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1.  INTRODUCTION

Solid waste is inextricably related to industrial growth and urban-
ization. Countries’ economic prosperity rises as they urbanize. 
Consumption of goods and services rises in tandem with the levels 
of life and disposable incomes, resulting in an increase in waste 
generation. According to Karak et al. [1], nearly 1.3 billion tons of 
Municipal Solid Waste (MSW) are produced globally per year, or 
1.2 kg each capita per day. The real per capita figures, on the other 
hand, are extremely volatile, as waste generation rates vary greatly 
across nations, cities, and also within cities. Solid waste is tradi-
tionally thought of as a ‘urban’ epidemic. Rural people, on aver-
age, are wealthier, consume less store-bought goods, and reuse and 
recycle more. As a result, waste production rates in rural areas are 
much smaller. More than half of the world’s population now lives 
in cities, and the pace of urbanization is rapidly growing. By 2050 
[2], as many people will live in cities as the population of the whole 
world in 2000. This will add challenges to waste disposal. People 
and companies would almost definitely have to take on greater 
responsibility for waste generation and disposal, especially in terms 
of product design and waste separation. A stronger focus on ‘urban 
extraction’ is also expected to arise, as cities are the largest sup-
plier of resources like metal and paper. Tons of waste are created 
every day, creating a major problem for various cities and munic-
ipal authorities due to a lack of landfill capacity to dispose of such 

waste. Toxic hazard materials in the waste cause health concerns 
as well as environmental harm. Due to a lack of landfill space and 
environmental pollution, as well as its economic effects, recycling 
has become a major problem [3].

The methods from neural networks [4] and other classification 
methods [5], tree classifier, and quadratic discriminant analysis [3], 
with optical sensors and controller [6], with image processing soft-
ware capability [7,8] can provide a promising results for paper and 
plastic sorting for waste management using artificial intelligence. 
Hence, for many artificial intelligence methods, the optimized fea-
tures need to be identified, to ensure correct classification of the 
mixed waste.

Many interests among researchers published on classification accu-
racy which discussed on best feature selection [9–11]. Still, to some 
researchers, the focus also arises on classification accuracy and 
computational time [12,13]. However, the scope of this work is to 
show how the reduction of features can contribute to higher classi-
fication accuracy of mixed waste classification.

2.  MATERIALS AND METHODS

2.1.  Dataset and Training

In this study, 320 sample images were taken for seven different 
dry waste garbage classes. The features data was extracted from 
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A B S T R AC T
Classification accuracy can be used as method to tune suitable features. Some features can be mistakenly selected hence derailed 
the classification accuracy. Currently, feature optimization has gained many interests among researchers. Hence, this paper aims 
to demonstrate the effects of features reduction and optimization for higher classification results of mixed waste. The most 
relevant features with respect to mix waste characteristic were observed with respect to classification accuracy. There are four 
stages of features selection. The first stage, 40 features were selected with training accuracy 79.59%. Then, for second stage, better 
accuracy was obtained when redundant features were removed which accounted for 20 features with training accuracy of 81.42%. 
As for the third stage 17 features were maintained at 90.69% training accuracy. Finally, for the fourth stage, additional two more 
features were removed, however the classification accuracy was decreased to less than 80%. The experiments results showed 
that by observing the classification rate, certain features gave higher accuracy, while the others were redundant. Therefore, in 
this study, suitable features gave higher accuracy, on contrary, as the number of features increased, the accuracy rate were not 
necessarily higher.
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greyscale, segmented greyscale images and binarized image of the 
captured RGB images using Matlab2019b. Table 1 dataset used for 
training in each class. 

2.1.1.  Features extraction

From the observation of mixed waste classes which consist of 
crumble (paper/plastic), flat (paper/plastic), tin can, bottle (plastic/
glass), cup (paper/plastic), plastic box and paper box, the following 

40 features have been selected for the class of interest as shown 
in Table 2 which extracted from Figure 1 via image processing 
method. 

2.1.2.  Classifiers used for training

Table 3 shows the types of classifiers used with respect to their 
specifications. Figure 4 shows the block diagram for training of the 
developed system.

3.  RESULTS AND DISCUSSION

3.1.  Features Selections

There are several stages of feature selections carried out from this 
study. The first stage, all 40 features are used. However, accuracy 
of the 40 features during training was less than 77.8%. To address 
the shortcoming, several tests were conducted and number of 
redundant features which contribute less and reduced the percent-
age rate of the training were removed from the list.

Table 1 | Dataset of classes

Type of mixed waste Dataset

Bottle 40
Cup 50
Plastic box 40
Paper box 40
Crumble paper/plastic 50
Flat paper/plastic 50
Tin can 50
Total dataset 320

Table 2 | Features list

Features Source image Formula

F1: Round measure  
of sample images

Greyscale of segmented sample image (Figure 1)
                        4 2πA P/ �  (1)
where, A is the area of the image, P is the perimeter of the image

F2: Mid-point  
symmetry

Computation of white pixel summation array C. 
(a) Segmentation filter. (b) Graph of white pixel 
summation array C (Figure 2)
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where o is the total number of elements and y is the corresponding number 
of elements of array a, z is the corresponding elements of array b.

Array a is the first half of the array C, and array b is the second half of the 
array C.

F3: Skewness Computation of white pixel summation array C. 
(a) Segmentation filter. (b) Graph of white pixel 
summation array C (Figure 2)
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where C is the white pixel summation array, E is the expected value of 
quantity, m is the mean of C, s  is the standard deviation of C.

F4: Mode Computation of white pixel summation array C. 
(a) Segmentation filter. (b) Graph of white pixel 
summation array C (Figure 2)

It returns the mode of C, which is the most frequently occurring value in 
C. When there are multiple values occurring equally frequently, mode 
returns the smallest of those values.

F5: Kurtosis Computation of white pixel summation array C. 
(a) Segmentation filter. (b) Graph of white pixel 
summation array C (Figure 2)

                        E C( )- m
s

4

4
�  (4)

where C is the white pixel array, E is the expected value of quantity, m is 
the mean of C, s  is the standard deviation of C.

F6: Mean Computation of white pixel summation array C. 
(a) Segmentation filter. (b) Graph of white pixel 
summation array C (Figure 2)
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where C is the white pixel array, N is the observations/values in the array.
F7: Standard  

deviation
Computation of white pixel summation array C. 

(a) Segmentation filter. (b) Graph of white pixel 
summation array C (Figure 2)
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where C is metric of the white pixel summation of the image with N 
number of values greater than 0, and m is the mean of C.

F8: Zero-scores Computation of white pixel summation array C. 
(a) Segmentation filter. (b) Graph of white pixel 
summation array C (Figure 2)
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where n is the total numbers of absolute value array, m is the mean and 
s  is the standard deviation of the C.

(Continued)
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Figure 1 | Segmentation stages for bottle class sample.

In the second stage, 20 features were selected from the 40 features. 
After many features tuning and combination, it was observed that 
F1–F5, F7, F8, F10, F14, F30–F35, F37–F40 were insignificant and 
did not contribute to the classification process. These features were 
removed which then contributed to mean of 79.12%

In the third stage, only 17 features were used which consists of F9, 
F11–F13, F15–F24, F26–F28. For these 17 features, Q.SVM and 
C.SVM showed accuracy above 88%.

Table 2 | Features list—Continued

Features Source image Formula

F9: Quantile Computation of white pixel summation array C. 
(a) Segmentation filter. (b) Graph of white pixel 
summation array C (Figure 2)

                      max( )quantile C p( , ) �  (8)
where p = 25

F10: Derivative  
variance

Computation of white pixel summation array C. 
(a) Segmentation filter. (b) Graph of white pixel 
summation array C (Figure 2)
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where C is metric of the white pixel summations of the image with N 
number of values greater than 0, and m is the mean of C.

F11: Standard  
deviation

Greyscale of segmented sample image (Figure 3)
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where C is metric of the greyscale of the segmented image with N number 
of values greater than 0, and m is the mean of C.

F12: Entropy Greyscale of segmented sample image (Figure 3)
Entropy of the segmented grey image.

                    -sum( . ( ))p log p* 2 �  (11)
where p contains the normalized histogram counts.

F13: Greyscale  
level ratio range  
(>40 and <111)

Greyscale of segmented sample image (Figure 3) Percentage of grey pixels having intensity greater than 40 and less than  
111 in the segmented grey image pixel array.

F14: Greyscale  
level ratio range  
(>110 and <181)

Greyscale of segmented sample image (Figure 3) Percentage of grey pixels having intensity greater than 110 and less than 
181 in the segmented grey image pixel array.

F15: Greyscale  
level ratio range  
(>180 and <=255)

Greyscale of segmented sample image (Figure 3) Percentage of grey pixels having intensity greater than 180 and less than or 
equal to 255 in the segmented grey image pixel array.

F16: Grey-level  
co-occurrence  
matrix (Contrast)

Greyscale of segmented sample image (Figure 3)
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where p contains the normalized histogram counts. (i, j) are position 
values of pixels.

Measure of the intensity contrast between a pixel 
and its neighbor over the whole image.

F17: Grey-level  
co-occurrence 
 matrix (Correlation)

Greyscale of segmented sample image (Figure 3)
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where (i, j) position values of pixels. m is the mean of the pixel at the  
position (i, j). s  is standard deviation of pixel at the position (i, j).

Measure of correlated pixel to its neighbor  
over the whole image.

F18: Grey-level  
co-occurrence  
matrix (Energy)

Greyscale of segmented sample image (Figure 3)
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where p contains the normalized histogram counts. (i, j) are position 
values of pixels.

Returns the sum of squared elements in  
the GLCM.

F19: Grey-level  
co-occurrence matrix 
(Homogeneity)

Greyscale of segmented sample image (Figure 3)
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where p contains the normalized histogram counts. (i, j) are position 
values of pixels.

Returns a value that measures the closeness of  
the distribution of elements in the GLCM to  
the GLCM diagonal.

F20: Entropy Binarized image of segmentation filter  
(Figure 2a)

              −sum( *log )p p. ( )2 �  (16)
where p contains the normalized histogram counts.

Entropy of binary of the segmented image  
of the samples.

F21–F40 Mean of Gabor filters which were created from  
segmented grey image, with four different  
frequencies f, and six different wavelengths l.

Source image: Greyscale of segmented sample image (Figure 3)
f = [0, 90, 135, 45]
l = [2.8, 5.65, 11.314, 22.63, 45.25, 90.51]

GLCM, Grey-level co-occurrence matrix.
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3.2.  Classifiers Training Results

The training accuracy for respective classifiers with respect to 40, 20, 
17 and 15 features are shown in Table 4. For Q.SVM, C.SVM, Fine 
KNN, E. Boosted Trees and E. Bagged Trees have consistent higher 
accuracy for 17 features. The results verified that the 17 features gave 
good characteristic of the waste, therefore proves that good features 
will always provide higher accuracy. The best performance classifier 
with 17 features was Q.SVM which has accuracy of 90.69%.

3.3. � Classification Results of Mixed Waste 
Classification

Based on the training performance which discussed in Section 3.2, 
Q.SVM has the highest accuracy of the optimized 17 features. With 
that confirmation, testing was done using 320 images of mixed 
waste which consist of crumble (paper/plastic), flat (paper/plas-
tic), tin can, bottle (plastic/glass), cup (paper/plastic), plastic box 
and paper box. Table 5 shows the summary of the testing accuracy 

In the fourth stage, F9 and F11 were removed. F12, F13, F15–F24, 
F26–F28 were maintained. However, the accuracy was severely 
impacted with average results lest than 80%. Figure 5 summed up 
the performance with respect to features selections stages.

Figure 3 | Greyscale of segmented image.

Table 3 | Classifiers and specifications

No Classifiers Specifications

1 Support Vector Machine – 
Cubic (C.SVM)

Kernel function: Cubic, k = 1,  
One-vs-one method

2 Support Vector Machine – 
Quadratic (Q.SVM)

Kernel function: Cubic, k = 1,  
One-vs-one method

3 Ensemble Bagged Trees  
(E. Bagged Trees)

Maximum no of splits = 342, no of 
learners = 30, learning rate = 0.1

4 k-Nearest Neighbor  
(Fine.kNN)

k = 10

5 Ensemble Boosted Trees  
(E. Boosted Trees)

Maximum no of splits = 20, no of 
learners = 30, learning rate = 0.1

Figure 4 | Flowchart for classifier training.

Figure 5 | Summary of features selections with respect to each stage.

Table 4 | Training accuracy for multiple classifiers for 40, 20, 17 and 15 
features

Classifiers

Number of features

40 20 17 15

Classification accuracy

Q.SVM (%) 78.97 81.42 90.69 81.83
C.SVM (%) 79.59 81.27 88.77 81.69
Fine.KNN (%) 73.31 76.25 83.92 77.6
E. Boosted Trees (%) 78.15 77.52 86.49 77.61
E. Bagged Trees (%) 79.01 79.13 81.21 77.55
Mean (%) 77.80 79.12 86.22 79.27

Table 5 | Training accuracy for Q.SVM classifiers for 40, 20, 17 and 15 
features

Type of waste

Number of features

40 20 17 15

Q.SVM classification accuracy

Crumble (paper/plastic) (%) 85 100 100 83
Flat (paper/plastic) (%) 75 89 100 74
Tin can (%) 66 95 94 70
Bottle (plastic/glass) (%) 71 59 76 71
Cup (paper/plastic) (%) 69 71 90 72
Plastic box (%) 80 79 85 82
Paper box (%) 85 70 84 86
Mean (%) 75.86 80.43 89.86 76.86

Figure 2 | Computation of white pixel summation array C.  
(a) Segmentation filter. (b) Graph of white pixel summation array C.

a b
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of Q.SVM classifier which averaged to 89.9% for 17 features. All 
classes have higher accuracy except for bottle (plastic/glass).

4.  CONCLUSION

From this study, it was observed that relevant features and accu-
racy are good matched to ensure the performance of mixed waste 
classification. The relevant features were studied stage by stage. In 
the first stage, even though more features were assigned, the classi-
fiers training showed poor performance. In the second stage, after 
reduction of features, by experimenting the features and training 
rate, the redundant features which contributed to low accuracy 
have been removed. Eventually the classification rate of training 
increased to average of 79.12%. Further reduction to 17 features, 
have contributed to higher average accuracy of 86.22%. However, 
further reduction did not contribute to better classification rate. 
The selected 17 features with Q.SVM as classifier also proved with 
higher accuracy for training with 90.69% and testing with 89.9%. In 
a nutshell, the important of the correct features selection is crucial 
for mix waste classification. Optimal features selection, proved for 
higher accuracy of mixed waste classification. On contrary, more 
features not necessarily contributed to higher accuracy.
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