
vulnerability among the relationship of the articles. We have exam-
ined the new properties on a SVNG known as the buildup item,
maximal item, symmetric distinction, and dismissal of a chart. We
likewise examined the thought with guides to discover the degree
and absolute level of vertices of some specific charts. A few hypothe-
ses of these diagrams were recently settled by utilizing the idea
of degree and complete level of a vertex of a chart. Additionally,
the hypotheses which were identified with these properties were
demonstrated. Additionally, the fascinating and helpful use of a
SVNG was examined which was a choice of reasonable organization
by FAO. At last, a calculation which is the strategy of our application
was introduced. Next, our motivation in future work is to introduce
this idea on (1) complex bipolar-SVNG, (2) complex bipolar fuzzy
graph, and (3) complex interval-valued fuzzy graph with their con-
nected applications.
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